Title: The geometrowave potential quantified and unified chemical properties

Z. R. Tian, Chemistry/Biochemistry, and Materials Science/Engineering, University of Arkansas, Fayetteville, AR 72701, USA, <u>rtian@uark.edu</u>.

To date, size-dependent properties for atoms, ions, clusters, molecules, nanoparticles (or NPs) haven't been quantitatively predicted, differentiated, and unified, leaving many questions long-unanswered in chemistry. This work has introduced a geometrowave-number ($\tilde{\nu}_{GW}$) and GW-potential (μ_{GW}) to quantitatively predict, compare, and unify these particles' size-dependent properties. Such geometry-quantized chemical properties quantify the energy (or spontaneity) in self-assemble bonding, macromolecules' folding–unfolding, surface defects' reactivity, ions' GW-electronegativity, and NPs' redox change.

If predicting 64 Au-NPs (each 2-nm large) spontaneous self-assembly to an 8-nm NP, directly (*Route-A*) or stepwise (*Route B* + *Route C*) (**Fig. 1a**), each route's Gibbs free energy change¹ $\Delta G < 0$, supposedly. In chemical thermodynamics, however, NP formation's enthalpy (ΔH_f), entropy (ΔS_f), and ΔG_f ($\approx \Delta H_f - T\Delta S_f$) are unquantified or undefined, leaving self-assemblies²⁻⁷ never predicted and compared quantitatively.

To tackle many such problems in the thermodynamics- and quantum mechanics

(QM)-based general chemistry, let's quantize the zero-dimensional (0D), 1D-, 2D- and 3Dparticles' Surface Area-to-Volume (SA/V) ratio (see the **Extended Data Table S1**) into a geometrowave-number ($\tilde{\nu}_{GW}$) with a unit of (length⁻¹). Thus, at T = 298.15 (°K) and 1 (atm), the GW-potential $\mu_{f^{\circ}GW} = hc \cdot \tilde{\nu}_{GW}$, where the c = speed of light, h = Planck constant, and $hc \approx 1.24$ (keV·nm). Therefore,

 $\Delta \mu_{f}^{o}_{GW(Route-A)} = \mu_{f}^{o}_{GW(8nm-NP)} - 64\mu_{f}^{o}_{GW(2nm-NPs)}$ $= \{6/8 - 64(6/2)\}\hbar c = -237.2 \text{ (keV)},$

 $\varDelta\mu_{\text{f}}{}^{\text{o}}{}_{\text{GW}(Route-B)} \; = \; 8\mu_{\text{f}}{}^{\text{o}}{}_{\text{GW}(4nm-NPs)} \; - 64\mu_{\text{f}}{}^{\text{o}}{}_{\text{GW}(2nm-NPs)} \;$

_{NPs)} = {8(6/4) - 64(6/2)}
$$\hbar c = -223.2$$
 (keV),

 $\varDelta\mu\mathsf{f}^{\mathsf{o}}_{\mathsf{GW}(Route-C)} = \mu\mathsf{f}^{\mathsf{o}}_{\mathsf{GW}(8nm\text{-}NP)} - 8\mu\mathsf{f}^{\mathsf{o}}_{\mathsf{GW}(4nm\text{-}NPs)}$

 $= \{6/8 - 8(6/4)\}\hbar c = -14.0$ (keV), and

 $\Delta \mu_{f}^{o}_{GW(Route-A)} = \Delta \mu_{f}^{o}_{GW(Route-B)} + \Delta \mu_{f}^{o}_{GW(Route-C)},$ confirming the $\Delta \mu_{f}^{o}_{GW}$ as a state function.

Accordingly, a NP's $\mu_f^{o}{}_{GW}$ reduction in the hierarchical self-assembly bonding

(see the **Extended Data Table S2a**) is quantifiable:

$$\Delta \mu f^{o}_{GW(2nm-NP in 8nm-NP)} = \Delta \mu f^{o}_{GW(Route-A)}/64 = -3.71$$

$$(\text{keV}) = -(99.73\% \cdot \mu f^{o}_{GW(2nm-NP)}),$$

$$\Delta \mu_{\rm f} {}^{\rm o}_{\rm GW(2nm-NP \, in \, 4nm-NP)} = \Delta \mu_{\rm f} {}^{\rm o}_{\rm GW(Route-B)} / 64 = -3.49$$

$$(\text{keV}) = -(96.16\% \cdot \mu_{f^{o}_{GW(2nm-NP)}}),$$

$$\Delta \Delta \mu f^{o}_{GW4nm-NP in 8nm-NP} = \Delta \mu f^{o}_{GW(Route-C)}/8 = -1.75$$

$$(keV) = -(94.09\% \cdot \mu f^{o}_{GW(4nm-NP)}).$$

These equations indicate smaller NPs' inter-bonding stronger than larger NPs', matching a stronger bonding between smaller atoms. Every NP's $\mu_{f}^{o}_{GW}$ loses nearly 100% in the bulk, since the $\tilde{\nu}^{o}_{GW(bulk)} = 0$ i.e. $\mu_{f}^{o}_{GW(bulk)}$ = 0. This hierarchical bonding, driven by minimizing smaller particles higher $\mu_{f}^{o}_{GW}$ and generalizable to all self-assemblies²⁻⁷, can complement with the electron-centered Chemical Bonding⁸ Theory.

