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ABSTRACT: This work describes the total synthesis of Raputindole A (1) through a convergent approach which features: 1) an 
iridium-catalyzed cyclization to assembly the tricyclic core of the northern part, 2) enzymatic resolution to secure the preparation of 
enantiomerically pure benzylic alcohol, 3) installation of the butenyl substituent via methallylation of the corresponding benzylic 
carbocation and coupling of the northern and southern parts via Heck reaction. (+)-Raputindole A (1) was prepared in 10 steps (LLS) 
and 10% overall yield.

Raputindole A (1) was isolated in 2010, along with three iso-
mers 2-4, from Raputia simullans kalunki, a tree found in the 
Peruvian amazon rainforest, and displayed moderate activity in 
the inhibition of CDK2, GSK-3B and DYRK1 kinases (IC50 > 
10 uM)12. (figure 1).1 Deoxiraputindole C 5 is another member 
of this class isolated from Raputia praetermissa.2 Structurally, 
this is a rare new class of indole alkaloids as it features unsub-
stituted N1, C2- and C3 positions.1 Other natural products con-
taining this 1,2,3-unsubstituted pattern are trinkentrin A3 and 
the herbindole family4. Another feature of this rare alkaloid 
class is the presence of a linear tricyclic scaffold composed by 
an indane moiety fused to an indole ring as in shearinine D5 and 
in (+)-nodulisporic acid A.6 A third structural feature of raputin-
dole A (1) is the presence of a bis-prenylated bisindole core as 
in the antimalarial alkaloids flinderoles A-C7 which can con-
ceivably be traced back to the cyclization of two isoprenyl 
groups. Other examples of bisindole alkaloids include the spon-
gotine A8, caulindoles9 and dragmacidin D10 which, unlike ra-
putindoles, have their indole moieties connected via C-3 (spon-
gotine A and dragmacidin D) or via C-5 (caulindoles).11 In fact, 
the raputindoles attracted the attention of the natural products 
practioners.11  
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Figure 1. Members of the raputindole family. (Photo: Robin Foster, 
http://fieldmuseum.org/) 

The absolute stereochemistry of raputindole A was determined 
in 2017 with the first total synthesis acomplished by Lindel and 
coworkers.12 Their synthetitc route involved an Au(I)-catalyzed 
cyclization to access the linear tricycle and a Pd-catalyzed in-
stallation of the isobutenyl side chain. However low diastere-
oselectivity was observed in the indene catalytic hydrogenation 
to install the stereogenic center at C-7 and to solve this critical 
step, in 2018, the same group published a diastereoselective to-
tal synthesis of raputindole A (1).13 In addition to the Au(I)-cat-
alyzed assembly of the cyclopentaindole moiety, this second 
approach featured an iridium-catalyzed asymmetric hydrogena-
tion of the indene double bond guided by a preinstalled hy-
droxyl function, a Suzuki-Miyaura cross coupling to join the 
two indole moieties and the final oxidation of the indoline pre-
cursor.   
Our total synthesis of raputindole A (1) aimed to avoid the use 
of an indoline as a surrogate of the indole ring as it would re-
quire a late stage oxidation and of an indene intermediate as the 
precursor of the stereogenic center at C-7 to prevent the prob-
lems previously faced by Lindel and coworkers. Our strategy 
features the use of N-tosyl indoles in the northern and southern 
parts of the structure, an iridium-catalyzed diastereoselective 
cyclization14 and a Heck cross coupling reaction to build the ra-
putindole A (1) scaffold. It is noteworthy that our approach al-
lows for the incorporation of an enzymatic resolution step 
which allows to obtain (+)-raputindole A (1).  
Our disconnection relies on a convergent approach where the 
northern and southern parts are connected via a Heck coupling 

reaction (scheme 1). The isobutenyl side chain would be in-
stalled by allylation of tricyclic alcohol 6 with allyltrime-
thylsilane.15 The northern part would come from boronic acid 7, 
to be prepared from commercially available bromoindole 8. An 
iridium-catalyzed cyclization with isoprene would provide lin-
ear tricyclic indole 6, according to the methodology described 
by Hayashi and coworkers for representative boronic acids.14 

The southern part required the preparation of indole 9 via a 
Batcho-Leimgruber protocol. This convergent approach could 
also allow for the total syntheses of raputindole B and deoxira-
putindole C as well.  
 
