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Abstract 
Drug similarity studies are driven by the hypothesis that similar drugs should display similar 

therapeutic actions and thus can potentially treat a similar constellation of diseases.  Drug-drug 

similarity has been derived by variety of direct and indirect sources of evidence and frequently 

shown high predictive power in discovering validated repositioning candidates as well as other 

in-silico drug development applications. Yet, existing resources either have limited coverage or 

rely on an individual source of evidence, overlooking the wealth and diversity of drug-related 

data sources. Hence, there has been an unmet need for a comprehensive resource integrating 

diverse drug-related information to derive multi-evidenced drug-drug similarities.  We 

addressed this resource gap by compiling heterogenous information for an exhaustive set of 

small-molecule drugs (total of 10,367 in the current version) and systematically integrated 

multiple sources of evidence to derive a multi-modal drug-drug similarity network. The 

resulting database, DrugSimDB currently includes 238,635 drug pairs with significant 

aggregated similarity, complemented with an interactive user-friendly web interface 

(http://vafaeelab.com/drugSimDB.html) which not only enables database ease of access, 

search, filtration and export, but also provides a variety of complementary information on 

queried drugs and interactions.  The integration approach can flexibly incorporate further drug 

information into the similarity network, providing an easily extendable platform. The database 

compilation and construction source-code has been well-documented and semi-automated for 

any-time upgrade to account for new drugs and up-to-date drug information.   

http://vafaeelab.com/drugSimDB.html


Introduction 
Drug similarity studies rely on the assumption that drugs with similar pharmacological 

properties are similar in their mechanism of action, share similar side-effects and are indicated 

for the treatment of similar diseases [1, 2].  In-silico drug-drug similarity has been derived for a 

variety of applications including drug target identification [3-7], side-effect prediction [8-10], 

drug-drug interaction prediction [11-15] and drug repositioning [1, 16-19].  The latter, i.e., 

repositioning existing drugs for new indications, has received an escalated interest in the 

research and pharmaceutical industries as an innovative drug development strategy offering the 

possibility of reductions in cost, time and risk as several phases of de-novo drug discovery can 

be bypassed for repositioning candidates [20].  Drug similarity estimation can be directly 

incorporated into the repositioning pipeline to prioritise repositioning candidates based on the 

extent of their similarity with the drug of interest.  

A variety of drug-related sources of evidence—e.g., chemical structure characteristics [7, 21], 

protein targets [22, 23], side-effect profiles [6, 24], gene expression profiles [17, 25], and 

clinical information [2]—have been previously applied in drug-drug similarity analytics.  

Heterogeneous data sources provide a multi-view perspective for predicting similar drugs and 

can compensate for missing data across individual data sources. Hence, incorporating diverse 

data sources, can boost the coverage and accuracy of the prediction and provide new insights 

into drug repositioning and other applications.  Despite the current availability of several drug-

related data sources, there is a need for a comprehensive, contemporary knowledgebase 

integrating diverse information from a wide array of evidence sources to derive multi-modal 

drug-drug similarities.  

We addressed this resource gap by developing DrugSimDB which incorporates into similarity 

measures, multiple sources of direct and indirect information compiled on a comprehensive list 

of drugs. DrugSimDB covers 10,317 small molecule drugs—including 2,466 approved and 

7,212 experimental, illicit or withdrawn—and provides 238,635 pairs of drugs with significant, 

multi-modal similarity. Chemical structure descriptors, drug-induced pathways, drug-protein 

and protein-protein relationships as well as protein sequences and their functional annotations 

were compiled from diverse public datasets and used to estimate structure-, pathway-, target-, 

and function-based similarity between each pair of drugs. Similarity measures across 

modalities were aggregated and assessed for statistical significance. Comparing against a drug 

repositioning gold standard of approved and failed drugs, we have shown that diversifying 

sources of similarity evidence improves the specificity and sensitivity of candidate 



prioritisation for repositioning, which corroborates the necessity of multi-modal approaches 

and the utility of DrugSimDB for drug development.    