If assuming the $\Delta H_{f}^{o}{}_{GW} \ll \Delta \mu_{f}^{o}{}_{GW}$ in the self-assembly, then the $\Delta S_{f}^{o}{}_{GW(environment)} =$ $-\Delta H_{f}^{o}{}_{GW}/T \approx 0$, and $\Delta S_{f}^{o}{}_{GW} \approx -\Delta \mu_{f}^{o}{}_{GW}/T > 0$. This helps predict quantitatively the $S_{f}^{o}{}_{GW}$ to complement with Boltzmann entropy-based thermodynamics.

If folding a 150-nm long 1Dpolyethylene (PE) to an 8-nm NP (or backward unfolding), since the $d_{(\text{ethylene})} \approx$ 0.390 (nm)⁹, the $\Delta \mu_{f}^{o}_{GW(Folding)} = \mu_{f}^{o}_{GW(0D-PE-}$ NP) - $\mu_{f}^{o}_{GW(1D-PE-oligomer)} \approx (6/8)hc$ -(4/0.390)hc = -11.78 (keV) = - $\Delta \mu_f^{o}{}_{GW(Unfolding)}$. This can help generalize a thinner 1D-NP's greater $\mu_f^{o}{}_{GW}$ for quantifying macromolecules inter-bonding (see the **Extended Data Tables S1 & S2a**).

For a mole of 8-nm NPs at T = 298 (°K), the $\mu_{mf}{}^{o}_{GW(8nm-AuNP)} = 0.93$ (keV/NP) × (6.023 × 10²³) (NP/mole) × (1.60 × 10⁻¹⁹) (kJ/keV) ≈ 8.96 × 10⁴ (kJ/mole). Accordingly, the $S_{mf}{}^{o}_{GW(8nm-AuNP)} = -\mu_{mf}{}^{o}_{GW(8nm-AuNP)}/298 \approx$ -3.01 × 10⁵ (J/K·mole).

Given the $\Delta \mu_f^{o}_{GW(bulk graphite)} = 0$ and $d_{(C-atom)} \approx 0.134 \text{ (nm)}^{10}$, the $\mu_f^{o}_{GW}$ (see the **Extended Data Table S2b**) helps characterize large graphenes of different layers (~0.335 nm/layer) (**Fig. 1b**). The **Fig. 1b** can help quantify all thinner 2D-materials' higher $\mu_f^{o}_{GW}$ generally.

On an 8nm-NP, the $\mu_{f^{o}_{GW}}$ values of 2.0 nm-large surface vacancy defects (see the **Extended Data Table S2c**) are facet-defect's > edge-defect's > corner-defect's (**Fig. 1c**).

This helps generalize smaller defects' higher reactivity in the same order, to help study e.g. zeolites pores, proteins pockets and channels, and semiconductor surface vacancy defects.

On a bulk flat surface, the 2.0 nmsized NP's spontaneous adsorption and "sintering" (see the **Extended Data Table S2d**) are each quantitatively characterizable (**Fig. 1d**). This can help quantitatively predict the $\mu_{f^{0}QGD}$ in Surface Chemistry and Catalytic Chemistry, generally.

In Li-ion batteries¹¹⁻¹³, the electrochemically hard-to-measuring¹⁴

reduction potential from a $Li^+(aq.)^{15}$ to a 2um-long, 2-nm-thick Li-1D-NP electrode (Fig. 2a) is estimable (see the Extended **Data Table S2e**), i.e. $E^{o}_{(cation-to-NP)} = E^{o}_{(cation-to-NP)}$ to-bulk)· $(\mu_f^{o}_{GW(cation)} - \mu_f^{o}_{GW(NP)})/\mu_f^{o}_{GW(cation)} \approx$ -2.90 (V). This can help quantify the $\Delta \mu_{f}^{o}_{GW}$ (Fig. 2b) between NPs, atoms, and ions (see the Extended Data Tables S2f, S3 & S4) for expanding the electrochemistry, redox chemistry, and Lewis acid-base chemistry, using ions' GW-electronegativity $(EN_{GW}) =$ $(6/d) \times \pm$ (ion's charge) (**Table 1**). Thus, the $EN_{GW} = -(GW - electropositivity, or EP_{GW}),$

for quantifying all ions' Lewis acidity (or basicity) in their compounding effectively using their EN_{GW} values.

The **Extended Data Table S1** supports a new nomenclature, " $\tilde{\nu}_{GW}$ -(pointgroup)-composition", for characterizing NPs-bonded countless compounds. For example, an 1.5-nm PbS-0D-NP can be thuslabeled as (6/1.5)-(R₃)-PbS, a 10-nm 0D-ZnSe-NP as (6/10)-(R₃)-ZnSe, their 1:1 compound as (6/1.5)-(R₃)-PbS•(6/10)-(R₃)-ZnSe, the 1.5-nm PbS-0D-NPs' linear 100mer as $1D-\{(6/1.5)-(D_{\infty d})-PbS\}_{100}$, and a 2-nm 0D-ZnO-NP's compound with a kinesin as $(6/3)-(R_3)$ -ZnO-NP•kinesin, respectively.

