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Abstract

The computational study of catalytic processes allows discovering really intricate

and detailed reaction mechanisms that involve many species and transformations. This

increasing level of detail can even result detrimental when drawing conclusions from

the computed mechanism, as many co-existing reaction pathways can be in close com-

petence. Here we present a reaction network-based implementation of the energy span

model in the form of a computational code, gTOFfee, capable of dealing with any

user-speci�ed reaction network. This approach, compared to microkinetic simulations,

enables a much easier and straightforward analysis of the performance of any catalytic

reaction network. In this communication, we will go through the foundations and appli-

cability of the underlying model, and will tackle the application to two relevant catalytic

systems: homogeneous Co-mediated propene hydroformylation and heterogeneous CO2

hydrogenation over Cu(111).
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Introduction

Chemical reaction networks (CRNs)1�3 are a quintessential concept in chemistry and es-

pecially in catalysis. A reaction network encodes all the chemical entities participating in

a chemical transformation process and the relationships between them. From there, ad-

ditional information, such as relative stability of the di�erent species and the kinetic rate

constants may also be included in the network to complete the description with quantitative

information.

Furthermore, CRNs can also be immediately assimilated to graphs.4,5 From a chemical

perspective, it is natural to identify reaction intermediates as the nodes of the graph and the

transition states that allow for the interconversion of these intermediates as the edges. This

framework is a way to formalize what a reaction network is, and opens the door to a plethora

of analysis and manipulation techniques that are available for this kind of mathematical ob-

jects. This formalism is nowadays being used to automatize mechanistic searches6�10, simplify

the setup of microkinetic simulations11�14 for heterogeneous, homogeneous and biochemical

catalysts15,16, and it has been even implemented in chemical computing.17

When representing reaction networks as graphs, it is common practice to consider directed

edges for the forward and reverse directions of every elemental step of the network. This

directed nature supposes a clear and compact framework for the kinetics of the system: we

would just need to map each forward and reverse edge to the corresponding reaction rate

constant. Through this approach, the setup of microkinetic simulations can be integrated in

more complex work�ows, and calculation automatization and result analysis are improved.

Microkinetic simulations require to solve systems of di�erential equations numerically, which

scale rapidly with the size of the network. Applying numerical methods to solve the complex

systems of equations that arise from complex networks can be slow and cumbersome, and

likely to encounter problems related to numerical instabilities or equation sti�ness.

In this way, we propose a distinct and more simple approach for the general analysis

of complex catalytic cycles, a novel way of reading reaction networks following the energy
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span model (ESM) introduced by Kozuch and Shaik.18,19 The original formulation of the

ESM considers linear free energy pro�les, but not reaction networks. The requirement of

linearity is a major drawback on the applicability of the model to real catalytic systems,

which are often much more complex and can only be described as entangled networks. The

latest developments on the model20,21 address this critical issue and propose a fully general

reaction network-based formulation. However, no further applications of this variant of the

ESM have yet explored its full potential to deal with catalytic cycles as graphs. In contrast

to microkinetic simulations, the ESM only requires to solve simple algebraic expressions that

are, not only much faster to compute, but also less likely to encounter mathematical issues.

Obviously, our approach does not intend to be a substitute for microkinetic simulations, it

just provides a framework to compute the turnover frequency (henceforth TOF) of complex

catalytic cycles. Having a way to compute the TOF from computational data supplies an

inexpensive additional descriptor to compare experimental data and theoretical predictions,

or even for the inter-comparison of di�erent catalytic pro�les. The model also accounts for

the possibility of including the e�ect that the concentrations of reactants and products in

the reaction medium have on catalytic performance, which improves the description of the

system. This feature, together with the simplicity of the overall model, makes the ESM

a very interesting routine tool for a more in-depth analysis of catalytic networks: a niche

where microkinetics might be too tricky and time-consuming to set up.

Therefore, what we propose in this communication is the �rst implementation of the

energy span model based on the most general network-based expression20,21 to compute the

TOF for an arbitrarily complex catalytic cycle, avoiding any kind of ad-hoc simpli�cation

of the network so as to maintain all the chemical information about the system. To achieve

this, we developed a Python code, gTOFfee22, capable of handling reaction networks in the

form of graphs to compute the corresponding turnover frequency applying the ESM.

The manuscript is organized as follows: �rst, we revisit Kozuch's model and discuss the

basics of our implementation. A more detailed description can be found in the Supporting
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Information as well as a simple catalytic cycle as example. Then, we discuss how we apply

the new algorithms to treat two well-known catalytic transformations: the homogeneous

cobalt-catalyzed propene hydroformylation, and the heterogeneous CO2 hydrogenation over

Cu(111).