We implemented an inclusive web-application (http://vafaeelab.com/drugSimDB.html) 

enabling users to browse DrugSimDB for a drug of interest or download the full database or 

any intermediately-processed important files, e.g., individual pairwise similarity matrices. For 

each queried drug, in addition to a prioritised list of similar drugs, the web application provides 

information on a drug’s physicochemical and pharmacological properties as well as an 

interactive view of the drug’s 3D structure. More importantly, the web application provides an 

interactive visualisation of an induced subnetwork of the drug-drug similarity network 

including the queried drug and its interacting partners. A batch query is also supported, where 

users can upload a list of drugs (names/IDs) to retrieve their similarity information. Users can 

select any node on the subnetwork to probe a drug’s side-effects or select any edge to explore 

PubMed articles with evidence of the association. For improved reusability and maintenance of 

data coverage, we implemented the whole framework as a well-documented and semi-

automated, parallelised pipeline. Users can follow simple instructions to retrieve up-to-date 

data sources and update the database accordingly.  

Overall, DrugSimDB and its web application provide an exhaustive and reusable resource for 

multi-modal drug similarity investigation enriched with drug side-effect, indications, and 

literature evidence, which together form a unique starting point for drug-repositioning and 

beyond. 

Materials and methods 

Data sources 

Drug names, identifiers, physicochemical and pharmacological properties and links to external 

databases were retrieved from DrugBank [26], a comprehensive, frequently updated drug 

encyclopaedia. Drug chemical structures in SDF format, protein targets and their primary 

structure in FASTA format were also retrieved from DrugBank. Drug-induced pathways and 

their constituent genes were obtained from Kyoto Encyclopedia of Genes and Genomes 

(KEGG) [27]. Protein-protein interactions (PPIs) in humans were downloaded from 

Interologous Interaction Database (I2D) [28], comprising validated and predicted PPIs 

compiled from over 35 databases and literature. Gene ontology annotations (cellular 

components, biological processes and molecular functions) of protein targets were obtained 

from the enrichR [29] web server which provides up-to-date gene ontology annotations for 

gene-set enrichment analyses. Drug indications, i.e., drug to disease mapping and its clinical 

http://vafaeelab.com/drugSimDB.html


status, were downloaded from the Drug Repositioning Database (repoDB) [30]. Information on 

recorded adverse marketed drug reactions were obtained from SIDER, a database of drugs and 

side effects [31]. 

System design and implementation 

The whole pipeline—including data retrieval, filtration and quality control, similarity 

estimation, validation, and visualisation—was implemented in R providing a unified platform 

for ease of reuse and ongoing maintenance. Drug similarity matrix computation was 

implemented using parallel computing in R, enabling intensive and repetitive similarity 

computations to be efficiently run over multiple processors and cores on local and remote 

clusters. An interactive web interface was developed using R Shiny [32].  Three-dimensional 

visualisation of a queried drug’s molecular structure was implemented using the MolView [33] 

API. An interactive network view of an induced subnetwork comprising the queried drug and 

its interacting partners (i.e., significantly similar drugs) were visualised using the 

visNetwork R package which offers all the features available in vis.js library for Shiny R 

applications [34]. Records of drug-pair co-occurrence in PubMed abstracts were retrieved and 

processed using the easyPubMed R package. The pipeline implementation is available to the 

public, properly commented and well-documented for usage instructions. We recommend 

using a web browser that supports 3D graphics for MolView rendering. The web interface has 

been tested on Firefox, Google Chrome and Internet Explorer. 

Drug similarity estimation 

Chemical structure similarity 

Chemical structures of small molecule drugs were retrieved in SDF molecular format from 

DrugBank, release version 5.1.3 [35]. Invalid SDFs—i.e., those with NA values or with less 

than three columns in atom or bond blocks—were detected and removed. Atom pair descriptors 

were computed for valid compounds, and pairwise compound similarity, i.e., 𝛿𝑐(𝑑𝑖 , 𝑑𝑗), was 

estimated with atom pairs using the Tanimoto coefficient, which is defined as the proportion of 

atom pairs shared among two compounds divided by their union (Equation 1).  

