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Abstract

A methodology that combines alchemical free energy calculations (FEP) with ma-

chine learning (ML) has been developed to compute accurate absolute hydration free

energies. The hybrid FEP/ML methodology was trained on a subset of the Free-

Solv database, and retrospectively shown to outperform most submissions from the

SAMPL4 competition. Compared to pure machine-learning approaches, FEP/ML

yields more precise estimates of free energies of hydration, and requires a fraction

of the training set size to outperform standalone FEP calculations. The ML-derived

correction terms are further shown to be transferable to a range of related FEP sim-

ulation protocols. The approach may be used to inexpensively improve the accuracy
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of FEP calculations, and to flag molecules which will benefit the most from bespoke

forcefield parameterisation efforts.
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Introduction

Alchemical free energy calculations (or Free Energy Perturbation -FEP-) are increasingly

used in academia and industry to support ligand optimisation problems in the early stage

of drug discovery.1–4 The domain of applicability of current alchemical methodologies has to

date mainly been restricted to hit-to-lead and lead optimisation scenarios owing to limita-

tions in computing cost, conformational sampling, and the accuracy of the potential energy

functions used to compute protein-ligand energetics.5–10 There is continued interest in the

development of more accurate potential energy functions to benchmark FEP workflows on

diverse well curated diverse protein-ligand datasets,11–14 and for applications to blinded chal-

lenges or methodological studies.15–20

The calculation of hydration free energies has historically been an important stepping stone

towards more accurate forcefields for protein-ligand binding free energy calculations.21–23

Blinded competitions such as SAMPL have also focused on hydration free energy calcula-

tions.24 Forcefield parameterization is a painstaking challenge that requires meticulous and

laborious efforts to yield steady gains in accuracy. R ecent parameterization efforts from the

Open Force Field, AMBER, CHARMM communities have involved multiple groups. Recent

work has sought to simplify the parameterisation process by direct chemical perception of

hierarchical parameter types.25 Nevertheless it can be difficult to identify what modifications

to introduce to improve the accuracy of parameter sets. Ultimately fundamental limits in

accuracy cannot be overcome due to an incomplete description of the physics of the process,

for instance due to use of fixed-charge forcefields that neglect polarisation effects.26 No-

tably this realisation has prompted the development of post-processing methodologies based

on quantum mechanical (QM) calculations to introduce correction terms for hydration and

binding free energies computed by FEP methods using a classical force field.27–31

Data-driven machine-learning (ML) methods have witnessed a resurgence of interest in drug

discovery in recent years. Impressive advances have been made in the area of machine

learning of quantum chemical calculations,32,33 virtual screening,34,35 and free energies of
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hydration.36–38 Efforts such as DeepChem39 and MoleculeNet40 have popularised the use of

ML methods for molecular property predictions. Recent efforts have made use of 3D con-

volutional neural networks or other graph convolutional neural networks to predict binding

affinities from the spatial structure of protein-ligand systems.41,42 While impressive results

have been demonstrated, the performance of ML methods is limited by the requirements of

often substantial training sets, and a rapid decrease in accuracy when applying the models

to molecules that are dissimilar to those that were included in the training set.

In previous work undertaken by our group as part of the SAMPL6 competition20 we

observed that empirically correcting FEP-derived host-guest binding free energies by a linear

regression model calibrated on preceding SAMPL5 submissions,43 led to significant decrease

in mean unsigned error (MUE) of the predicted binding affinities. The present study extends

this approach with machine-learning regression models that act as empirical correction terms

to the FEP results. That is, the ML models are trained to predict the mistake compared to

experimental values in Gibbs free energy that alchemical calculations make, referred to from

here on as the ∆Goffset.

For any given alchemical prediction ∆GFEP and associated experimental free energy

∆GEXP , ∆Goffset is defined as the difference between the two; it also constitutes the training

label for the given perturbation. This method relies on the assumption that given a training

set of sufficient size, an empirical model trained on this set will be able to estimate accurately

∆Goffset values for a new set of alchemical predictions, thereby compensating for systematic

errors in the underlying alchemical methodology.