The model

One key aspect of the network-based TOF formulation proposed by Kozuch20 is the formal

de�nition of what a catalytic reaction mechanism is. In this sense, a mechanism is de�ned as a

subgraph of the original network, including all the nodes (chemically, all stable intermediates,

or minima of the potential energy surface), but in which only a single cycle leading to any

of the possible reaction products is closed. Although many cycles may be intertwined in

the original network, a valid mechanism would only include one closed cycle. However, the

other possible channels are not disregarded, as every possible intermediate is still taken into

account, in the form of an o�-cycle branch that will have an e�ect into the overall reaction.

Given a determined reaction network, then, we could de�ne a set of N mechanisms following

this de�nition, considering all di�erent possible cycles and branching patterns.

The main equation for the calculation of the turnover frequency from an arbitrary reaction

network is:20

TOF =
kBT

h

∑
n

µn(1− e∆Gr/RT )

(
∑

k τk)
∑

j(e
(−Ij+δGij)/RT )

(1)

In this expression, the TOF for the whole reaction network is expressed as a sum including

a term for every of the n possible mechanisms that can be de�ned from the network. The

overall TOF for the complete system would then be the summation of all the individual

TOFn terms. At this point, it makes sense to go back to the much simpler TOF expression

for linear pro�les19,23, to see how it compares with eq. 1.
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TOF =
kBT

h

(1− e∆Gr/RT )∑
ij e

(Ti−Ij+δij)/RT
(2)

The numerator in equation 2 corresponds to the thermodynamic driving force of the re-

action, which must be exergonic for this term to be positive. The ESM will not work for

endergonic, non-spontaneous processes, neither in the linear nor in the network-based im-

plementation. The denominator of the equation accounts for the kinetic resistance including

every possible intermediate/TS combination along the cycle. In this term, Ti corresponds

to the energy of the i-th TS, Ij to the energy of the j-th intermediate, while δij considers the

relative position of every intermediate/TS pair. This δij takes the value 0 when i < j (Ij is

before Ti) and ∆Greac when i > j: Ij is after Ti).

If we compare eq. 1 with eq. 2, we can observe that eq. 1 also includes the driving

force in the numerator and has a similar underlying structure, with the main di�erence of a

couple of graph-related terms: µn and
∑

k τk. µn corresponds to the n-th mechanism derived

from the graph, while the latter (
∑

k τk) is a summation extended to all the spanning trees

derived from the main reaction network. These spanning trees are acyclic subgraphs which

still must connect every single node in the network. Therefore, two kinds of subgraphs can

be derived from the original graph to apply equation 1: n single-cycle mechanisms and k

acyclic trees.

Mathematically, both µn and τi terms are simple exponentials of the form e(
∑

−Ti)/RT ],

where the sum is extended to all the edge energies that appear in the corresponding subgraph

(mechanism or spanning tree). Therefore, once all necessary subgraphs are de�ned, the

application of equation 1 only requires a trivial calculation of a series of simple exponential

terms. It can also be demonstrated20 that equation 1 reduces to eq. 2 in the case of simple

cycles, which con�rms the consistency of the network-based expression.

One important question that should be raised at this point is how to de�ne the δij term

in equation 1. In the linear variant, there was a clear sequential relationship between Ti and

Ij terms to determine whether a TS was located before or after an intermediate, but that is
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missing in this new framework.

Fortunately a sense of sequentiality can still be derived for a given spanning tree, forging

a simple rule for de�ning δij. Therefore, we should seek whether a node in a tree τk lies

before or after the �rst edge that would close that tree to a valid mechanism. In other

words, we need to �nd an edge that will form a single cycle (valid mechanism) from the

purely acyclic tree structure. In this sense, once this edge is identi�ed, δ will be de�ned as:

δij =


∆Gr if int. after selected edge

0 if int. before selected edge

(3)

As the mechanism-closing edge that we use as reference will be di�erent for every tree,

the −Ij + δij terms will also vary across trees, and shall be computed accordingly.

De�ning the �energy span� δE is also important. In the linear version, this magnitude

is de�ned as the energy di�erence between the Turnover Determining Intermediate (TDI)

and the Turnover Determining Transition State (TDTS), corresponding to the two states

that control the overall reactivity of the process. To de�ne these states properly, the model

proposes another measurement, the degree of TOF control (xTOF ) of every state (going from

0, no control, to 1, total control, and computed separately for intermediates and transition

states). The intermediate and the TS with the largest xTOF would be the TDI and the

TDTS, respectively. If xTOF (TDI) ≈ 1 and xTOF (TDTS) ≈ 1, the TOF calculation can be

hugely simpli�ed, depending only on the energy span through an Eyring-like expression.

TOF ≈ kBT

h
e−δE/RT (4)

The utility of eq. 4 should not be overestimated: as a proper determination of δE requires

knowing the degree of TOF control for the whole pro�le, it does not actually provide a way to

estimate the TOF a priori. Mostly, the energy span is useful as a descriptor in energy units

that can be directly related to the TOF, but fails when the pro�les get more complicated
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and cannot be summarized in a single TDI/TDTS pair.