𝛿𝑐(𝑑𝑖 , 𝑑𝑗) =  |𝐴𝑃𝑖 ∩ 𝐴𝑃𝑗| |𝐴𝑃𝑖 ∪ 𝐴𝑃𝑗|⁄ , (1) 

where 𝐴𝑃𝑖 and 𝐴𝑃𝑗 represent atom pairs of drugs 𝑑𝑖 and 𝑑𝑗 respectively; therefore, the 

numerator is the number of atom pairs which are common in both compounds, and 

denominator represents the number of all atom pairs of the two compounds.  These analyses 

were performed using the ChemmineR cheminformatics package in R [36]. 



Target protein sequence-based similarity  

Target sequences in FASTA format were retrieved for all small molecule drugs from 

DrugBank, release version 5.1.3 [37]. Pairwise protein sequence comparison was performed 

using the standard Needleman-Wunsch [38] dynamic programming algorithm for global 

alignment and the percentage of pairwise sequence identity [39] was reported as the 

corresponding sequence similarity. Drug-drug similarity based on sequence similarities of their 

targets was then estimated as per Equation 2:  

𝛿𝑡(𝑑𝑖, 𝑑𝑗) = (∑ max
∀𝑦∈𝑇𝑗

{𝑆(𝑥, 𝑦)}𝑥∈𝑇𝑖
+ ∑ max

∀𝑥∈𝑇𝑖

{𝑆(𝑦, 𝑥)}𝑦∈𝑇𝑗
) (|𝑇𝑖| ∗ |𝑇𝑗|)⁄ , (2) 

where target-based similarity between drugs 𝑑𝑖 and 𝑑𝑗 is denoted by 𝛿𝑡(𝑑𝑖 , 𝑑𝑗). 𝑇𝑖 is a set of 

proteins targeted by drugs 𝑑𝑖. Likewise, 𝑇𝑗 is a set of proteins targeted by drugs 𝑑𝑗 and 𝑆(𝑥, 𝑦) 

is a symmetric sequence-based similarity measure between two protein targets, 𝑥 ∈ 𝑇𝑖 and 𝑦 ∈

𝑇𝑗. Overall, Equation 2 computes the best-match average in which each target of the first drug 

is paired only with the most similar term of the second one and vice versa. Sequence alignment 

and percentage of sequence identity were estimated using the Biostrings package of R 

[40]. 

Target Protein functional similarity  

In addition to sequence similarity, protein targets overrepresented by similar cellular functions 

would imply similarities in a drug’s mechanisms and downstream effects [41]. To that purpose, 

sets of Gene  Ontology (CO) terms of all three categories—i.e., cellular components (CC), 

molecular functions (MF) and biological processes (BP)—associated with each protein were 

retrieved from enrichR [29] libraries, version 2018. GO terms which were very specific (with ≤ 

15 associated genes) or very general (with ≥ 100 genes) were filtered out. The set of proteins 

associated with a drug was enriched including targets as well as their interacting proteins on 

the protein-protein interaction (PPI) network. The latter are functionally relevant proteins, the 

inclusion of which would enrich gene ontology annotations and improve subsequent statistical 

analyses. The Human PPI network was downloaded from I2D [28], version 2.9, and queried 

against the set of all protein targets; protein-to-gene mapping was performed using the 

AnnotationDbi package in R [42]. 

A GO term was then associated with a drug 𝑑𝑖 if overrepresented by its protein targets and 

their immediate interacting partners. In other words, a term would be enriched if there were a 

high enough number of 𝑑𝑖-related proteins annotated with the GO term implying that the 

functional association is statistically significant (p-value < 0.05 using Fisher’s exact test).    