In conclusion, the thermodynamicsand QM-complemented $\mu_{f^{0}GW}$ has enabled consistently unifying and quantitatively predicting and comparing the particles' $\mu_{f^{0}GW}$ -quantized properties including their hierarchical self-assembly bonding, redox activity, folding–unfolding, acidity and/or basicity, surface defects reactivity, etc. Atoms' and monoatomic ions' EN_{GW} values (see in **Extended Data Table S3**), potentially generalizable to the particles and oligomers, could help develop new basics for overhauling modern chemistry¹⁶, which should be discussed separately.^{17,18}

References:

- ¹ Navrotsky, A. *Physics and chemistry of earth materials* (Cambridge Univ. Press, 1994).
 <u>https://doi.org/10.1017/CBO9781139173650</u>.
- ² Whitesides, G. W. and Grzybowski, B. Self-assembly at all scales. *Sci.* 295, 2418–2421 (2002).
 10.1126/science.1070821.
- ³ Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C. and Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. *Nature* **359**, 710-712 (1992). <u>https://www.nature.com/articles/359710a0</u>.
- ⁴ Tian, Z. R.; Tong, W.; Wang, J. Y.; Duan, N. G.; Krishnan, V. V. and Suib, S. L. Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts. *Science* 276, 926 (1997). <u>https://science.sciencemag.org/content/276/5314/926</u>.
- ⁵ Yang, P. D.; Zhao, D.; Margolese, D. I.; Chmelka, B. F. and Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. *Nature* **396**, 152-155 (1998). <u>https://www.nature.com/articles/24132</u>.
- ⁶ Aizenberg, J.; Weaver, J. C.; Thanawala, M. S.; Sundar, V. C.; Morse, D. E. and Fratzl, P. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. *Science* 309, 275-278 (2005). <u>https://science.sciencemag.org/content/309/5732/275</u>.

- ⁷ Hua, L; Zheng, J.; Zhou, Z. R.; and Tian, Z. R. Water-Switchable Interfacial Bonding on Tooth Enamel Surface, ACS Biomater. Sci. Eng. 4 (7), 2364–2369 (2018).
 <u>https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.8b00403</u>.
- ⁸ Pauling, L. *The Nature of the Chemical Bond* (Cornell Univ. Press, Ithaca, 1960). <u>https://www.academia.edu/26073847/Pauling_L._The_nature_of_the_chemical_bond_Corne</u> <u>ll_Univ._1960_</u>.
- ⁹ Lide, D. R. CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2000). <u>http://diyhpl.us/~nmz787/mems/unorganized/CRC%20Handbook%20of%20Chemistry%20a</u> <u>nd%20Physics%2085th%20edition.pdf</u>.
- 10 Matteucci, S.; Yampolskii, Y.; Freeman, B. D. and Pinnau, I. Materials Science of Membranes *Separation* (Wiley, Chichester, 2006). for Gas and Vapor https://books.google.com/books?id=B9reDQAAQBAJ&pg=PA34&lpg=PA34&dq=Matteucc i,+S.;+Yampolskii,+Y.;+Freeman,+B.+D.+and+Pinnau,+I.+Materials+Science+of+Membran es+for+Gas+and+Vapor+Separation+(Wiley,+Chichester,+2006).&source=bl&ots=3g0AVZ HI2V&sig=ACfU3U1Eh4SKpNbUmOZcMtexUDGhvEDe3A&hl=en&sa=X&ved=2ahUKE witiYnvsrPkAhUMWq0KHZ7TCiQQ6AEwAXoECAgQAQ#v=onepage&q=Matteucci%2C %20S.%3B%20Yampolskii%2C%20Y.%3B%20Freeman%2C%20B.%20D.%20and%20Pin nau%2C%20I.%20Materials%20Science%20of%20Membranes%20for%20Gas%20and%20 Vapor%20Separation%20(Wiley%2C%20Chichester%2C%202006).&f=false.
- ¹¹ Whittingham, S. M. Electrical energy storage and intercalation chemistry. *Science* **192** (4244), 1126–1127 (1976). <u>https://science.sciencemag.org/content/192/4244/1126</u>.

- ¹² Padhi, A.K.; Nanjundaswamy, K.S.; and Goodenough, J.B. Phospho-Olivines as Positive Electrode Materials for Rechargeable Lithium Batteries. *J. Electrochem. Soc.* **144** (4), 1188– 1194 (1997). <u>http://jes.ecsdl.org/content/144/4/1188.full.pdf+html</u>.
- ¹³ Yoshino, A. 1 Development of the Lithium-Ion Battery and Recent Technological Trends, 1 20 Lithium-Ion Batteries: Advances and Applications (Elsevier, 2014).
 https://www.sciencedirect.com/science/article/pii/B9780444595133000017.
- ¹⁴ Jussila, H.; Yang, H.; Granqvist, N. and Sun, Z. Surface plasmon resonance for characterization of large-area atomic-layer graphene film. *Optica* 3 (2), 151–158 (2016). https://www.osapublishing.org/optica/abstract.cfm?uri=optica-3-2-151.
- ¹⁵ Markus, Y. Ionic Radii in Aqueous Solutions, *Chem. Rev.* 88, 1475-1498 (1988). <u>https://pubs.acs.org/doi/abs/10.1021/cr00090a003</u>.
- ¹⁶ G. M. Whitesides, J. Deutch. Let's get practical, *Nature* 469, 21-22 (2011). doi: 10.1038/469021a.
- ¹⁷ Tian, Z. R. Nanoparticles' and Atoms' Geometry-Wave Potential Quantified and Unified Properties. ChemRxiv. Preprint (2019). <u>https://doi.org/10.26434/chemrxiv.9759551.v3</u>.
- ¹⁸ Tian, Z. R. Surface curvature-quantized energy and forcefield in spacetime-warped chemical physics. ChemRxiv. Preprint (2020). <u>https://doi.org/10.26434/chemrxiv.11495811.v3</u>.

