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Abstract
Quantum mechanics/molecular mechanics (QM/MM)
is the method of choice for atomistic simulation-
s of large systems that can be partitioned in-
to active and environmental regions. Adaptive-
partitioning (AP) methods extend the applicabil-
ity of QM/MM, allowing active zones to change
during the simulation. AP methods achieve con-
tinuous potential energy surface (PES) by intro-
ducing buffer regions in which atoms have both
QM and MM characters. Most of the existing
AP-QM/MM methods require multiple QM cal-
culations per time step, which can be expensive
for systems with many atoms in buffer regions.
Although one can lower the computational cost
by grouping atoms into fragments, this may not
be possible for all systems, especially for appli-
cations in covalent solids. The SISPA method [J.
Chem. Theory Comput. 2017, 13, 2342] differs
from other AP-QM/MM methods by only requir-
ing one QM calculation per time step, but it has the
flaw that the QM charge density and wavefunction
near the buffer/MM boundary tend to those of iso-
lated atoms/fragments. Besides, regular QM/MM
methods for treating covalent bonds cut by the
QM/MM boundary are incompatible with SISPA.
Due to these flaws, SISPA in its original form
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cannot treat covalently bonded systems properly.
In this work, we show that a simple modification
to the SISPA method improves the treatment of
covalently bonded systems. We also study the
effect of correcting the charge density in SISPA
by developing a density-corrected pre-scaled algo-
rithm. We demonstrate our methods with simple
molecules and bulk solids.

1 Introduction
Quantum mechanics/molecular mechanics (QM/MM)1–7

methods combine the accuracy of QM methods
and the computational efficiency of MM method-
s, allowing accurate atomistic simulation of large
systems. QM/MM methods partition the system
into QM and MM subsystems corresponding to
the active and the environmental regions. Such
a partition is predetermined in regular QM/MM,
which is unfavorable when active regions are not
stationary or liable to change during the simu-
lation, such as in solution systems8–10 or trans-
port processes.11–13 Adaptive-partitioning (AP)
QM/MM6,7,14–23 addresses this problem by allow-
ing the partitioning of the system to change during
the simulation. Various criteria for partitioning the
system on the fly have been developed, such as
partition by distances to active sites,14,15,17,18,20,21

by number,24 by density,25,26 by stress,27 and by
error indicator,23 with the first one being the most
commonly used criterion. AP-QM/MM introduces
buffer regions to remove discontinuities in the po-
tential energy surface (PES) as the partitioning
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changes. Atoms in buffer regions have both QM
and MM characters. In the following, we denote
atoms in the QM, buffer, or MM regions as QM
atoms, buffer atoms, or MM atoms respectively.

The first AP-QM/MM method by Rode et al.14

mixes the QM and MM forces on buffer atoms to
ensure a smooth transition. The main flaw of such
force-based methods is the potential energy being
unavailable. Many of the more recent adaptive
QM/MM methods are energy-based, where the po-
tential energy is obtained by mixing QM and M-
M potential energies of different partitions.17,18,20

In each partition, a selection of buffer atoms are
treated as QM atoms and the others treated as MM
atoms. These methods require more than one QM
calculations per time step.

The permuted adaptive partitioning (PAP)17

is the most comprehensive energy-based AP-
QM/MM method. It includes 2Nbuf

partitions,
where Nbuf is the number of buffer atoms. The
computational cost of PAP becomes prohibitive-
ly high when there are more than a few buffer
atoms. One can group atoms into fragments to
reduce the number of partitions in some cases,
such as treating solute molecules17 or differen-
t sections of a biological channel12 as a whole
instead of as individual atoms. This needs a thor-
ough understanding of the system under study,
and a general grouping scheme that retains the key
characteristics of the original system is yet to be
found. Significant development has been made
in developing AP-QM/MM methods with much
fewer configurations, such as the sorted adaptive
partitioning (SAP),17 difference-based adaptive
solvation (DAS),18 size-consistent multipartition-
ing (SCMP),20 and so on. These methods only
requires Nbuf QM calculations per time step, still
higher than that of regular QM/MM.

The scaled interaction single partition adaptive
(SISPA)21 is an AP-QM/MM method that only re-
quire one QM calculation per time step. Instead of
averaging over partitions, SISPA carries out one
QM calculation in an averaged sense with scaled
interactions. SISPA has a similar computation-
al cost as regular QM/MM methods, making it a
promising method for large systems. The scaled
interactions lead to non-trivial changes, howev-
er, with the most obvious one being that the QM
charge density and wavefunction tend to those

of isolated atoms/fragments near the buffer/MM
boundary. This might be acceptable for weakly-
bonded systems such as solutions,21 but the ef-
fects on covalently bonded systems remain to be
checked. The covalent interactions between QM
and MM subsystems are missing from SISPA as
well.