Once each drug was annotated with enriched GO terms, the functional similarity between any 

two drugs, i.e., 𝛿𝑓(𝑑𝑖 , 𝑑𝑗), was determined by the semantic similarity of their associated GO 

terms as proposed by Wang et al. [43] using the topology of the GO graph structure. Pairwise 

semantic similarities between any two GO terms associated drug 𝑑𝑖 and 𝑑𝑗 were combined into 

a single semantic similarity measure using a best-match average strategy [43] and reported into 

a final similarity matrix. Semantic similarity estimation was performed using the mgoSim 

function from the GOSemSim R package [44].  

Drug-induced pathway similarity 

A drug-pair that induces identical or overlapping pathways implies similarities in mechanisms 

of drug actions providing relevant information for the study of drug similarities and 

repositioning [45]. Pathways induced by each small molecule drug were retrieved from KEGG, 

Release 91.0 [27]. The KEGGREST R package [46] (v 1.26.1) was used to invoke KEGG 

Restful APIs for collecting the list of KEGG pathways induced by each drug; ID mapping 

between DrugBank and KEGG Drug identifiers was performed using DrugBank external links, 

version 5.1.3.  

Pairwise similarity between any two pathways was estimated based on the similarity of their 

constituent genes using dice similarity. Then, for each drug pair 𝑑𝑖 and 𝑑𝑗, a pathway-based 

similarity score, i.e.,  𝛿𝑝(𝑑𝑖 , 𝑑𝑗), was estimated as per Equation 3: 

𝛿𝑝(𝑑𝑖, 𝑑𝑗) = max
∀𝑥∈𝑃𝑖,∀𝑦∈𝑃𝑗

{𝐷𝑆𝐶(𝑥, 𝑦)},  (3) 

where 𝑃𝑖 and 𝑃𝑗 are sets of pathways induced by drugs 𝑑𝑖 and 𝑑𝑗, respectively;  𝑥 and 𝑦 are two 

pathways represented as sets of their constituent genes, and 𝐷𝑆𝐶(𝑥, 𝑦) = 2|𝑥 ∩ 𝑦| (|𝑥| + |𝑦|)⁄  

is the dice similarity coefficient computing the relative overlap of the two pathways. The 

pathsim function from R BioCor package [47] was used to estimate 𝐷𝑆𝐶(. , . ) measures 

ranging from 0 to 1. Overall, Equation 3 indicates that the maximum pathway-based similarity 

would be attained if two drugs induce one or more identical pathway(s), and the minimum 

similarity of 0.0 is when there is no gene in common between any two pathways induced by 

the comparing drug pair.   

Results and discussion 

Database overview and statistics 

Figure 1 shows the overall scheme and construction of DrugSimDB and the web application.  

Table 1 summarises data sources used to generate the database and web interface along with 



statistics on retrieved data. Overall, 10,317 small-molecule drugs available in DrugBank, 

version 5.1.3 were considered and 6 distinct drug-drug similarity matrices were generated 

estimating measures based on similarities of chemical structures, target protein sequences, 

induced pathways and target protein function (cellular component, biological processes and 

molecular functions). The size of each similarity matrix is 10,317×10,317= 106,440,489 and 

values range from 0 to 1. Missing values indicate no relevant information is available about the 

comparing drugs and were retained for consistency in dimensions. The individual matrices 

were mean-aggregated to form a combined-score similarity matrix. To report relevant pairs, the 

combined matrix was filtered to exclude drugs with missing values across all individual 

matrices (496 out of 10,317) and those with no SMILE structure (639 out of 10,317). 

Additionally, drug pairs were excluded if neither of the two drugs were marketed/approved 

(resulting 23,865,948 drug pairs) with the assumption that repurposing would make sense only 

if the candidate had not failed to be approved for the disease of interest.  The final database 

was then organised as a data-table, where each row records a drug pair and columns correspond 

to individual similarity measures (×6),  the mean-aggregated score, its associated p-value 

(based on standardized z-score) and the corresponding false discovery rate (FDR) [48] adjusted 

p-value. The final data-table reports drug pairs with adjusted p-value < 0.05, yielding a total of 

238,635 unique pairs. 