As a proof-of-concept, we explore absolute alchemical calculations of hydration free en-

ergies performed with GROMACS.44 Our results show that the proposed hybrid FEP/ML

methodology leads to significant improvements in the accuracy of calculated hydration free

energies, whilst only requiring modest training sets compared to a pure machine learning

approach.
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Theory & methods

FEP/ML model generation

The present methodology describes a regression model that fits the mistake that an alchem-

ical calculation makes for a given molecule A, where the mistake is defined by equation

1:

∆Goffset(A) = ∆GEXP (A)−∆GFEP (A), (1)

where ∆GFEP (A) is the hydration free energy of molecule A calculated by the alchemical

method, and ∆GEXP (A) is the experimentally determined hydration free energy for the same

molecule. For a given training set with defined descriptors, machine-learning models were

used to fit the training domain using five-fold cross-validation over 10 replicates, resulting

in a total population Npop of 50 trained models (see methods section below). All individual

models in Npop are regression models predicting their own ∆Ĝoffset value. We define our

offset estimator as the arithmetic mean of these offset values, and use the standard deviation

of the mean as a measure of the precision of the calculated offset. Thus we define a corrected

hydration free energy as:

∆GFEP/ML(A) = ∆GFEP (A) + 〈∆Ĝoffset(A)〉Npop . (2)

and the precision of the ∆GFEP/ML(A) estimate is determined by propagating statistical

errors of the alchemical and ML terms.

Dataset acquisition

Version 0.52 of the FreeSolv database45 was downloaded from https://github.com/MobleyLab/

FreeSolv. This version contains 642 small neutral molecules. Aside from experimentally-

determined values, the database contains absolute free energies of hydration computed from

alchemical simulations using GROMACS.44 A detailed description of the particular FEP
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methodology used can be found in Ramos Matos et al. 46 FreeSolv calculations were per-

formed using the GAFF47 force field, AM1-BCC48 partial charges and the TIP3P water

model.49,50

A dataset split was performed by excluding the FreeSolvSAMPL4 set which contains

all the compounds (n=47) that were used in the SAMPL4 blinded competition (and had

been subsequently appended to the FreeSolv database after this challenge).51 Compounds

belonging to this set were extracted by filtering for the keyword ’SAMPL4 Guthrie’ in the

experimental reference column of the database’s overview textfile. Six molecules (mob-

ley 6309289, mobley 3395921, mobley 6739648, mobley 2607611, mobley 637522 and mob-

ley 172879) were added manually to the test set because even though they were present in

the SAMPL4 challenge they were not tagged with this keyword in v0.52 of the FreeSolv

database. This resulted in a training set of 595 molecules. From here on only the training

set will be described, but all treatment of data can be considered equal between the training

and test set unless otherwise indicated. All data-handling was done in Python 3.7.4.

Feature generation & pre-processing

Features (descriptors) were generated for all compounds present in FreeSolv. The ML models

in this study were generated using RDKit 2019.03.4.0.52 Molecules were loaded using the

provided SDF files, and featurized using the following classes on standard settings unless

indicated otherwise:

• APFP : Atom-pair fingerprints were generated using

rdkit.Chem.rdMolDescriptors.GetHashedAtomPairFingerprint(); length was set

to 256.

• ECFP : Extended-connectivity fingerprints were generated using

rdkit.Chem.AllChem.GetMorganFingerprintAsBitVect(); length was set to 1024.

In order to generate fingerprints with diameters ECFP2/4/6/8, the radius was set to

1, 2, 3 and 4, respectively.
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• TOPOL: Topological fingerprints were generated using rdkit.Chem.RDKFingerprint();

length was set to 1024.

• MolProps : Molecular properties were generated using the Mordred python API53 with

inclusion of 3D properties. Although the total number of descriptors that this API

generates is 1825, non-numeric columns were excluded resulting in 1113 properties

that constitute the features per compound.

• X-NOISE : Noise ’fingerprints’ were generated using NumPy.random.randint(); length

was set to 100 and random integers ranged between 0-100.