Semiconductor devices form the foundation of
modern electronics. Further development of semi-
conductor technologies requires atomistic under-
standing of the processes in semiconductor ma-
terials and devices. Many technological process-
es in the fabrication of semiconductors, such as
ion implantation28–30 and migration and reaction
of defects or dopant atoms,31–36 happen across a
large distance and have obvious active sites, mak-
ing them suitable for studies with AP-QM/MM
simulations. AP-QM/MM methods with multiple
QM calculations per time step can be expensive for
such simulations. In this paper, we extend the SIS-
PA method to covalently bonded systems by devel-
oping a simple modification to the scaling scheme
of the SISPA, which scales the covalent and non-
covalent interactions differently so that the cova-
lent interactions between QM and MM represen-
tations of the atoms are included. To study the im-
pact of correcting the QM charge density, we de-
velop a correction algorithm while preserving the
continuity of the PES. We demonstrate our meth-
ods with small molecules and bulk silicon.

2 Method
In this section, we first briefly review the PAP and
SISPA methods. We then describe our modifica-
tions to the SISPA scaling scheme of interaction-
s, and finish with the density-corrected pre-scaled
QM algorithm.

2.1 A brief review of PAP and SISPA
We follow the common practice of partitioning the
system into QM, buffer and MM regions by dis-
tances to the centers of active sites.14,15,17,18,20,21

These centers are pre-chosen atoms or positions in
the system, and their associated QM and buffer re-
gions are spherical and spherical shell shaped with
pre-defined radii and thicknesses. Fig. 1 illustrates
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the partitioning of the system.
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Figure 1: Illustration of the partitioning by dis-
tance scheme with dots representing atoms. The
color of the dots represent scaling factors defined
in Eq. (1), with blue being λ = 0 and red being
λ = 1. RQM

ζ
and W buf

ζ
are the radius of the QM

region and the thickness of the buffer region as-
sociated with center ζ . and Rα,ζ is the distance
between atom α and center ζ .

Buffer regions ensure a continuous PES as atoms
move between QM and MM regions. Each atom in
the system is assigned a scaling factor λ , signify-
ing the QM character of the atom. λ equals to 1 or
0 for QM or MM atoms, respectively. The scaling
factor of a buffer atom α is:17

λα = 1−∏
ζ

(1−λα,ζ ), (1)

where λα,ζ denotes the scaling factor of α with
respect to center ζ :

λα,ζ = 10λ̃
3
α,ζ −15λ̃

4
α,ζ +6λ̃

5
α,ζ . (2)

λ̃α,ζ in Eq. (2) is

λ̃α,ζ =
RQM

ζ
+W buf

ζ
−Rα,ζ

W buf
ζ

θ(Rα,ζ −RQM
ζ

)

×θ(RQM
ζ

+W buf
ζ
−Rα,ζ )+θ(RQM

ζ
−Rα,ζ ),

(3)

where θ is the Heaviside step function, RQM
ζ

and

W buf
ζ

are the radius of the QM region and the thick-
ness of the buffer region of center ζ , and Rα,ζ is
the distance between buffer atom α and center ζ .

The PAP potential energy is a weighted sum of
the potential energies of all partitions

V PAP = ∑
P

wPVP, (4)

where VP is the regular QM/MM potential energy
evaluated on partition P, and the weight of parti-
tion P is

wP =
QMP

∏
α

MMP

∏
β

λα(1−λβ ). (5)

Many AP-QM/MM methods17,18,20 improve the
computational efficiency by only including some
of the partitions in the summation.

Unlike the PAP method, a buffer atom in SIS-
PA has both QM and MM representations at the
same time. The QM and MM representations of
the same atom do not interact with each other. In-
teractions between atoms are scaled in both the
QM and MM calculations. The SISPA potential
energy is

V SISPA =V QM,SISPA +V MM,SISPA, (6)

where V QM,SISPA and V MM,SISPA are the potential
energies of scaled QM and MM calculations. Ta-
ble 1 shows the scaling factors of interactions.

The scaled QM calculation lacks formal justi-
fication and can be thought as yielding an ‘av-
eraged’ electronic structure. The SISPA method
therefore trades rigorousness with higher compu-
tational efficiency. Unlike AP-QM/MM methods
with multiple QM calculations per time step, the
SISPA energy and forces have a non-linear depen-
dency on the scaling factors, as can be seen with
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Table 1: Scaling factors of interactions of the SIS-
PA method between atoms α and β . δ is the Kro-
necker δ notation.