       

Database access and usage notes 

A search interface for drug-similarity network 

We have developed a web application (http://vafaeelab.com/drugSimDB.html) using the Shiny 

R Studio project [32] to enable easy access to the DrugSimDB database and in-place 

investigation of drugs of interest (Figure 2A-G). With this application, users can query a drug 

(or list of drugs) and view similarity information on its interacting drugs retrieved from 

DrugSimDB (Figure 2B). The queried network—i.e., an induced sub-network comprising the 

queried drug and its interacting partners—would be displayed in an exportable tabular-view as 

well as an interactive network-view (Figure 2C). For a batch query, users can upload a text file 

containing drug names or DrugBank IDs and similarities among queried drugs would be shown 

in the tabular and network views. The tabular-view is sortable and includes information on 

interacting drug names, clinical statuses, individual and combined similarity measures with the 

queried drug(s), p-values, and adjusted p-values of the combined similarity scores. The induced 

sub-network of the queried drug(s) in the network-view is interactive and query-able; the edge 

width corresponds to the combined similarity score, and upon selecting an edge, a PubMed 

http://vafaeelab.com/drugSimDB.html


query is made with its incident drugs, and the search results are displayed as a table in a modal 

window (Figure 2D). Additionally, when a drug node is selected, it displays its side-effect 

information from the SIDER database. For any queried drug, in separate tabs, users can 

observe physiochemical properties of the queried drug (Figure 2E), its chemical structure in an 

interactive 3D view (Figure 2F), and its pharmacological properties (Figure 2G) providing an 

all-in-one view for further investigation of the drug of interest. For a multi-drug query, the 

structure view as well as physiochemical and pharmacological properties of each drug would 

be organised into a toggle list expandable upon clicking. Some example files are also provided 

to assist users on preparing input files for a batch query.  

Data download and statistics  

The interface enables users to bulk download the full DrugSimDB database as well as 

individual similarity matrices and other intermediately processed relevant files. Links to 

downloads are available in the Download page. Users can also view summary statistics of the 

database in the Statistics page and use the Help and Contact pages to get information on how to 

use the application and how to cite the database or contact producers for reporting any 

bugs/issues. 

Technical validation and relevance 

Drug-drug similarity network is scale-free 

Despite the phenomenal diversity of networks in nature, their architecture is usually governed 

by a few simple principles common to most real networks [49]. The most remarkable property 

of a network is characterised by the degree or connectivity of its nodes. Networks with power-

law degree distribution are called scale-free where most nodes have only a few links and a few 

nodes, often called hubs, have huge numbers of links holding the network together. 

Remarkably, biological networks among others, show a strong level of evidence for a scale-

free structure [50].     

We have shown that the DrugSimDB similarity network, where nodes are drugs and links 

represent pairwise similarity, illustrates scale-free topology (Figure 3A). The DrugSimDB 

network constitutes 4,141 unique drugs or nodes and 238,635 edges of similarity associations 

with p-value < 0.05. We performed a bootstrapping hypothesis test (using the poweRlaw 

package in R [51]) to statistically determine whether DrugSimDB’s network architecture 

follows a power-law distribution and received p-value=0.6 which does not reject the null 

hypothesis, indicating that the degree distribution is likely to be power-law.     



Aggregation of heterogeneous data improves the network coverage 

Integrating heterogeneous multisource biomedical data on drugs would adjust for missing 

information across individual data sources and increase the data coverage. This potentially 

alleviates the sparsity challenge and difficulty of handling drugs with no information [52].  

Figure 3B shows the proportion of drugs with no information across individual data sources 

and confirms that integration would reduce data sparsity. Drugs commonly have known valid 

chemical structures resulting a minimum rate of missing values (7.4% out of 10,317) for 

chemical similarity. Other information sources, however, show substantial proportions of 

missing values with drug-induced pathways being at the extreme range (90.3%). The latter can 

be further improved by incorporating other databases as well as predictions on drug-pathway 

associations [45, 53], gene-expression profiles [54, 55] and protein interactions [28].      