Scheme 1. Retrosynthetic analysis of Raputindole A (1). 

 
Commercially available 5,6-substituted indole 8 was protected 
as the corresponding N-tosyl derivative in order to 8 en route to 
aldehyde 10 which involved N-tosylation, DIBAL-H reduction 
of the methyl ester and benzylic oxidation with manganese di-
oxide (3 steps, 95% overall yield) (scheme 2). At this stage, to 
install the necessary boronic acid a Miyaura borylation was put 
in place using Pd(Cl)2(ddpf) and bis(pinacolate)diboron which 
provided pinacol ester 11, in 95% yield after silica gel chroma-
tography.16 In 2007, Hayashi and coworkers disclosed an irid-
ium-catalyzed [3+2] annulation of dienes with ortho-carbonyl-
ated phenylboronic acids.14 We decided to apply this methodol-
ogy for the first time to the total synthesis of a natural product. 
Initial attempts to use the boronic acid 7 as the substrate in this 
cyclization provided at the most indole 6 in 36% yield, and we 
decided to explore the in situ generation of boronic acid 7 via 
hydrolysis of pinacol ester 11 in the reaction medium. When we 
kept the reaction mixture in the dark, this one-pot approach pro-
ceeded regio- and stereoselectively to provide racemic linear 
tricyclic indole cis-6, in 94% yield, as the key synthetic inter-
mediate in our approach.17 
Scheme 2. Iridium-catalyzed preparation of linear tricyclic 
indole (+/-)-6. 
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(a) TEBAC (0.1 equiv), NaOH (1.75 equiv), TsCl (1.10 equiv), 

DCM, rt, 2.5 h, 95%. (b) DIBAL-H (2.0 equiv), DCM, 4.5 h, 0 °C 
– rt, quant. (c) MnO2 (18.0 equiv), DCM, rt, 5 h, quant. (d) 
Pd(Cl)2(dppf) (0.05 equiv), KOAc (3.0 equiv), B2(pin)2 (1.2 equiv), 
dioxane, 80 °C, 16 h, 95%. (e) H2O (10.0 equiv), THF:toluene 
(1:1). (f) [Ir(OH)(COD)]2 (0.05 equiv), Et3N (1.25 equiv), isoprene 
(10.0 equiv), THF:toluene (1:1), 80 °C, 24 h, 94%. 

In order to secure indole 6 in enantiomerically pure form, enzy-
matic resolution with lipase B from Candida antarctica 
(CALB-Novozymâ 435) known to be very selective for hydrol-
ysis and transesterification of secondary alcohols, particularly 
in the acetylation of benzylic alcohols as reported by Ferraz and 
coworkers.18 After some experimentation which involved 
screening some solvents and amount of CALB, we found that 
by using  a toluene/MTBE mixture  (8:2, V/V) and increasing  
the amount of CALB to a 2:1 mass ratio compared to the sub-
strate, treatment of benzylic alcohol (+/-)-6 with vinyl acetate 
provided the corresponding enantiomerically pure acetate 
(S,S)-12 (30% yield) and enantiomerically pure alcohol (R,R)-
6 (36% yield, >99% enantiomeric purity as determined by chiral 
HPLC, see SI).19,20   
 
Scheme 3. Enzymatic resolution of benzylic alcohol (+/-)-6.  

 
 
 

 
Conditions: vinyl acetate (4.0 equiv), CALB (2;1 mass ratio), 

toluene/MTBE (8:2), 64 °C, 34 h, 30% of (S,S)-12 and 36% of 
(R,R)-6 ee>99%.   