QM calculation
α β Scaling

QM QM λαλβ (1−δαβ )+δαβ

QM MM λα(1−λβ )(1−δαβ )

MM calculation
MM MM (1−λα)(1−λβ )(1−δαβ )+δαβ

the simple model system in Appendix A.
Omitting the fragment corrections of the SISPA

method, the zero of energy is defined by

V SISPA
0 =

QM

∑
α

V QM
0,α +

MM

∑
A

V MM
0,A , (7)

where V QM
0,α and V MM

0,A are the unscaled QM and M-
M energies of isolated atom α and A respectively.
Since buffer atoms has both QM and MM repre-
sentations, they are included in both the sums of
Eq. (7).

The scaling factors in Table 1 assumes pairwise
interactions. Complications arise in the implemen-
tation of SISPA when the QM or MM method
contains interactions of more than two bodies.21

To avoid such complications, we use the density-
functional tight-binding (DFTB)37–39 method and
the charge-optimized many-body (COMB) poten-
tial40–42 as the QM and MM methods in this paper,
respectively. Refer to the supplemental material
for details.43 This choice is made only to demon-
strate the effect of scaling and to simplify the im-
plementation. The compatibility of the QM and
MM methods must be carefully tested in real ap-
plications.

2.2 Treatment of covalent interactions
For PAP and related methods, covalent bonds cut
by the QM/MM boundary of a certain partition can
be treated with link atoms44 or other techniques in
regular QM/MM.3 The same cannot be done for
SISPA due to scaled interactions. In this section,
we present a simple modification to the SISPA s-
caling for treating covalent interactions between
QM and MM representations of atoms, and we de-

velop a method correcting the QM charge density
in buffer regions.

2.2.1 Scaled interaction for covalently bonded
systems

The SISPA method employs electrostatic embed-
ding,2,45 so that scaled non-covalent interactions
(such as electrostatic and dispersion) between QM
and MM representations are included in the QM
Hamiltonian. In the QM calculation, non-covalent
interactions switches smoothly between their QM
and MM descriptions. The resulting QM potential
energy and forces would be reasonable if covalen-
t interactions are insignificant in the system, such
as in solutions.21 If the covalent interaction is non-
negligible, however, SISPA would yield unphysi-
cal results. This is due to covalent interactions be-
tween QM and MM representations missing from
both the QM and the MM calculations in SISPA.

In regular QM/MM methods, similar problems
arise when the QM/MM boundary cut through co-
valent bonds.2–4 A commonly used correction is
to add extra link atoms to the QM calculation to
represent the cut bond.2,46–49 Other methods such
as capping potentials,50 effective fragment poten-
tials,51 localized orbitals52–54 and so on have been
proposed. SISPA with its scaled QM calculation
is incompatible with these corrections, however, s-
ince all the covalent bonds involving buffer atoms
can be seen as being partially ‘cut’ due to scaling.

We modify the SISPA method by scaling co-
valent and non-covalent interactions differently,
so that the missing covalent interactions between
QM and MM representations are included in the
MM calculation. This can be seen as treating
these covalent interactions with mechanical em-
bedding.2,45 Table 2 lists the modified scaling fac-
tors of interactions (denoted as ‘mod-SISPA’ in the
following). This modification requires that the M-
M potential can be decomposed into covalent and
non-covalent contributions. Since the scaling of
the QM calculation does not change from SIS-
PA, this modification does not solve the problem
of QM charge density tending to that of isolated
atoms near the buffer/MM boundary in SISPA. A
part of covalent interaction is therefore still miss-
ing for mod-SISPA. We attempt to address this
problem in the next section.
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Table 2: Modified scaling factors of interactions
that distinguishes between covalent and other in-
teractions between atoms α and β . δ is the Kro-
necker δ notation. ‘C’ and ‘N’ means covalent and
non-covalent interactions respectively.