Drug-drug similarity network predicts repositioning candidates 

Drug similarity networks can be readily used for repositioning purposes upon the assumption 

that similar drugs are potentially repositionable for same indication(s). To validate this 

assumption, we used repoDB [30], as a standard database of drug repositioning successes and 

failures which contains 6,677 approved drug-indication pairs and 4,123 failed drug-indication 

pairs extracted from DrugCentral [56] and ClinicalTrials.gov [57].  DrugSimDB drug pairs 

(total of 238,635) were sorted ascendingly by their combined similarity scores; a pair is 

considered as a true positive (TP) when both drugs were approved for the same indication(s), 

and as a false positive (FP) if, for a same indication, one drug was approved and the other was 

not. We then plotted true positive rate, TPR (sensitivity) and false positive rate, FPR (1-

Specificity) at multiple cut-off values as implemented by the ROCit R package [58] and 

estimated the area under the ROC curve (AUC) as shown in Figure 3C. We received a 

competitive AUC value of 0.708 using the combined similarity as the predicted score which 

outperforms scoring based on individual similarity measures (Figure 3D). This corroborates 

previous observations that integrating heterogeneous data sources can improve repositioning 

performance [3, 59]    

Related works and comparison with Jaccard Index  

Drug-drug similarity networks have been frequently used in a variety of in-silico drug 

development applications. Supplementary Table 1 provides an illustrative list of recent 

studies where drug similarities were adopted as part of a larger computational pipeline to 

predict drug targets, identify drug-drug interactions, and reposition drugs for new indications, 



among others.  Regardless of the application, a mainstream approach to derive drug-drug 

similarities has been Jaccard similarity coefficient comparing properties (e.g., side-effects, 

targets, pathways) associated with any two drugs. While Jaccard-based similarity is a standard 

approach for comparing drugs across well-annotated properties (e.g., structural fingerprints), it 

has a limited capacity in deriving similarities for new or poorly annotated compounds. 

Additionally, when considering drug properties with a limited annotation coverage (e.g., 

induced pathways), drug pairs with overlapping properties are scarce, and thus the 

corresponding Jaccard based similarity matrix is extremely sparse upon studying a 

comprehensive set of compounds.  

DugSimDB improves upon baseline Jaccard similarity coefficient by comparing pathways at 

the gene level, by estimating targets’ sequence similarities and by integrating PPI information 

with gene-ontology semantic similarities. Figure 4 demonstrates that the adopted approaches 

enhance the coverage and connectivity of drug-drug similarity networks compared with 

Jaccard-driven alternatives. Figure 4A illustrates the distribution of similarity measures (after 

removing missing values) as the proportion of drug pairs whose similarities are less than the 

given cut-off. For instance, Jaccard Index on the pathway level shows 80% of zero similarity 

while this value reduces to 48% when comparing pathways at the gene level. Additionally, on 

the functional similarity, 99% of drug pairs have Jaccard similarity of less than 0.2 (i.e., 

similarity percentile), while in the DrugSimDB network, the percentile raises to 0.8 indicating 

that the adopted approach not only increased the coverage but also improved the strength of the 

similarity evidence. Figure 4B shows the mean degree of nodes. Figure 4C shows the number 

of drug pairs that are connected within the given distances where the shortest distance between 

any two nodes were estimated using breadth-first search algorithm as implemented by the 

igraph package in R [60]. In the Jaccard-based pathway similarity, for instance, nodes are 

merely reachable from their immediate partners forming several disconnected islands. 

Together, the plots clearly show the improved connectivity of the DrugSimDB networks which 

can enhance subsequent network diffusion approaches frequently used in different drug 

development applications (c.f.  Supplementary Table S1).   