Acknowledgement: The author thanks Drs. H. W. Kroto, J. T. Yates, Z. L. Wang, P. Pulay, C.

D. Heyes, and H. C. Tian for fruitful discussions.

EXTENDED DATA.

I. Extended Data Tables S1–S4.

II. References.

Title: The geometrowave potential quantified and unified chemical properties

Z. R. Tian, Chemistry/Biochemistry, and Materials Science/Engineering, University of Arkansas,

Fayetteville, AR 72701, USA, rtian@uark.edu.

I. Extended Data Tables.

1). Extended Data¹ TableS1:

Table S1. Simple-Shape Particles' $\tilde{\nu}_{GW}$ and Point Group (Symmetry)													
	Shape	Surface-Area (SA)	Volume (V)	${ ilde u}_{GW}(=S\!A/V)$	Point Group								
0D	$\bigcirc d$	πd^2	$\pi d^{3/6}$	(6/d)*	R ₃								
	L	$AdI \pm 2d^2$	d2 I	(4/ <i>d</i> +2/ <i>L</i>)**	Dat								
10		+uL + 2u		or $(4/d)^{**}$ if $d << L$	- 40								
		$\pi d^2/2 + \pi dI$	$\pi d^2 I / A$	(4/d + 2/L)**	D ,								
		$\pi a^2/2 + \pi aL$	π <i>a</i> -L/4	or $(4/d)^{**}$ if $d << L$	₽∞d								
	\xrightarrow{D}	$-D^{2}/2 + I - D$	1. D2/4	2/d + 4/D;	D								
10	d	$\pi D^2/2 + a\pi D$	$d\pi D^2/4$	or $2/d$ if $d \ll D$	$D_{\infty d}$								
		$2(dI + dI + I^2)$	dI^2	2/d + 2/L + 2/L;	D								
		$2(aL+aL+L^2)$	aL	or $2/d$ if $d \ll L$	D_{4d}								
	d	$6d^{2}$	<i>d</i> ³	(6/d)*	O_h								
3D	d	$2 \times 3^{1/2} d^2$	$2^{1/2}d^3/3$	$3 \times 6^{1/2}/d$	O_h								
	d	$1.732d^2$	$0.118d^3$	14.678/d	T _d								
*The **Th	spherical and cul e two 1D-particle	bic particles share the same $\tilde{\boldsymbol{\nu}}_{C}$	e same $\widetilde{oldsymbol{ u}}_{GW}$	formula;									

2). Extended Data Table S2:

a)	a) $\mu^{o}_{GW(Au-atom)} = (17.2)hc = 21.33$ (keV),	
	$\mu^{o}_{GW(2nm-AuNP)} = (6/2)hc = 3.72 \text{ (keV)},$	
	$\mu^{o}_{GW(4nm-AuNP)} = (6/4)hc = 1.86 \text{ (keV)},$	
	$\mu^{o}_{GW(8nm-AuNP)} = (6/8)hc = 0.93$ (keV).	
b)	c) μ° _{GW(C-atom)} = (44.8) <i>h</i> c = 55.55 (keV),	
	$\mu^{o}_{GW(1-\text{laver graphene})} = hc\{2/(1 \times 0.335)\} = 7.40,$	
	$\mu^{o}_{GW(2-laver graphene)} = hc\{2/(2 \times 0.335)\} = 3.70 \text{ (keV)},$	
	$\mu^{o}_{GW(4-layer graphene)} = hc{2/(4 \times 0.335)} = 1.85$ (keV).	
c)	c) $\mu^{\circ}_{GW(\text{facet-defect})} = nc\{(SAVV)_{(2-nm defect on 8-nm NP)}\} = nc\{(4\times2^{2} + 6\times8^{2})/(8\mu^{\circ}_{GW(\text{edge-defect})} = nc\{(2\times2^{2} + 384)/504\} = 0.96 \text{ (keV)}, \mu^{\circ}_{GW(\text{corner-defect})} = nc\{384/504 - 17.2\} = 0.94 \text{ (keV)}.$	3°-2°)} = nc{(4×2²+384)/504}= 0.98 (keV),
d)	d) $\mu^{o}_{GW(2nm-NP-on-large flat surface)} = hc\{(5 \times 2^{2})/8\} = 3.10 (keV), \mu^{o}_{GW(hemisphere-on-large flat surface)} = hc\{(\pi d^{2})/(\pi d^{3}/6)\} \approx hc(6/d) = hc(6/d)$	3.13) = 2.38 (keV).
e)	(SA/V) $h = hc(SA/V)$	4 (ke\/)
'	$\mu^{\circ} GW(L(0) \text{ hydrated cation}) = \ln(SAV)_{L(0)} = \ln(20.6) = 25.5 \text{ (keV)}$	
	$\mu^{\circ}_{CM(1, 10, ND)} \approx hc(4/d) = hc(4/2) = 2.48 (keV).$	
	P GW(LFID-NF)()	
f)	f) μº _{GW(Mn(VII)} = hc(6/0.050) = 148.8 (keV),	
	$\mu^{o}_{GW(Mn(VI)} = hc(6/0.052) = 143.1$ (keV),	
	$\mu^{o}_{GW(Mn(V))} = hc(6/0.066) = 112.7 (keV),$	
	$\mu^{o}_{GW(Mn(IV)}$ = hc(6/0.106) = 70.3 (keV),	
	$\mu^{o}_{GW(Mn(III)}$ = hc(6/0.116) = 64.1 (keV),	
	$\mu^{o}_{GW(Mn(II)} = hc(6/0.166) = 44.8 (keV),$	
	$h_{0} = h_{0}(6/0.322) = 22.1 (k_{0})/(k_{0})$	