QM calculation
α β Type Scaling

QM QM CN λαλβ (1−δαβ )+δαβ

QM MM N λα(1−λβ )(1−δαβ )

MM calculation
MM MM C (1−λαλβ )(1−δαβ )+δαβ

MM MM N (1−λα)(1−λβ )(1−δαβ )+δαβ

2.2.2 Density-corrected pre-scaled algorithm
for QM calculation

Link atoms in regular QM/MM not only add back
the missing covalent interaction between QM and
MM atoms, but also corrects the QM charge densi-
ty and the wavefunction near the QM/MM bound-
ary. Without them, one obtain unphysical wave-
functions with dangling bonds at the QM/MM
boundary. The SISPA method also suffers from
unphysical QM charge density and wavefunction.
In many cases, density-driven errors is the domi-
nant error in density-functional55–57 QM calcula-
tions,58 and the accuracy can be improved by cor-
recting the charge density.59 mod-SISPA of Table
2 compensates the missing QM-MM interaction
with MM-MM covalent interaction, but does not
solve the problem of unphysical charge density.

In the following, we describe a density-corrected
pre-scaled (DCP) algorithm for studying the effect
of correcting the charge density in SISPA-like AP-
QM/MM methods. The buffer regions in SISPA
ensure the continuity of both the charge density
and the PES as atoms move between the QM and
MM regions. We split these two purposes of buffer
regions in DCP by introducing a secondary buffer
region, so that the original buffer region (referred
to as the primary buffer region in the following)
only ensures the continuity of the PES, and the
secondary buffer region ensures the continuity of
the charge density.

We define the secondary buffer region of each
center as a concentric spherical shell outside the
corresponding primary buffer region. We assign
pre-scaling factors of all atoms according to Eqs.

(1), (2) and (3), with the RQM
ζ

and W buf
ζ

of Eq. (3)

replaced by RQM
ζ

+W prim
ζ

and W sec
ζ

, where W prim
ζ

and W sec
ζ

are the thicknesses of the primary and
secondary buffer regions of center ζ respectively.
Fig. 2 demonstrates the pre-scaling and scaling
factors with an 1D atom chain.
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Figure 2: The pre-scaling and scaling factors of
the DCP, illustrated with an 1D atom chain. (a)
Pre-scaling factors in the self-consistent QM cal-
culation of the first step. (b) Scaling factors in the
non-self-consistent QM calculation of the second
step. The pre-scaling and scaling factors are cal-
culated with Eq. (2).

The DCP algorithm has two steps. In the first
step, we carry out a self-consistent QM calculation
with interactions scaled with the pre-scaling fac-
tors [Fig. 2(a)] and obtain the pre-scaled charge
density and wavefunction. These are kept un-
changed in the second step, and with them we car-
ry out a non-self-consistent QM calculation with
interactions scaled with scaling factors [Fig. 2(b)],
which yields the QM potential energy and forces.
The pre-scaled first step is the same as a SISPA
QM calculation with a bigger QM region, and it
ensures that the charge density and wavefunction
change continuously as the QM subsystem change.
The pre-scaling factors of QM and primary-buffer
atoms equal to 1, leading to a reasonable charge
density inside the QM and primary buffer region-
s. Although the charge density in the secondary
buffer region would still tend to that of isolated
atoms, the effect of having such unphysical charge
density is countered by the vanishing scaling fac-
tors of the secondary buffer atoms. The DCP algo-
rithm is applied on top of the mod-SISPA scaling
factors, since it represents the another part of the
missing covalent interaction.

The Hellmann-Feynman theorem does not hold
for DCP. The QM forces therefore contain extra
terms involving derivatives of the KS orbitals. To
avoid direct calculation of these derivatives,60 we
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derive the z-vector method61,62 for DCP. The extra
computational cost of DCP comparing with SISPA
is mainly composed of the cost of two matrix diag-
onalizations, one of dimension Nbasis×Nbasis, the
other of dimension (Nocc×Nvirt)× (Nocc×Nvirt),
where Nbasis, Nocc and Nvirt are the number of ba-
sis functions, of occupied and virtual orbitals, re-
spectively. The computational cost of DCP with
SCC-DFTB as the QM method is higher due to its
reliance on Mulliken-type partial charges. Refer to
the supplemental material for details.43

3 Results

3.1 Computational details
We implement SISPA, mod-SISPA, DCP and the
scaled COMB potential in the LAMMPS63,64

code. The scaled DFTB calculation is performed
with a modified version of the DFTB+65 code.

The self-consistent charge (SCC) DFTB38 ex-
tends the original DFTB method37 by including
atomic partial charges, which greatly improved the
accuracy and transferability of the method. The s-
caling of QM interactions in SISPA-like method-
s can lead to instabilities in SCC-DFTB, howev-
er, and we have to switch to the original DFTB
method instead of the more accurate SCC-DFTB
as the QM method in some of the following calcu-
lations.