Additionally, all fingerprints were appended individually to MolProps features (resulting in

for instance a feature set called ’MolPropsAPFP’ which was obtained by appending ’APFP’

to ’MolProps’) resulting in fingerprints with a length of the sum of both feature sets (in

the case of MolPropsAPFP, 1113 + 256 = 1369). Every feature set was subsequently Z-

normalized to zero mean and sklearn.decomposition.PCA was used to reduce dimension-

ality using a principal component analysis, and retaining principal components contributing

up to 95% of the variance.

After data pre-processing, the corresponding label (∆Goffset, see Eq. 1) was appended

to each data point in order to build the final training set (named ’FEP/ML’). Additionally,

a second training set (named ’ML’) was generated by using as labels (output variables) the

experimentally-determined ∆Gexp value for each data point.

A 5-fold cross-validation approach was chosen to reduce the risks of overfitting the train-

ing set. The training set was thus randomly split into five equally-sized folds (of sizes

595/5=119). Training was repeated five times, rotating the folds so that each fold acted

as the validation set once for the other four training set folds. Additionally, training was

performed with 10 replicates per feature set, resulting in a total of 50 trained models per

feature set-ML model combination.
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Machine-learning models

Scikit-Learn 0.11.154 was used to generate all ML models. The models were generated on a

machine running Ubuntu 18.04.3 LTS containing 10 Inter i9-7900X CPU cores. For Support

vector machines (SVMs), random forests (RFs), deep neural networks (DNNs) and multiple

linear regressions (MLRs), the classes sklearn.svm.SVR,

sklearn.ensemble.RandomForestRegressor, sklearn.neural network.MLPRegressor and

sklearn.linear model.LinearRegression were used on standard settings except for DNN

which used max iter=5000.

In order to choose optimal hyperparameter configurations for each ML model, a Bayesian

hyperparameter optimization routine was adopted using SciKit-Optimize 0.5.2 (SKOPT),55

which makes use of an expected improvement acquisition function to search hyperparameter

space more efficiently than a random or grid search. The number of steps (calls in SKOPT

nomenclature) was set to 50 because convergence was observed before this point in most

cases. After training a call, the cost function (mean absolute error of predicting on the

validation set) across folds is returned to the SKOPT decorator which in turn chooses a new

hyperparameter configuration for the next call using its acquisition function to attempt to

further decrease the model’s cost function. A more detailed description of the algorithm

can be found in the online SKOPT documentation. Note that this means that for any ML

model, each of the 10 replicates had its own configuration of hyperparameters, but within

each replicate all five folds would have the same hyperparameter configuration. The complete

hyperparameter space is described in table S1.

The code to reproduce all key results and figures presented in this manuscript is available

at https://github.com/michellab/hybrid_FEP-ML.
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Results & discussion

Protocol optimization on training set

For all the ML models derived in this study it was observed that hyperparameters played an

important role in model validation accuracy. This is likely due to the relatively small size

of the training set (595 datapoints). Thus a hyperparameter optimization algorithm was

adopted in which hyperparameters were tuned with the help of Bayesian optimization based

on Gaussian process regression (see table S1). This algorithm searches through hyperparam-

eter space by wrapping around noisy, expensive ML functions; after 50 calls (configuration

attempts), the hyperparameter configuration returning the lowest validation error is saved

together with the corresponding trained model. For all ML models (SVM, RF, MLR and

DNN) convergence was observed from around 30 calls. MLR in this case does not have any

hyperparameters to tune which means that in every SKOPT call the same model is trained

which results in an equal validation error along calls.

Based on the training protocol it can be observed that random forests (RF) and multiple

linear regressions (MLR) do not fit the training set as well as support vector machines (SVM)

and deep neural networks (DNN) protocols (Figure S1). For MLR this is to be expected

because of the relative simplicity of the model. Although the RF algorithm is more complex,

it is primarily designed for classification problems rather than regression problems due to its

dependence on decision trees, which may explain its underfitting. The algorithm is included

as a control in the current study.

A range of different feature sets was used to identify efficient encodings for describing

∆Goffset. A general trend in feature set performance can be observed across ML mod-

els. MolProps and combinatorial feature sets (fingerprints appended to MolProps) fit the

training set better than standalone fingerprints (APFP, TOPOL and ECFP6), and X-NOISE

performs worst as expected since this feature set is generated from random data.