In order to complete our synthetic approach to raputindole A 
(1), it remained the introduction of the isobutenyl side chain and 
the incorporation of the southern indole moiety. The former was 
planned to be introduced via allylation of the benzylic carbo-
cation to be derived from (R,R)-6 with methallyltrimethylsilane 
which required screening of different Bronsted and Lewis ac-
ids.21-23 Bismuth tribromide emerged as the best choice as it pro-
vided the desired methallyl substituted indole in 69% yield, al-
beit in a 2:1 molar ratio (cis:trans isomers). In an attempt to 
improve the ratio of the trans isomer, the installation of the 
southern indole moiety previous to the reaction with methal-
lyltrimethylsilane was examined. Although the Heck reaction 
of 6 with tosylindole 9, prepared according to literature proce-
dure24, provided bisindole 17 in 48% yield, its subsequent reac-
tion with methallyltrimethylsilane promoted by bismuth tribro-
mide provided a complex mixture of products. 
Despite the poor stereoselectivity observed in the installation of 
the isobutenyl side chain, we moved forward with the 2:1 mix-
ture of cis and trans-13a:13b and proceeded to the isomeriza-
tion of the double bond to convert the exo double bond to the 
required isobutenyl side chain. Treatment with p-TsOH, in tol-
uene at 80 oC, afforded a 2:1 mixture of 14a:14b in almost 
quantitative yield.25 With the northern and southern moieties se-
cured, the cis/trans mixture of indoles 14a:14b was submitted 
to the conditions of the Heck reaction employed for 6 to provide 
a 2:1 cis/trans mixture of 16a:16b, in 71% yield. The removal 
of both tosyl groups which have served well for the assembly 
of the key precursor 14a:14b was a challenging undertaking. 
Initially, we attempted to use TBAF in THF, thioglycolic acid 
as well as LiOH in THF but we only observed product degrada-
tion. The use of KOH and CTAB in THF-H2O under transfer 
phase catalysis made the deprotection possible, but an insepa-
rable mixture of raputindole A (1) and its monotosyl derivative 
was obtained.26-30 Inspection of the 1H-NMR spectrum of the 
crude mixture, revealed the formation of a multiplet at�d 6.5-
6.53 ppm which correlates with the one observed in 6-iodo-in-
dole 9 and is suggestive of the southern indole moiety. This con-
clusion was also corroborated by NOESY analysis of the crude 
mixture. After extensive experimentation, we found that NaOH 
in THF/MeOH at 64 °C was the best condition to remove both 
tosyl groups providing a mixture of raputindole A (1) and its C-
6 epimer in 67% yield which was separated by preparative chi-
ral HPLC (Chiralpak IA column) to afford raputindole A (1) 
spectroscopically identical to the natural product (see SI).  
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Scheme 4. Methallylation and final steps in the total synthesis of Raputindole A (1). 

 

 
(a) Lewis acid (0.2 equiv of InCl3, 27 h, 52%; 0.1 equiv BiBr3, 1,5 h, 66%; 0.1 equiv FeCl3, 1.5 h, complex mixture), DCE, rt; (b) BiBr3 (0.2 
equiv), DCE, rt, 1 h, 69% cis:trans (2:1). (c) 14 (2.0 equiv), (5R,7S)-6 (1.0 equiv), Pd(OAc)2  (0.1 equiv), NaOAc (2.0 equiv), nBu4NBr (0.2 
equiv), N,N-dimethylacetamide:H2O (9:1), 100 °C, dark, 24 h, 48%. (d) TsOH (1.2 equiv), toluene, 80 °C, dark, 4 h, 98%. (e) 14a:14b (2.0 
equiv), 15 (1.0 equiv), Pd(OAc)2  (0.1 equiv), NaOAc (2.0 equiv), nBu4NBr (0.2 equiv), N,N-dimethylacetamide:H2O (9:1), 100 °C, dark, 
24 h, 71%. (f) NaOH (10.0 equiv), MeOH:THF (2:1), 67%, Raputindole (1): 6-epi-Raputindole A (1:2).

In summary, we have accomplished the diastereoselective total 
synthesis of (+)-raputindole A (1) through the stereoselective 
iridium-catalyzed cyclization and enzymatic resolution which 
allowed the obtention of the northern part of raputindole A (1), 
as a 2:1 mixture of cis/trans 13a/13b, after installation of the 
isobutenyl side chain at C-6. After merging it with 6-iodo-in-
dole 15 (southern part) via Heck reaction and removal of both 
tosyl groups, (+)-raputindole A (1) was isolated after prepara-
tive chiral HPLC separation in 10 steps (LLS) and 10% overall 
yield. The versatility of our proposal stems from the possibility 
to use a chiral version of the iridium catalyst to develop an 
asymmetric synthesis of raputindole A (1).17 Additionally, with 
minor adaptations our route is amenable to the total synthesis of 
other members of the raputindole family such as raputindole B 
(2) and deoxiraputindole C (4) as well as to derivatives thereof 
to support structure-activity relationship studies.  
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