As explained in the introduction, our motivation
of developing AP-QM/MM methods is to study
the dynamics of the technological processes in the
manufacture of semiconductor devices. We there-
fore carry out test calculations on Silicon dimer-
s, trimers and bulk solid. For these systems, we
cannot assign fixed MM charges to atoms since
all atoms are identical, and charge equilibration
(QEq)40,66 methods for MM would introduce ex-
tra QM forces that depend on the derivative of MM
charges with respect to atom positions, which can
be difficult to calculate. To avoid complications,
we set the MM charges to zero in the following.

3.2 Silicon dimer and trimer
We use Si2 and Si3 molecules as model systems to
study the effect of the scaling. Fig. 3 shows how
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Figure 3: Potential energies and forces plotted ver-
sus bond length of Si2. One of the atom is the
QM center, and the force on the other atom is
plotted. The partition parameters are RQM = 2Å,
W prim = 1.0Å, and W sec = 1.0Å. ‘Abrupt’ refers
to the calculation without buffer region.5,6
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the energy and force changes with the bond length
of Si2. The potential energy curves of both mod-
SISPA and DCP are continuous as expected. The
potential well of SISPA is too narrow comparing
with those of both the QM and MM, indicating the
missing covalent interaction. The mod-SISPA of
Table 2 compensates this with MM covalent inter-
actions, leading to a wider potential well which is
closer to both the QM and the MM potential well-
s. Since the PAP method is compatible with link
atoms,44 we show the PAP curves both with and
without hydrogen link atom for comparison, and
the length of the link bond is scaled according to
the length of the actual bond it represents.67 We
do not set a cutoff length for the link bond since
it would lead to a discontinuous potential energy
curve. PAP without link atom does not properly
represent the covalent interaction, and its potential
well has a very similar shape as that of SISPA in
Fig. 3. Due to the inclusion of the QM-MM cova-
lent interaction, PAP with link atom also leads to a
wider potential well.

In Fig. 3, the interaction is overestimated when
using link atoms to represent covalent bonds cut
by the QM/MM boundary in PAP. This is due to
the difference in the strength of the Si-Si and Si-H
bonds. It should be noted that the length of the Si-
H link bond is determined by (RSi-Si/Req

Si-Si)R
eq
Si-H

where Req is the equilibrium bond length, so the
Si-H interaction appears to be stronger than the Si-
Si interaction here. A better chosen partition pa-
rameter can alleviate this problem, as demonstrat-
ed in Fig. 4, but this may not be always possible in
systems with more atoms. The mod-SISPA poten-
tial energy curve performs better in this aspect. It
allows more freedom in the choice of partition pa-
rameters as it is always an interpolation between
the QM and MM curves.

DCP appears to yield a even narrower potential
well than that of SISPA, which is somewhat un-
expected. Despite secondary-buffer atoms having
vanishing scaling factors, the pre-scaling in DCP
still has a prominent effect on the PES, which cre-
ates a barrier at the boundary of the primary and
secondary buffer regions. Taking this barrier into
account, the effective DCP potential well is wider
than that of SISPA. Noticing the similarity of the
shape of the DCP and mod-SISPA potential en-
ergy curves between 2.8Å and 3Å, the effective
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Figure 4: Potential energies versus atom distance
in Si2 with different value of RQM. The system
is the same as in Fig. 3. W buf = 1.0Å for both
RQM = 2.0Å and RQM = 3.0Å.

DCP potential well is deeper than that of mod-
SISPA when shifted down so that the curves be-
tween 2.8Å and 3Å are aligned. The difference
between DCP and mod-SISPA signifies the miss-
ing part of the QM-MM covalent interaction due
to the unphysical charge density. DCP curve for
R > 3Å tends to the MM curve since the DCP
PES is continuous, generating the artificial bar-
rier at 3Å. This artifact drives atoms away from
the boundary of the buffer regions and would lead
to distortions in the geometry, so DCP should not
be used directly in AP-QM/MM simulations, and
should only be used as a tool for analyzing the ef-
fect of charge density in SISPA-like methods.