Because standalone MolProps generally outperform standalone fingerprints, it is likely that
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the combined feature sets benefit mainly from the more predictive MolProps component.

The observation that MolProps appears to outperform other feature sets suggests some of

the descriptors included in MolProps correlate well with free energies of hydration. This

is reinforced by our observation that the MolProps feature set outperforms generally other

feature sets when predicting ∆G of hydration directly in our pure ML models (see figure

S1).

Although the Extended-connectivity fingerprint (ECFP)56 is used extensively in QSAR

regression problems, our training protocol suggests underfitting of the training set for this

feature type. This is likely because the used diameter of six bonds is too large to accurately

discriminate between the relatively small compounds in the FreeSolv database (see figure S5);

testing with smaller diameters suggests an increase in fitting ability, however these models

still underperform with respect to other feature types (see figure S3).

Hybrid FEP/ML models outperform standalone FEP and ML models in SAMPL4

The trained models were used to predict on the Freesolv-SAMPL4 test set. Because low

errors in training validation do not necessarily translate into low errors in testing validation,

all trained models were tested (see figure S2 and table S2). Top-performing models per ML

model (see figure 1) were based primarily on the MolProps feature set for SVM, RF and

MLR, but not for DNN. It is likely that the latter suffers from a degree of overfitting causing

individual models to differ widely in predicted offset values. This is apparent in the much

larger uncertainties in dataset metrics for DNN. Nevertheless the accuracy of the predictions

obtained by averaging over the 50 DNN models is competitive. Overall SVM appeared to

give more consistently accurate and precise estimates of ∆Goffset values.

One compound in the test set (mobley 4587267, (2R,3R,4R,5R)-hexane-1,2,3,4,5,6-hexol,

referred to as mannitol from hereon) stands out with a free energy of hydration significantly

more negative than other compounds in the test set (∼ -24 kcal·mol−1). This compound has
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Figure 1: Overview of prediction results on the SAMPL4-Freesolv test set. A: FEP-predicted
versus experimentally-determined free energies of hydration in kcal·mol−1. The orange and
light-orange areas are confidence regions for 1 and 2 kcal·mol−1, respectively. Statistical
uncertainties as supplied by the authors are shown as errorbars. B: Scatter plots of top-
performing ML models predicting ∆Goffset for the FreeSolvSAMPL4 set with respective

statistical intervals. Corrections with correct directionality (i.e. when 〈∆Ĝoffset〉Npop and
∆Goffset values are both positive or both negative) are shown in blue; Corrections with
incorrect directionality are shown in orange. The error bars on x-axis values denote the
standard error of the mean offset value from ensembles of 50 ML models. Black diagonal
lines show the x = y diagonals.
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a large associated ∆Goffset value of ∼-5 kcal·mol−1 (figures 1A and 1B, resp.). SVM and

MLR models appear to correct this outlier better than RF and DNN models do, and it is

likely that this outlier correction skews the statistical performances of the four models to a

degree (see table S3 for model performances excluding the outlier); indeed, when plugging

in the correction terms (figure 2), FEP/ML FE predictions for mannitol appear to be close

to experimental hydration free energy measures, especially for SVM and MLR models.

Figure 2: Machine-learned correction terms applied to FEP predictions. Results are shown for
both support vector machine (left column and deep neural network (right column) ensembles.
A/B: The FreeSolvSAMPL4 set FEP predictions (figure 1) with corrections as predicted by
ML models shown with arrows. Green/red arrows depict corrections that improve/worsen
agreement with experiment. Statistics for standalone FEP (blue) and hybrid FEP/ML
(green) are shown. C/D: pure machine-learning (ML) models directly predicting ∆G of
hydration with statistics in black text. E/F: contains the same data as A/B, but with a
smaller range on both axes. Model uncertainties are shown as error bars. For all statistics
the uncertainties are shown with a plus-minus sign.
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The top-performing FEP/ML model (SVM; MolPropsAPFP, Figure 2A) outperformed

standalone FEP in Pearson r, MUE and RMSE statistics and had higher ranking statis-

tics (Spearman ρ and Kendall τ) than standalone FEP (see table S2). The top-performing