3. Extended Data¹ Table S3:

H 0.106 56.6 2.20		Table S3. Periodicities of Atoms $\tilde{\nu}_{GW}$ La Atomic Symbol Atomic fameler* (unit: (nm))															He 0.062 96.8
Li 0.234 20.6 0.98	Be 0.224 26.8 1.57	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														F 0.084 71.4 <i>3.98</i>	Ne 0.076 78.9
Na 0.380 15.8 <i>0.93</i>	Mg 0.290 20.7 1.31	** <u>Paulir</u> Lide	Al Si P S Cl ***Pauling's EN data source: Lide, D. R. CRC Handbook of Chem. and Phys. (CRC Press, Boca Raton, FL, 2000). Al Si P S Cl Lide, D. R. CRC Handbook of Chem. and Phys. (CRC Press, Boca Raton, FL, 2000). 25.4 27.0 30.6 34.1 38.0 1.61 1.90 2.19 2.58 3.16														Ar 0.142 42.3
K 0.486 12.3 0.82	Ca 0.388 15.5 1.00	Sc 0.368 16.3 <i>1.36</i>	Ti 0.352 17.0 <i>1.54</i>	V 0.342 17.5 <i>1.63</i>	Cr 0.332 18.1 1.66	Mn 0.322 18.6 <i>1.55</i>	Fe 0.312 19.2 <i>1.83</i>	Co 0.304 19.7 1.88	Ni 0.298 20.1 <i>1.91</i>	Cu 0.290 20.7 1.90	Zn 0.282 21.3 1.65	Ga 0.272 22.1 1.81	Ge 0.250 24.0 2.01	As 0.228 26.3 2.18	Se 0.206 29.1 2.55	Br 0.188 31.9 2.96	Kr 0.176 34.1
Rb 0.530 11.3 0.82	Sr 0.438 13.7 0.95	Y 0.424 14.2 1.22	Zr 0.412 14.7 1.33	Nb 0.396 15.2 1.6	Mo 0.380 15.8 2.16	Tc 0.366 16.4 2.10	Ru 0.356 16.9 2.2	Rh 0.346 17.3 2.28	Pd 0.338 17.8 2.20	Ag 0.330 18.2 1.93	Cd 0.322 18.6 1.69	In 0.312 19.2 1.78	Sn 0.290 20.7 1.96	Sb 0.266 22.6 2.05	Te 0.246 24.4 2.1	l 0.230 26.1 <i>2.6</i> 6	Xe 0.216 27.8 2.60
Cs 0.596 10.1 0.79	Ba 0.506 11.9 0.89	La 0.390 15.4 1.10	Hf 0.416 14.4 <i>1.3</i>	Ta 0.400 15.0 <i>1.5</i>	W 0.386 15.5 <i>1.7</i>	Re 0.376 16.0 <i>1.9</i>	Os 0.370 16.2 2.2	lr 0.360 16.7 2.2	Pt 0.354 16.9 2.2	Au 0.348 17.2 2.4	Hg 0.342 17.5 1.9	TI 0.312 15.8 <i>1.8</i>	Pb 0.308 19.5 <i>1.8</i>	Bi 0.286 21.0 1.9	Po 0.270 22.2 2.0	At 0.300 20.0 2.2	Rn 0.240 25.0
		La 0.390 15.4 1.10	Ce 0.370 16.2 1.12	Pr 0.370 16.2 1.13	Nd 0.370 16.2 1.1	Pm 0.370 16.2	Sm 0.370 16.2 1.17	Eu 0.370 16.2	Gd 0.360 16.7 1.20	Tb 0.350 17.1	Dy 0.350 17.1 <i>1.22</i>	Ho 0.350 17.1 1.23	Er 0.350 17.1 1.24	Tm 0.350 17.1 1.25	Yb 0.350 17.1	Lu 0.350 17.1 1.0	
		Ac 0.390 15.4 1.1	Th 0.360 16.7 1.3	Pa 0.360 16.7 <i>1.5</i>	U 0.350 17.1 <i>1.7</i>	Np 0.350 17.1 1.3	Pu 0.350 17.1 1.3	Am 0.350 17.1	Cm 0.348 17.2	Bk 0.340 17.6	Cf 0.372 16.1	Es 0.372 16.1	Fm 0.334 18.0	Md 0.346 17.3	No 0.332 18.1	Lr 0.322 18.1	

4). Extended Data^{2,3} Table S4:

$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-1-1	GW	10110		<u>- (iiii)</u> 9/	a finni 1	GW	10113	C.N.		in tuni 1	<u>EIN</u> G)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-22.6	BK+4	6	0.083	36.1	144.4	Cu+1	2	0.046	65.2	65.2	lr+3	6	0.068	44.1	132
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-16.6		8	0.093	32.3	129.2		4	0.060	50.0	50.0	lr ⁺⁴	6	0.063	47.6	190
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-15.3	Br+5	3	0.031	96.8	484		6	0.077	39.0	39.0	lr+5	6	0.057	52.6	263
H 4 0.135 22.2 -2 6 0.137 21.9 -2 6 0.137 21.9 -2 6 0.137 21.9 -2 6 0.140 21.4 -4 8 0.142 21.1 -4 8 0.142 21.1 -4 2 6 0.198 15.2 -3 e^2 6 0.221 13.6 -2 -3 6 0.112 26.8 80 g^{r1} 4 0.100 30.0 30 6 0.112 26.8 80 g^{r1} 4 0.100 30.0 30 6 0.015 26.1 26 8 0.128 23.4 23 g^{r2} 4 0.079 38.0 76 6 0.094 31.9 63 h^3 4 0.039 76.9 23 <tr< td=""><td>-13.6</td><td>Br⁺⁷</td><td>4</td><td>0.025</td><td>120</td><td>840</td><td>Cu⁺²</td><td>4</td><td>0.057</td><td>52.6</td><td>105.2</td><td>K+1</td><td>4</td><td>0.137</td><td>21.9</td><td>21.9</td></tr<>	-13.6	Br ⁺⁷	4	0.025	120	840	Cu ⁺²	4	0.057	52.6	105.2	K+1	4	0.137	21.9	21.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-22.2		6	0.039	76.9	538.3		6	0.073	41.1	82.2		6	0.138	21.7	21.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-21.9	C+4	4	0.015	200	800	Dy+2	6	0.107	28.0	56.0		8	0.151	19.9	19.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-49.6		6	0.016	187.5	750		8	0.119	25.2	50.4		12	0.164	18.3	18.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-42.8	Ca+2	6	0.100	30.0	60.0	Dy+3	6	0.091	33.0	99.0	La+3	6	0.103	29.1	87.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-42.2		8	0.112	26.8	53.6		8	0.103	29.1	87.3		8	0.116	25.9	77.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-32.6		10	0.123	24.4	48.8	Er+3	6	0.089	33.7	101.1		10	0.127	23.6	708
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-30.4		12	0.134	22.4	44.8		8	0.100	30.0	90.0		12	0.136	22.1	66.
	-27.2	Cd+2	4	0.078	38.5	77.0	Eu ⁺²	6	0.117	25.6	51.2	Li ⁺¹	4	0.059	50.8	50.
	-52.5		6	0.095	31.6	63.2		8	0.125	24.0	48.0		6	0.076	39.5	39.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-42.6		8	0.110	27.3	54.6		10	0.135	22.2	44.4		8	0.092	32.6	32.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			12	0.131	22.9	45.8	Eu+3	6	0.095	31.6	94.8	Lu+3	6	0.086	34.9	104
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80.4	Ce+3	6	0.101	29.7	89.1		8	0.107	21.1	63.3		8	0.097	30.9	92.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.0		8	0.114	26.3	78.9	F ⁺⁷	6	0.008	375	2625	Mg ⁺²	4	0.057	52.6	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26.1		10	0.125	24.0	72.0	Fe ⁺²	4	0.063	47.6	95.2		6	0.072	41.7	83.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.4		12	0.134	22.4	67.2		6	0.061	49.2	58.4		8	0.089	33.7	67.
	76.0	Ce+4	6	0.087	34.5	138		8	0.092	32.6	65.2	Mn ⁺²	4	0.066	45.5	91.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63.8		8	0.097	30.9	123.6	Fe ⁺³	4	0.049	61.2	183.6		6	0.083	36.1	72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	230.7		10	0.107	28.0	112		6	0.055	54.5	163.5		8	0.096	31.3	62.