The contribution of the scaling factors to the
forces are unphysical and are responsible for ge-
ometry distortions.18,68,69 It has been proposed
that such transition forces should be discarded di-
rectly,68 or an extra term should be added to the
Hamiltonian to compensate the effect.17,18,69 We
plot the forces with and without transition forces
in Fig. 5 for comparison, and find that the transi-
tion forces have a significant impact in SISPA-like
methods as well. The forces of all AP-QM/MM
methods becomes closer to QM forces with the
transition forces removed. Due to the scaling of
the interactions in SISPA-like methods, develop-
ing a correction to the Hamiltonian would be more
difficult. In a real application of SISPA-like meth-
ods, it is more practical to discard the transition
forces and couple the system to a thermostat.68
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Figure 6: Potential energies of Si3, with one atom
at the origin (atom 0) as the center and the other t-
wo atoms on the positive x and y axes respectively
(atom 1 and 2). The partition parameters and cal-
culation methods are the same as in Fig. 3. The
curves are shifted so that they align at y2 = 5Å
for easier comparison. The SCC-DFTB QM cal-
culations of all curves are done with fractionally
occupied orbitals corresponding to a temperature
of 300K to avoid numerical instabilities. For PAP
with link atoms, we modified the QM code so that
a link atom only interact with the atom it links to.

In the Si2 example, the center atom is always
treated in QM, and the curves do not show the in-
teraction between two buffer atoms. We plot the
slices of the PES of three Si atoms in Fig. 6 to pro-
vide a better comparison. For the x1 = 1.5Å case,
both atom 0 (center) and atom 1 are in the QM
region, so correcting the charge density of atom
2 would change the QM interaction strengths of
atom pair 0-2 and 1-2, leading to the artificial bar-
rier of DCP being about twice the height than that
of Fig. 3(b). When both atom 1 and 2 are in the
buffer region, the effect of correcting the charge
density is smaller, since the interaction is scaled by
both atom’s scaling factor. Again, we find that the
PESs of PAP and SISPA have similar shapes, and
mod-SISPA yields a better interpolation between
QM and MM curves.

We only allow a link atom to interact with the
corresponding QM atom of that bond to avoid dou-
ble counting, but the shapes of the potential energy
curves of PAP with link atoms vary more rapid-
ly with x1 than curves of other methods. This is
due to that some of the partitions in PAP have t-
wo hydrogen link atoms that represents the same
Si atom, so the overestimation of the interaction in
Fig. 3 is doubled here.

3.3 bulk Si
We apply the SISPA-like AP-QM/MM methods on
a system of 4×4×4 crystalline Si supercell with
512 atoms. The lattice constant is fixed at 5.43Å.
Due to the large number of atoms involved, we are
unable to carry out PAP calculations for compari-
son. For applications in covalent solids, it is usual-
ly impractical to reduce the computational cost by
grouping atoms into fragments due to the system
being highly uniform.

Fig. 7 shows the potential energy as an atom
moves away from the QM center in bulk Si. The
potential energy curve of both QM and MM have
the same general shape. The minima of the QM
and MM potential energy curves are close to each
other, indicating similar equilibrium bond lengths.
For distances smaller than about 6Å, the force on
the moved atom points towards the center atom,
showing the covalent interaction between them.
The force switches to the opposite direction for
larger distances as the interaction between the
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Figure 7: Potential energies and scaling factors as
an atom in bulk Si moves away from the QM cen-
ter. R is the distance of the moved atom to the
center atom. The moved atom is one of the near-
est neighbors of the center. The partition param-
eters are RQM = 2.5Å, W prim = W buf = 1Å, and
W sec = 3Å. The QM curve is obtained with only
the Γ point to be consistent with other calculations.
The potential energy curves are shifted and aligned
at R = 2Å for easier comparison.

moved atom and another atom becomes stronger.
Due to the missing covalent interaction between
QM and MM representations, the SISPA potential
energy curve is too low in the buffer region, gener-
ating the artificial potential well at about 3.5Å, but
the position of this potential well is determined by
artificially chosen partition parameters and not di-
rectly related to the equilibrium bond lengths of
both QM and MM. This would be problematic in
molecular dynamics (MD) simulations since dif-
ferent partition parameters may lead to drastically
different results. Correcting the charge density in
DCP leads to an overcorrection. Instead of a po-
tential well, DCP generates a barrier at the bound-
ary of primary and secondary buffer regions, sim-
ilar to the Si2 case in Fig. 3. mod-SISPA yields a
better potential energy curve as it follows the gen-
eral shape of both the QM and the MM curves.
Even though the position of the minimum of the
potential well is different from the QM and MM
values, the difference is much smaller than that of
SISPA, making it suitable for applications in bulk
solids.