FEP/ML DNN model achieves similar accuracy, but introduces significant uncertainties com-

pared to FEP (Figure 2B). This reflects the larger uncertainties of the DNN-derived offset

values in comparison with other ML protocols (see Figure 1B). Even when offset predic-

tions for a given model are of modest accuracy, plugging in the correction term results in

a FEP/ML model free energy prediction that performs equally well than the standalone

FEP component. It seems that instead of predicting increasingly random values, the worse

∆Goffset predictor models converge towards predicting the training set mean offset value

(-0.32 kcal·mol−1) for all compounds (see table S2 X-NOISE entries). This is significant

because it implies that, given that a properly-trained model is being used, the correction

term can be applied confidently to FEP datasets with minimal risk of worsening the model

performance. The exception to this observation is MLR, which appears to occasionally pre-

dict high ∆Goffset values. This was confirmed by high training validation values in figure

S1 and bottom-level FEP/ML entries in table S2.

The top-performing ML model (SVM; MolProps, Figure 2C) achieves accuracy similar to

FEP, but with larger uncertainties. This trend worsens for the top-performing DNN model

(Figure 2D). As noted before, mannitol contributes substantially to model performance:

a second table with statistical performances excluding mannitol can be found in table S3.

Indeed, excluding this compound slightly diminishes the gain in performance when comparing

FEP/ML models to standalone FEP, although ranking statistics seem to benefit equally

well from correction compared to when mannitol is included. This suggests that the small

corrections (figure 2E and F) introduce primarily a correct reordering of compound ∆G

values.

The top-performing FEP/ML (SVM; MolPropsAPFP)and ML (SVM; MolProps) models
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were introduced in the SAMPL4 challenge retrospectively (figure 3) to correct the results

of SAMPL4 submission 004 that featured a FEP protocol most similar to the one used to

generate calculated FEP values in FreeSolv. In line with the results obtained on the Free-

SolvSAMPL4 test set, FEP/ML SVM models trained with MolPropsAPFP outperformed

standalone FEP for all SAMPL4 statistics. For all metrics the gains are significant, moving

the FEP/ML prediction to 1st or 2nd rank as judged by MUE, r or Kendall tau metrics,

and from 28th to 4th position as judged by RMSE. Many of the top-performing methods

have very similar performance within statistical uncertainties, so care must be taken not

to overinterpet changes in rankings. Nevertheless it is clear that the ML-derived correction

terms improve the accuracy of the FEP methodology.

ML performed broadly similarly to FEP, but the uncertainty of the metrics is again

remarkably large. This indicates that there is significant variability in the predicted free

energies of hydration of the same compound by the ensemble of ML models. By contrast the

FEP/ML predictions are of similar precision to the FEP predictions as the uncertainties in

the offset terms is comparable or smaller to the uncertainties in the alchemical estimates.

Influence of training set size on accuracy of correction terms

We also evaluated the impact of training set size on the accuracy of the correction terms

(figure 4). Hyperparameter configurations were taken from top performers in the training

phase of this study (see table S1), and increasingly large, randomly sampled subsections of

FreeSolv (exluding the test set) were used were used as training sets. For simplicity only

SVM (trained using MolPropsAPFP) results are shown as this model consistently outper-

formed all others.

It was observed that with training sets of increasing size the cost function (in this case,

MUE of FEP/ML prediction on SAMPL4 in kcal·mol−1) decreases monotonically. FEP/ML

models appear to outperform standalone FEP after being trained on ca. 20 compounds in

FreeSolv (figure 4A), and converge with training sets of ca. 400 compounds. Strikingly,
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Figure 3: SAMPL4 statistical performances of top-ranked entries with inserted pure ML and
FEP/ML predictions as depicted in the original challenge. Entry 004 (standalone FEP) is
shown in blue. The FEP/ML model is shown in orange, and rank gains between standalone
FEP and FEP/ML are depicted as black arrows. Pure ML models (ML) are shown as
black bars. Error bars show model uncertainties as depicted in the SAMPL4 overview
publication.51
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standalone ML models require much larger training sets of ca. 450 compounds to outperform

standalone FEP. In both cases the gradual decrease in uncertainty with increase in training

set size is due to higher overlap in training sets composition between replicates as the full

training set size (n=595) is approached. Whereas the FEP/ML model seems to converge

at ca. 400 compounds, the ML model does not appear to have converged and could likely

benefit from a larger training set.