Code and data availability 

To ensure the reproducibility of DrugSimDB, we have made the whole codebase (including 

any intermediate curation, processing and the web application) freely available for non-

commercial uses in GitHub (https://github.com/VafaeeLab/drugSimDB). The code and 

interface are well documented, and the database update is implemented as a semi-automated 

https://github.com/VafaeeLab/drugSimDB


pipeline. This would enable any-time upgrade by users to accommodate for updates in source 

databases. The pipeline has been efficiently implemented for parallel processing and it is 

recommended to be run on high-performance computing (HPC) platforms to accelerate 

computations on large similarity matrices. 

Conclusions 

The DrugSimDB repository and its interface provide a comprehensive and easy-to-use resource 

to probe drug-drug similarities for a variety of drug development studies including, but not 

limited to, drug repositioning. The interface not only facilitates easy access to pairwise 

similarities via autocomplete browsing, exportable tables and interactive network 

visualisations, but also provides complementary information on the physiochemical properties, 

side-effects and pharmacology of queried drugs as well as PubMed evidence of any interacting, 

i.e., similar, drug pairs. Together, it provides an inclusive platform for similarity-based in-

silico drug studies, all in one view. We have developed a semi-automated, well-commented 

upgrade-pipeline to enable easy and periodic database upgrade not only for developers but also 

for users who are willing to access to the latest version of data sources at any time.   

Multiple lines of evidence regarding drug-related information have been derived from 

heterogeneous data sources to improve the coverage and prediction performance. Yet, 

DrugSimDB’s score-based prioritisation platform has the capacity to incorporate a multitude of 

other drug-related information—e.g., drug adverse effects, pharmacodynamics, drug-target 

secondary structures and drug-induced molecular omics, which are all within our future 

perspective to further enhance the current resource. In contrast to supervised computational 

methods, the score-based, unsupervised prediction as adopted by DrugSimDB, is not biased to 

training composition, is not affected by an unbalanced training set and can simply incorporate 

any rare and sparse feature with substantial missing values. DrugSimDB is basically a 

weighted, multi-modal scale-free network of drug-drug associations which offers the scope for 

various network-based analyses [52] such as community detection, network-based inference 

and computing graph properties useful for drug repositioning and beyond.   

 

  



Table 
 

Table 1: Data types, statistics and details of data sources used to generate DrugSimDB and 

interface 

Data type Statistics Details 
Data 

source 

Drug Identifiers, 

drug names and 

clinical status 

10,317 small-molecule 

drugs including 2,466 

approved drugs 

 

— 
DrugBank 

[26] 

Drug 

physicochemical 

properties 

16 distinct properties 

per drug 

Molecular weight, Hydrogen 

bond acceptors/donors, Ring 

count, Molecular Refractivity and 

polarizability, CAS number, 

SMILES, lnChl, IUPAC name, 

etc. 

“ 

Drug 

pharmacological 

properties 

16 distinct properties 

per drug 

Description, indication, 

mechanism of action, target 

names, toxicity, 

pharmacodynamics, metabolism, 

half-life, route of elimination, etc. 

“ 

Drug Chemical 

structures 
9,678 structures SDF format “ 

Drug protein 

targets and 

protein sequence  

4,986 unique  

protein sequences and 

20,061 drug-target 

pairs 

FASTA format “ 

Drug-induced 

pathways 

243 pathways and 

3,888 drug-pathway 

associations 

— 
KEGG 

[27] 

Gene ontology 

terms and 

annotations 

446 CC, 1,151 MF, 

and 5,103 BP terms, 

and a total of 250,734 

protein-GO term 

associations 

Gene ontology terms across 

categories of Cellular 

components (CC), molecular 

functions (MF) and biological 

processes (BP)  

Enrichr 

[29] 

Protein-protein 

Interactions 

(PPIs) 

469,515 PPIs 
Validated and computationally 

predicted human PPIs  
I2D [28] 

Drug indications 

and clinical status  

10,562 drug-indication 

associations including 

6,677 approved and 

3,885 non-approved  

RepoDB was considered as the 

drug repositioning gold standard 

and used for technical validation  

RepoDB 

[30] 

 

Drug side effects 
139,756 drug-side 

effect associations 

Information on marketed 

medicines and their recorded 

adverse drug reactions 

SIDER 

[31] 