We carry out MD tests in the NVE ensemble
with the 512 atom Si supercell, with the initial ge-
ometry and velocities obtained from a MD simu-
lation with the COMB potential in the NVT en-
semble in equilibration at 2000 K. Fig. 8 shows
the total energies during the simulations. We en-
counter severe convergence problem with SCC-
DFTB in QM and DCP calculations, and we have
to switch to the original DFTB as the QM method
for them. Unfortunately, we find that the original
DFTB can lead to discontinuities with scaled in-
teractions. The inset of Fig. 8 shows SISPA and
mod-SISPA energy curves with the original DFT-
B as the QM method, and the total energy is not
conserved due to this problem. The DCP algorith-
m is less affected by this since the direct effect of
the problem is on the charge density and orbitals
of the pre-scaling step instead of on the energy.

The temperature variations of QM, MM, SISPA
and mod-SISPA in Fig. 9 all have similar magni-
tudes. They are larger than that of PAP simulation
with argon atoms17 due to the much stronger in-
teraction in bulk Si. The simulation with no buffer
region (‘Abrupt’ curve in Fig. 9) shows artificial
heating of the system, which is not present in oth-
er curves.
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Fig. 10 illustrates the radial distribution function
(RDF) of the QM center atom relative to all other
atoms. The RDFs obtained from purely QM and
purely MM simulations are similar to each other,
but all the AP-QM/MM results are distorted. The
RDF of SISPA in solutions shows that the first sol-
vation shell is moved to the buffer boundary.21 We
find the opposite in bulk Si here, and the first shell
of SISPA is moved towards the QM center. The
shape of the RDFs can be roughly explained with
the potential energy curves in Fig. 7. The first two
peaks of the RDF of SISPA correspond to the two
minima of the potential energy curve in Fig. 7, and
the peak of the second shell is higher since its cor-
responding minima is lower in energy. Comparing
with QM and MM RDFs, the peak of the second
shell of SISPA is closer to the QM center. The in-
teraction between the atoms in the first and second
shells would then push the first shell towards the
QM center, leading to the position of the first shell
not exactly located at the first local minima of the
curve in Fig. 7. DCP overestimates the density
of the first shell, which is in accordance with the
deep effective potential well in Fig. 7 due to the
artificial barrier.
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Figure 10: Radial distribution functions of the QM
center atom relative to other atoms from MD sim-
ulations of bulk Si in the NVE ensemble. The set-
up of the simulation is the same as Fig. 8. The
QM RDF is obtained from configurations sampled
from 2 to 3.5 ps, and other RDFs are obtained from
configurations sampled from 5 to 10 ps. The ver-
tical dashed lines represent the boundary of QM,
primary buffer and secondary buffer regions.

The RDF of mod-SISPA overestimates the den-
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sity of the first shell as well, and this cannot be
explained with the curves in Fig. 7. It should be
noted that Fig. 7 represents a highly simplified sit-
uation where only one atom moves, and the PES is
a much more complicated object which may con-
tain unexpected feature like this. We find that this
problem is due to the transition forces, which also
cause geometry distortions in other AP-QM/MM
methods.18,68,69 Fig. 11 shows the RDFs calculat-
ed without transition forces, and mod-SISPA with-
out transition forces no longer overestimate the
density of the first shell. The RDFs no longer have
a clear shell structure after removal of the tran-
sition forces, though mod-SISPA behaves better
than SISPA in this aspect. A more sophisticated
correction to transition forces might be needed to
fully resolve this problem.
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Figure 11: Radial distribution functions of SISPA,
mod-SISPA and DCP without transition forces.
The setup of the simulations is the same as Fig.
10.

4 Conclusion
In this paper, we study methods extending the
SISPA AP-QM/MM method to covalently bond-
ed systems. While common energy-based AP-
QM/MM methods are physically sound and would
yield good results, their requirement of multiple
QM calculations per time step can be overwhelm-
ing. Although grouping atoms into fragments re-
duces the number of partitions and the compu-
tational cost, it requires knowledge of the stud-
ied system beforehand, and there are also system-

s where a reasonable grouping scheme may not
exist, such as the bulk Si examples in this paper.
The SISPA method achieves one QM calculation
per time step with the cost of being less rigor-
ous, since the meaning of the scaled QM calcu-
lation is vague. Despite this flaw, being able to
do an AP-QM/MM calculation with a much small-
er cost is quite attractive, since it opens up many
possibilities for large systems that was inaccessi-
ble to common AP-QM/MM methods. Besides,
AP-QM/MM methods with multiple QM calcula-
tions may contain partitions that lead to ill-defined
QM calculations, especially when treating cova-
lently bonded systems. It is therefore worthwhile
to continue developing SISPA-like methods, even
though there have been significant advancements
in reducing the number of QM calculations in AP-
QM/MM for specific systems.12,13

Various methods for treating covalent bonds cut
by the QM/MM boundary have been developed for
regular QM/MM. These methods can be applied to
AP-QM/MM methods with multiple QM calcula-
tions per time step, since the calculation of each
partition can be seem as a regular QM/MM cal-
culation. Since these methods are incompatible
with SISPA due to scaled interactions, we propose
a new set of scaling factors (mod-SISPA) which
compensates for the missing covalent interactions
between QM and MM representations in the MM
part of the SISPA method. We also develop the D-
CP algorithm that corrects the unphysical charge
density of SISPA while keeping the PES continu-
ous and smooth for studying the effect of the QM
charge density in SISPA-like methods.