To put these results in perspective in the context of SAMPL4, the changes in ranks of the

FEP/ML entry was plotted as a function of training set size (figure 4B). FEP/ML models

outperform standalone FEP for all statistical measures, although some variability is ob-

served. Whereas MUE and Kendall τ already show clear improvements from small training

set sizes (ca. 100 and 50, resp.), Pearson r and RMSE appear to require models trained

on a larger number of compounds to reach placement in the top five ranks of the SAMPL4

challenge (250 and 500, resp.).

A top-ranked result by Pearson r is not achieved even with a full training set of 595 com-

pounds. This is also apparent in figure 3, where entry 145 is shown to outperform the

FEP/ML model. This entry consists in a quantum-mechanical-based method with implicit

solvent and applies an empirical correction term to alcohol, ether, ester, amines and aromatic

nitrogen groups which were derived from experimental data.57 It is difficult to compare cor-

rection terms in this case because these corrections are generated from experimental measures

versus Poisson-Boltzmann-based free energy calculations.

Although FEP/ML hybridisation does not appear to benefit RMSE scores in figure 3, the

RMSE ranking for FEP/ML models appear to approach first place in the SAMPL4 chal-

lenge when trained on the full training set (595 compounds). The working model in figure

3 is trained using a cross-validation approach which effectively limits training set sizes to

0.8 ∗ 595 = 476 compounds which suggests that when generating a definitive ML correction

term it would be preferable to use all 595 compounds as a training set.
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Figure 4: Effect of increasing training set size on machine-learned correction models. Results
depicted are produced by support vector machines trained using MolPropsAPFP and Mol-
Props for FEP/ML and pure ML models, respectively. A: FEP/ML model mean unsigned
errors in the SAMPL4 challenge are shown with increasingly large (randomly sampled) sub-
sets of the FreeSolv database as training sets with uncertainties across replicates (n=10)
shown as lighter-shaded regions. Orange and blue lines are FEP/ML (FEP+ML, trained
on ∆Goffset) and pure ML (trained on ∆G) predictors, respectively. Horizontal dashed line
indicates the standalone FEP MUE of the FreeSolvSAMPL4 set in the SAMPL4 challenge.
B: results for the same experiment as A but with ranking position of the FEP/ML model in
the SAMPL4 challenge on the y axis per statistical measure. Horizontal dashed lines indi-
cates the standalone FEP statistical measures of the FreeSolvSAMPL4 set in the SAMPL4
challenge and solid blue lines indicate first place in the challenge (i.e. y = 1).
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The offsets are transferable to a number of related SAMPL4 submissions

The transferability of the ML-derived offsets to related simulation protocols was also assessed

to evaluate the general applicability of the methodology. Figure 5 summarises changes in

metric ranks for all complete submissions that featured an FEP methodology (n=19). Overall

the offsets improved/maintained/worsen the rankings of 12/5/2 submissions for Pearson r;

10/3/6 submissions for MUE and RMSE; 9/6/4 submissions for Kendall Tau. Importantly

with one exception (see below) the offsets do not worsen the ranks of the top-performing

submissions.

As expected, SAMPL4 submission 004 is among the entries that benefit the most from

the correction terms. Several entries that used a similar forcefield (GAFF and AM1-BCC

charges, gromacs simulation engine) but a different simulation engine or different free energy

estimation protocols (e.g. 137, 168, 544, 575) also show improvements in metrics. This is

reasonable as it has been shown that, when properly implemented, hydration free energies

computed with the same forcefield by different simulation engines will broadly agree to within

0.2kcal·mol−1.10

The charge model used significantly influences the transferability of the offsets. Submis-

sion 542, 543, 545 only differ from submission 544 in the charge model used (RESP/HF-

631G*, RESP/MP2/aug-cc-pVDZ/PCM, vCHARGE, AM1-BCC respectively). The offsets

worsen the accuracy of the RESP methods but improves slightly the vCHARGE results.