	187.5		12	0.114	26.3	105.2		8	0.078	38.5	115.5	Mn+3	6	0.058	51.7	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	166.8	Cf+3	6	0.095	31.6	94.8	Ga+3	4	0.047	63.8	191.4	Mn+4	4	0.039	76.9	30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91.8	Cf ⁺⁴	6	0.082	36.6	146.4		6	0.062	48.4	145.2		6	0.053	56.6	22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	82.5		8	0.092	32.6	130.4	Gd+3	6	0.094	31.9	95.7	Mn+5	4	0.033	90.9	45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	141.2	Cl+5	3	0.012	250	1250		8	0.105	28.6	85.8	Mn ⁺⁶	4	0.026	115.4	692
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	126.4	Cl+7	4	0.008	375	2625	Ge+2	6	0.073	41.1	82.2	Mn ⁺⁷	4	0.025	120	84(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	155.2	Cm⁺³	6	0.097	30.9	92.7	Ge+4	4	0.039	76.9	307.6	Mo+3	6	0.069	43.5	13(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	441	Cm+4	6	0.085	35.3	141.2		6	0.053	56.6	226.4	Mo ⁺⁴	6	0.065	46.2	184
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	326		8	0.095	31.6	126.4	Hf ⁺⁴	4	0.058	51.7	206.8	Mo+5	4	0.046	65.2	326
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.9	Co+2	4	0.056	53.6	107.2		6	0.071	42.3	169.2		6	0.061	49.2	246
	140.7		6	0.065	46.2	92.4		8	0.083	36.1	144.4	Mo ⁺⁶	4	0.041	73.2	43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105.9		8	0.090	33.3	66.6	Hg ⁺¹	6	0.119	25.2	25.2		6	0.059	50.8	304
8 0.142 21.1 42 12 0.161 18.6 37 e ²² 4 0.027 111.1 22 6 0.045 66.7 13 ⁴³ 5 0.096 31.3 93 6 0.103 29.1 87 8 0.117 25.6 76 ⁴⁵ 6 0.076 39.5 19 k ⁺³ 6 0.096 31.3 93	44.4	C0+3	6	0.055	54.5	163.5	Hg ⁺²	2	0.069	43.5	87.0		7	0.073	41.1	24
12 0.161 18.6 37 2*2 4 0.027 111.1 22 6 0.045 66.7 13 *3 5 0.096 31.3 93 6 0.103 29.1 87 8 0.117 25.6 76 **5 6 0.076 39.5 19 **4 6 0.096 31.3 93	42.2	Cr+2	6	0.073	41.1	82.2	Ū	4	0.096	31.3	62.6	N+3	6	0.016	187.5	56
2*2 4 0.027 111.1 22 6 0.045 66.7 13 *3 5 0.096 31.3 93 6 0.103 29.1 87 8 0.117 25.6 76 *5 6 0.076 39.5 19 x*3 6 0.096 31.3 93	37.2	Cr+3	6	0.062	48.4	145.2		6	0.102	29.4	58.8	N+5	6	0.013	230.8	11
6 0.045 66.7 13 i ⁺³ 5 0.096 31.3 93 6 0.103 29.1 87 8 0.117 25.6 76 i ⁺⁵ 6 0.076 39.5 19 k ⁺³ 6 0.096 31.3 93	1 222.2	Cr+4	4	0.041	73.2	292.8		8	0.114	26.3	52.6	Na ⁺¹	4	0.099	30.3	30.
H ³ 5 0.096 31.3 93 6 0.103 29.1 87 8 0.117 25.6 76 H ⁵ 6 0.076 39.5 19 k ⁺³ 6 0.096 31.3 93	133.4		6	0.055	54.5	218	I+5	3	0.044	68.2	341		6	0.102	29.4	29
6 0.103 29.1 87 8 0.117 25.6 76 ^{H5} 6 0.076 39.5 19 ^{k+3} 6 0.096 31.3 93	93.9	Cr +6	4	0.026	115.4	692.4		6	0.095	31.6	158		8	0.118	25.4	25.
8 0.117 25.6 76 ^{H5} 6 0.076 39.5 19 ^{H3} 6 0.096 31.3 93	87.3		6	0.044	68.2	409.2	I ⁺⁷	4	0.042	71.4	499.8		9	0.124	24.2	24.
⁺⁵ 6 0.076 39.5 19 k ⁺³ 6 0.096 31.3 93	76.8	Cs+1	6	0.167	18.0	18.0		6	0.053	56.6	396.2		12	0.13	23.1	23.
k ⁺³ 6 0.096 31.3 93	197.5		8	0.174	17.2	17.2	In+3	4	0.062	48.4	145.2	Nb+3	6	0.072	41.7	12
	93.9		10	0.181	16.6	16.6		6	0.080	37.5	112.5		8	0.079	38.0	114
			12	0.188	16.0	16.0		-			-		-			
'CN: Coordination Number	umber, and CN = 6 fo	or mo	st ca	ases in	the Tabl	e 1										