Tests in small model systems show that mod-
SISPA yields a wider potential well than that of
SISPA, indicating stronger interaction. The mod-
SISPA potential energy can be better than that of
PAP with link atoms in some aspects, since the lat-
ter may be negatively affected by the differences in
the interaction strengths of the actual bond and the
link bond, while the former is always close to the
potential energies of QM or MM in different re-
gions. We find that SISPA may yield a PES with
an artificial minimum in bulk solids depending on
the partition parameters, while mod-SISPA do not
have this problem. The charge density and wave-
function tend to those of isolated atoms/fragments
near the buffer/MM boundary in SISPA, and in-
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teractions between these atoms and other QM or
buffer atoms are clearly underestimated. Correct-
ing the charge density in DCP does lead to a deeper
effective potential well in Si2, which seems to ver-
ify the underestimation of interactions in SISPA.
The simple correction in DCP leads to significant
artifacts in the PES, however, making it unsuitable
for real applications. Similar to other AP-QM/MM
methods, we also find that the transition forces due
to scaling factors may lead to geometry distortions
in SISPA-like methods as well.
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A The effect of scaling in a two-
level model system

The QM calculation in the SISPA method is car-
ried out with scaled interactions. We demonstrate
with a simple model that the SISPA energy and
forces change in a non-linear fashion with scal-
ing factors, unlike in PAP and other AP-QM/MM
methods with multiple QM calculations per time
step.

Here we consider a model system of two iden-
tical atoms (A and B) with one basis function on
each (φ1 and φ2) and ignore the MM potential. The
distance between the atoms is R. The unscaled
Hamiltonian and overlap matrices of the model
system are

H =

(
ε v
v ε

)
, (8)

and

S =

(
1 s
s 1

)
. (9)

The corresponding orbitals and orbital energies are

ψ±(~r) =
1√
2
(φ1(~r)±φ2(~r)) , (10)

ε± =
ε± v
1± s

. (11)

Assuming ε+ < ε−, the DFTB bond energy is

Eb = E−2ε

= 2〈ψ+ |H|ψ+〉+Erep−2ε

=
2(v− εs)

1+ s
+Erep,

(12)

where Erep is the repulsive correction to the energy
in DFTB.37,43 The forces on atoms A and B are

~FA =−∂Eb

∂R
∇~RA

R,

~FB =−∂Eb

∂R
∇~RB

R.
(13)

Define F =−∂Eb/∂R, we have

F =−∂Eb

∂R

=−2
(

∂v
∂R
− ε + v

1+ s
∂ s
∂R

)
− ∂Erep

∂R
.

(14)

Choosing atom A as the center and atom B as
a buffer atom, H and S becomes the following in
SISPA:

H =

(
ε λv

λv ε

)
, (15)

and

S =

(
1 λ s

λ s 1

)
, (16)

where λ is the scaling factor of atom B. The SISPA
bond energy and the magnitude of the forces of the
model system are

ESISPA
b =

2λ (v− εs)
1+λ s

+λErep, (17)

FSISPA =− 2λ

1+λ s

(
∂v
∂R
− ε +λv

1+λ s
∂ s
∂R

)
−λ

∂Erep

∂R

−
∂ESISPA

b
∂λ

∂λ

∂R
.

(18)

As a comparison, the bond energy and the mag-
nitude of the forces with PAP are

EPAP
b = λE +(1−λ )εB−2ε

= λ

(
2v+ ε(1− s)

1+ s

)
− ε,

(19)
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and

FPAP =− 2λ

1+ s

(
∂v
∂R
− ε + v

1+ s
∂ s
∂R

)
−λ

∂Erep

∂R

−
∂EPAP

b
∂λ

∂λ

∂R
.

(20)

Aside from the transition forces that are present in
both SISPA and PAP, EPAP

b and FPAP depend on λ

linearly, while ESISPA
b and FSISPA has a non-linear

dependence on λ .
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