Other RESP-based submissions (166, 167, 169) see marginal changes in ranks. Submissions

based on OPLS forcefields (562, 563, 564) benefit somewhat from the offsets, but not a

GROMOS (529) or an AMOEBA (582) submission. This may be explained by the higher

correlation of the AM1-BCC/GAFF hydration free energies with the OPLS hydration free

energies (Pearson r 0.95, mean absolute deviation 1.1kcal·mol−1) than the GROMOS hy-

dration free energies (Pearson r 0.84, MUE 1.9 kcal ·mol−1) or AMOEBA hydration free

energies (Pearson r 0.86, MUE 3.5 kcal·mol−1).

A number of submissions made use of empirical correction terms that account for known
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deficiencies of the GAFF force field. For instance submission 005 corrects the tendency of

the GAFF forcefield to underhydrate hydroxyls. This source of error has been picked up

by the ML-models as evidenced by the large offsets for mannose (Figure 1B). Consequently

applications of the offsets to submission 005 overshoots the hydration free energy of this

compound, which contributes to a noticeable loss of ranks in MUE/RMSD. Submission 006

also includes an additional polarisation correction term that partially cancelled the effect

of the hydroxyl correction term. The offsets restore partially the correction, leading to

improved rankings. A similar behavior is observed with submission 138 that used QM

derived corrections to improve GAFF hydration free energies reported in submission 137,

leading to redundancy with the ML-derived offsets.

Figure 5: Changes in ranks of SAMPL4 submissions after application of offsets to predicted
hydration free energies. Depicted are SAMPL4 FEP entries before (blue) and after (orange)
hybridisation with the SVM-MolPropsAPFP correction term. The version of this plot with
non-FEP entries can be found in figure S8. Entries were sorted by total ranks gained in
ascending order. The FreeSolvSAMPL4 set corresponds to entry 004.
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Conclusions

This work has demonstrated that it is possible to combine ’physics-driven’ FEP methods

with ’data-driven’ machine learning methods to predict absolute hydration free energies of

small molecules. The chief advantage over FEP is that improvements in the accuracy of the

predictions are achieved without having to embark in cumbersome forcefield parameterisation

efforts. When compared with ML, the FEP/ML approach outperforms FEP with a much

smaller training set size. This is significant as it indicates that for a new dataset it is

possible to make predictions without any available experimental data initially, and switch to

an FEP/ML approach once a number of data points have been experimentally determined.

This advantage stems from the fact that in the FEP/ML approach the ML models only

need to learn to correct errors in the FEP calculations, whereas in a pure ML approach

the models must learn the physics of hydration. Another advantage of FEP/ML is that

the hydration free energies of individual compounds are predicted with precision similar to

that of the FEP calculations, whereas ML-based predictions by ensemble of identical models

show more significant variability. In a retrospective analysis of all SAMPL4 submissions,

the accuracy gains obtained in FEP/ML are sufficient to propel a mid-ranked FEP protocol

to among the top-ranked submissions. Further, the accuracy improvements are not limited

to a single simulation protocol, and a number of related FEP approaches benefit from the

correction terms. This likely stems from the fact that the hydration free energies predicted

by a number of forcefields and software show correlations in their outliers.10,58 However the

performance of the correction terms is expected to decrease the more the simulation protocol

diverges from that used to generate the training set.

There would be of course no need for such correction terms if more accurate forcefields were

available. Thus beyond empirically correcting forcefield errors, the ML correction terms are

useful to flag at essentially no computing cost molecules for which predictions are likely

to deviate significantly from experimental data. This should be useful to help focus time-

consuming forcefield parameterization efforts, or as part of automated workflows to decide
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whether to embark in bespoke forcefield parameterization for a given compound. Finally,

the methodology presented here could be applied to other scenarios where FEP is used

extensively, for instance relative or absolute protein-ligand binding free energy calculations.