4). Extended Data Table S4 (continued):

lons	C.N.	r (nm)	6/d (nm ⁻¹)	FNow	lons	C.N.	r (nm) 6	5/d (nm ⁻¹)	FNow	lons	C.N.	r (nm) 6	/d (nm ⁻¹)	FNau	lons	C.N.	r (nm) 6	/d (nm ⁻¹)	FNau
Nb ⁺⁴	6	0.068	44.1	<u>177.6</u>	Pr+4	6	0.085	35.3	141.2	Sm ⁺²	6	0.119	25.2	50.4	Tm ⁺²	6	0.101	29.7	59.4
Nh+5	4	0.048	62.5	312.5	••	8	0.096	31.3	125.2	•	8	0.127	23.6	47.2		7	0.109	27.5	55.0
110	6	0.064	46.9	234.5	Pt+2	4	0.060	50.0	100	Sm+3	6	0.096	31.3	93.9	Tm+3	6	0.088	34.1	102.3
	8	0.074	40.5	202.5	••	6	0.080	37.5	75.0	•	8	0.108	27.8	83.4		8	0.099	30.3	90.9
Nd+3	6	0.098	30.6	91.8	Pt+4	6	0.063	47.6	190.4		12	0.124	24.2	72.6	U+3	6	0.103	29.1	87.3
	8	0.112	26.8	80.4	Pu ⁺³	6	0.100	30.0	90.0	Sn+4	4	0.055	54.5	218	U+4	6	0.089	33.7	134.8
	9	0.116	25.9	77.7	Pu ⁺⁴	6	0.086	34.9	139.6		6	0.069	43.5	174		8	0.100	30.0	120
	12	0.127	23.6	70.8	Pu ⁺⁵	6	0.074	40.5	202.5		8	0.081	37.0	148		12	0.117	25.6	102.4
Ni ⁺²	4	0.049	61.2	122.4	Pu ⁺⁶	6	0.071	42.3	211.5	Sr+2	6	0.118	25.4	50.8	U+5	6	0.076	39.5	197.5
	6	0.069	43.5	87.0	Rb ⁺¹	6	0.152	19.7	19.7		8	0.126	23.8	47.6	U+6	2	0.045	66.7	400.2
Ni ⁺³	6	0.056	53.6	160.8		8	0.161	18.6	18.6		10	0.136	22.1	44.2		4	0.052	57.7	346.2
Np ⁺³	6	0.101	29.7	89.1		10	0.166	18.1	18.1		12	0.144	20.8	41.6		6	0.073	41.1	246.6
Np ⁺⁴	6	0.087	34.5	138		12	0.172	17.4	17.4	Ta+3	6	0.072	41.7	125.1		8	0.086	34.9	209.4
Np ⁺⁵	6	0.075	40.0	200	Re ⁺⁴	6	0.063	47.6	190.4	Ta ⁺⁴	6	0.068	44.1	176.4	V+2	6	0.079	38.0	76.0
Np ⁺⁶	6	0.072	41.7	250.2	Re ⁺⁵	6	0.058	51.7	258.5	Ta⁺⁵	6	0.064	46.9	234.5	V+3	6	0.064	46.9	140.7
Os+4	6	0.063	47.6	190.4	Re ⁺⁶	6	0.055	54.5	327	Tb+3	6	0.092	32.6	97.8	V+4	5	0.053	56.6	226.4
Os+5	6	0.058	51.7	258.5	Re ⁺⁷	4	0.038	78.9	552.3		8	0.104	28.8	86.4		6	0.058	51.7	206.8
Os+6	6	0.055	54.5	327		6	0.053	56.6	396.2	Tb+4	6	0.076	39.5	158		8	0.072	41.7	166.8
Os+8	6	0.039	76.9	615.2	Rh+3	6	0.067	44.8	134.4		8	0.088	34.1	136.4	V+5	4	0.036	83.3	416.5
P+5	4	0.017	176.5	882.5	Rh+4	6	0.060	50.0	200	Tc ⁺⁴	6	0.065	46.2	184.8		5	0.046	65.2	326
	6	0.038	78.9	394.5	Rh⁺⁵	6	0.055	54.5	272.5	Te ⁺⁴	4	0.066	45.5	182		6	0.054	55.6	278
Pa ⁺³	6	0.104	28.8	86.4	Ru+3	6	0.068	44.1	132.3		6	0.097	30.9	123.6	W+4	6	0.066	45.5	182
Pa ⁺⁴	6	0.090	33.3	133.2	Ru+4	6	0.062	48.4	193.6	Te ⁺⁶	4	0.043	69.8	418.8	W+5	6	0.062	48.4	242
Pa+5	6	0.078	38.5	192.5	Ru+5	6	0.057	52.6	263		6	0.056	53.6	321.6	W+6	4	0.042	71.4	428.4
Pb ⁺²	6	0.119	25.2	50.4	Ru+7	4	0.038	78.9	552.3	Th+4	6	0.094	31.9	127.6		5	0.051	58.8	352.8
	8	0.129	23.3	46.6	Ru ⁺⁸	4	0.036	83.3	670.4		8	0.105	28.6	114.4		6	0.060	50.0	300
	10	0.140	21.4	42.8	S+4	6	0.037	81.1	324.4		10	0.113	26.5	106	Y+3	6	0.090	33.3	99.9
	12	0.149	20.1	40.2	S+6	4	0.012	250	1500		12	0.121	24.8	99.2		8	0.102	29.4	88.2
Pb ⁺⁴	4	0.065	46.2	184.8		6	0.029	103.4	620.4	Ti ⁺²	6	0.086	34.9	69.8		9	0.108	27.8	83.4
	6	0.078	38.5	154	Sb+3	4	0.076	39.5	118.5	Ti+3	6	0.067	44.8	134.4	Yb+2	6	0.102	29.4	58.8
	8	0.094	31.9	127.6		6	0.076	39.5	118.5	Ti ⁺⁴	4	0.042	71.4	285.6		8	0.114	26.3	52.6
Pd ⁺²	4	0.064	46.9	93.8	Sb+5	6	0.060	50.0	250		6	0.061	49.2	196.8	Yb+3	8	0.099	30.3	90.9
	6	0.086	34.9	69.8	Sc+3	6	0.075	40.0	120		8	0.074	40.5	162		9	0.104	28.8	86.4
Pd ⁺³	6	0.076	39.5	118.5		8	0.087	34.5	103.5	Tl ⁺¹	6	0.150	20.0	20.2	Zn ⁺²	4	0.060	50.0	100
Pd ⁺⁴	6	0.062	48.4	193.6	Se ⁺⁴	6	0.050	60.0	240		8	0.159	18.9	18.9		6	0.074	40.5	81.0
Pm ⁺³	6	0.097	30.9	92.7	Se+6	4	0.028	107.1	642.6		12	0.170	17.6	17.6		8	0.090	33.3	66.6
	8	0.109	27.5	82.5		6	0.042	71.4	428.4	Tl+3	4	0.075	40.0	120	Zr ⁺⁴	4	0.059	50.8	203.2
Pr ⁺³	6	0.099	30.3	90.9	Si ⁺⁴	4	0.026	115.4	461.6		6	0.089	33.7	101.1		6	0.072	41.7	166.8
	8	0.113	26.5	79.5		6	0.040	75.0	300		8	0.098	30.6	91.8		8	0.084	35.7	142.8
																9	0.089	33.7	134.8

II. References:

- ¹ Tian, Z. R. Nanoparticles' and Atoms' Geometry-Wave Potential Quantified and Unified Properties. ChemRxiv. Preprint (2019). <u>https://doi.org/10.26434/chemrxiv.9759551.v3</u>.
- ² Ionic radii, Lide, D. R. CRC Handbook of Chem. and Phys. (CRC Press, Boca Raton, FL, 2000).

http://diyhpl.us/~nmz787/mems/unorganized/CRC%20Handbook%20of%20Chemistry%20and

%20Physics%2085th%20edition.pdf.

³ For the N⁻³ and P³⁻ radii: <u>https://www.chemguide.co.uk/atoms/properties/atradius.html</u>.