  

  



Figure Legend 

Figure 1. Database content and construction. For 10,317 small-molecule drugs, DrugSimDB 

collects information on 1) drug chemical structures to estimate drug pairwise chemical 

similarity, 2) drug protein targets and protein sequences to estimate sequence-based target 

similarity, 3) drug-induced pathways and their constituent genes to estimate pathway-based 

similarities, and 4) GO annotations of protein targets and protein-protein interactions to 

identify functional similarities. The similarity scores are then mean-aggregated and filtered into 

a single matrix of combined similarities, i.e., DrugSimDB, which is made accessible and 

analysable via a user-friendly and interactive graphical user interface and complemented with 

other information for in-place drug investigation. Abbreviations: GO: Gene Ontology, CC: 

Cellular Component, MF: Molecular Function, BP: Biological Process. 

Figure2. Database interface and access. (A) The navigation bar, (B) Users query any drug 

name for information on its similarity information with other approved drugs and can choose to 

view the type of combined statistics (i.e., mean-aggregated score, p-value or adjusted p-value). 

A batch query is also supported, where users can upload a list of drug names or DrugBank IDs 

to view similarities among them. (C) An interactive tabular view of a DrugSimDB induced 

sub-network comprising the query drug and its interacting pairs; users can filter, sort, export 

and print the table. An interactive network view of the induced sub-network of the queried drug 

would also be rendered. (D) A tabular view of PubMed-curated literature list involving a drug-

pair when the user selects their corresponding edge in the network view. Panels 

describing/rendering the (E) Physiochemical, (F) interactive 3D structure, and the (G) 

Pharmacological properties of the queried drug are shown. Users can also view a colour-coded 

periodic table of chemical elements to aid in the understanding of its chemical structure in the 

Structure tab. 

Figure3. Technical validation and relevance. (A) This drug-drug similarity network 

illustrates a scale-free topology as observed in most of biological networks. (B) Integration of 

heterogenous data sources enhances information coverage reducing the number of missing 

values (i.e., drugs with no information) when compared to individual data sources. (C, D) 

Validated against RepoDB [30], a database of drug repositioning successes and failures, the 

combined similarity score of DrugSimDB drug-pairs yields a competitive AUC value of 0.708 

which outperforms the predicting power obtained from individual data sources. It retains a 

similar score compared to target-based similarity yet with substantially improved coverage. 



Figure 4. Comparison with Jaccard Index based on network-based properties. (A) The 

proportion of drug pairs whose similarity measure is equal or less than the given thresholds. 

(B) The mean degree of nodes in the DrugSimDB networks and the corresponding Jaccard-

based network; The error bar shows the standard error. (C) The number of drug pairs that are 

connected within the given distances (i.e., the number of links/edges between the two drugs is 

equal or less than the given threshold). Only the top 5% of similarity measures in target 

sequence-based and functional similarity matrices were retained in the DrugSimDB network 

and used for the calculation of degrees and distances. For each comparison, the pale colour 

corresponds to the Jaccard-based approach.  For functional similarity, only the GO category of 

biological processes (BP) was included in this visualisation; similar results obtained using 

other categories (i.e., MF and CC) as visualised in Supplementary Figure S1. 

Key points 

 DrugSimDB provides a comprehensive, integrative and extendable resource of drug-

drug similarities complemented with an interactive user-friendly web interface  

 DrugSimDB networks and individual similarity matrices cover an exhaustive list of 

currently approved and investigational drugs. The platform is easily updatable (by users 

and developers) to account for new drugs and information 

 DrugSimDB currently integrates information on drug chemical structures, protein 

targets and their primary structure, drug-induced pathways, gene ontology annotations 

of protein targets and protein-protein interactions.  

 The web interface facilitates access to further information on drugs’ pharmacology, 

physiochemical properties and side-effects as well as peer-reviewed evidence from the 

PubMed literature search engine on drug-pair co-occurrence.     
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