The current growth in size and diversity of protein-ligand datasets with associated FEP data

should render FEP/ML an increasingly appealing option to improve the effectiveness of FEP

methods in drug discovery.12,14,59
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Supporting Information Available

Additional figures and tables. Jupyter notebooks to generate the models and figures reported

in this study. Scripts and inputs are also available at https://github.com/michellab/

hybrid_FEP-ML.
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(18) Mey, A. S. J. S.; Jiménez, J. J.; Michel, J. Impact of domain knowledge on blinded pre-

dictions of binding energies by alchemical free energy calculations. Journal of Computer-

Aided Molecular Design 2018, 32, 199–210.

(19) Granadino-Roldán, J. M.; Mey, A. S. J. S.; González, J. J. P.; Bosisio, S.; Rubio-
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GROMACS: High performance molecular simulations through multi-level parallelism

from laptops to supercomputers. SoftwareX 2015, 1-2, 19–25.

(45) Mobley, D. L.; Guthrie, J. P. FreeSolv: a database of experimental and calculated

hydration free energies, with input files. Journal of Computer-Aided Molecular Design

2014, 28, 711–720.

(46) Duarte Ramos Matos, G.; Kyu, D. Y.; Loeffler, H. H.; Chodera, J. D.; Shirts, M. R.;

Mobley, D. L. Approaches for Calculating Solvation Free Energies and Enthalpies

Demonstrated with an Update of the FreeSolv Database. Journal of Chemical & Engi-

neering Data 2017, 62, 1559–1569, Publisher: American Chemical Society.

(47) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and

testing of a general amber force field. Journal of Computational Chemistry 2004, 25,

1157–1174, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20035.

(48) Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. Fast, effi-

cient generation of high-quality atomic charges. AM1-BCC model: I.

Method. Journal of Computational Chemistry 2000, 21, 132–146,

28



eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291096-

987X%2820000130%2921%3A2%3C132%3A%3AAID-JCC5%3E3.0.CO%3B2-P.

(49) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L.

Comparison of simple potential functions for simulating liquid water. The Journal of

Chemical Physics 1983, 79, 926–935, Publisher: American Institute of Physics.

(50) Mobley, D. L.; Bayly, C. I.; Cooper, M. D.; Shirts, M. R.; Dill, K. A. Small Molecule

Hydration Free Energies in Explicit Solvent: An Extensive Test of Fixed-Charge Atom-

istic Simulations. Journal of Chemical Theory and Computation 2009, 5, 350–358,

Publisher: American Chemical Society.

(51) Mobley, D. L.; Wymer, K. L.; Lim, N. M.; Guthrie, J. P. Blind prediction of solvation

free energies from the SAMPL4 challenge. Journal of Computer-Aided Molecular Design

2014, 28, 135–150.

(52) Landrum, G. RDKit: Open-source cheminformatics. 2020; https://github.com/

rdkit/rdkit, original-date: 2013-05-12T06:19:15Z.

(53) Moriwaki, H.; Tian, Y.-S.; Kawashita, N.; Takagi, T. Mordred: a molecular descriptor

calculator. Journal of Cheminformatics 2018, 10, 4.

(54) Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res.

2011, 12, 2825–2830.

(55) Head, T. et al. scikit-optimize/scikit-optimize: v0.5.2. 2018; https://zenodo.org/

record/1207017#.XNWN045KhaQ.

(56) Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. Journal of Chemical Infor-

mation and Modeling 2010, 50, 742–754, Publisher: American Chemical Society.

(57) Sandberg, L. Predicting hydration free energies with chemical accuracy: the SAMPL4

challenge. Journal of Computer-Aided Molecular Design 2014, 28, 211–219.

29



(58) Bosisio, S.; Mey, A. S. J. S.; Michel, J. Blinded predictions of distribution coefficients

in the SAMPL5 challenge. Journal of Computer-Aided Molecular Design 2016, 30,

1101–1114.

(59) Schindler, C. et al. Large-Scale Assessment of Binding Free Energy Calculations in

Active Drug Discovery Projects. 2020, Publisher: ChemRxiv.

Graphical TOC

30