Extending the de�nition to more complex reaction networks is not straightforward: on

the one hand, the expressions for the degree of TOF control are not easy to reformulate for

arbitrarily complex graphs. On the other, if equation 4 is already limited for simple pro�les,

it will be even worse for complex networks. Nevertheless, we can somehow overcome this

limitation by de�ning what we have named the e�ective energy span , δEeff , considering

equation 4 but with the exact TOF value obtained with equation 1.

δEeff = −RT log

[
h

kBT
· TOF

]
(5)

This e�ective energy span still allows us to gauge the feasibility of a catalytic system

(either for the whole network or an individual mechanism) in energy units, without losing

accuracy throughout the process.

To �nish, we should mention that the ESM can account for the e�ect of the concentrations

of the entering reactants and the formed products, as one of its most interesting features

for practical work. This extension is pretty straightforward over either the linear or the

network-based versions of the model, as it only requires replacing the free energies of nodes

and edges by the corresponding semi-standard Gibbs free energies21. This �semi-standard�

correction still considers all catalyst-bearing species in a standard state (for solutions, 1.0 M

concentration), while only correcting reactants and products to their actual concentrations.

This might seem unphysical, as the catalyst-containing species will be in very low concen-

trations and therefore farther from the assumed standard state than reactants or products.

However, as the usual procedure is to assume all species to be in a standard state, even this

simple approximation supposes an improvement in the description of the system to better

match experimental conditions. These concentration-dependent energies would be directly

introduced as the Ti and Ij terms in equation 1, without any further overhead compared to

using non-concentration-corrected values.
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Practical Examples

Homogeneous Catalysis: Hydroformylation

The hydroformylation of alkenes with syngas (CO + H2) catalyzed by organometallic com-

plexes bearing either Co or Rh is one of the most prevalent homogeneous catalytic reactions

in industry.24�26 Because of this, plenty of experimental and computational studies have tar-

geted this reaction along the years, in order to understand its mechanistic intricacies and

tune the catalyst. This abundant knowledge makes hydroformylation a great benchmark

for novel methods that address issues related to catalytic performance, like the one that we

present in this communication.

Our starting point is the study from Rush, Pringle and Harvey27, based on the phosphine-

free HCo(CO)4 carbonyl complex, where the authors report CCSD(T) Gibbs free energies

for both the hydroformylation and the competitive hydrogenation pathways (with propene

as substrate). Those results provided very good agreement with experiment.

Figure 1: Hydroformylation and hydrogenation reactions.

The input Gibbs free energies must be referred to a 1.0 M reference state (standard in

solution) to use the semi-standard approach for concentration e�ects. As the values from

Rush et al.27 consider a gas phase 1 atm reference state, we shall apply this state correction

beforehand. Fortunately, the correction does only require a straightforward shifting of all

Gibbs free energies as long as the temperature is constant between the two states.

G = G0 +RT log
P2

P1

= G0 +RT log
cRT

1 atm
(6)

As c = 1.0 M, the correction factor will only depend on temperature: 1.89 kcal·mol−1 at

298.15 K, and 2.98 kcal·mol−1 at 423 K, the value considered for Co-based hydroformylation.
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Moreover, this standard state correction does also account for some degree of entropic

correction. As it must be applied to every single species participating in the cycle, the

relative energies of the system will be more or less shifted depending on the number of

molecular entities that are involved in a given stage of the cycle. Therefore, situations

with a high degree of association (with few entities) will be less destabilized than very

disassociated (separated reactants) states. This compensates the overestimation of entropy

loss upon association made by usual relative Gibbs free energies, in analogy with other

corrections tailored for this speci�c issue (Martin28, Wertz-Ziegler29�31.). Previous studies32

already highlight the importance of using entropic corrections to improve the match between

experimental and computed TOFs, and even more so when several mechanisms with di�erent

degrees of association have to be compared. For the speci�c case of hydroformylation, indeed,

the formation of butyraldehyde from propene would be endergonic with the 1 atm-based free

energies, but exergonic in the 1M-state, while the competitive hydrogenation to propane (less

associative) is exergonic in both descriptions. Thus, standard state correction is an essential

asset for a proper comparison of both routes. Values extracted from literature and those

used in this work can be found in the Supporting Information.

Figure 2 shows the translation from a catalytic cycle (adapted from the proposal of Rush

et al.27) to a graph that can be fed to gTOFfee to proceed with the TOF calculation. It

contains 13 nodes and 14 edges, which de�ne two cycles, entering H2, CO and alkene as

reactants, and exiting aldehyde and alkane as products. From there, 12 unique mecha-

nisms can be generated, from which other 41 unique trees are derived. We must be careful

with this mechanism assignation: depending on which cycle is closed (through 5X to 2 or

through 9X to 2) either alkane or aldehyde will be formed, involving di�erent reaction en-

ergies. Even another complication arises: interestingly, some of the generated mechanisms

correspond to aldehyde decarbonylation, forming CO and alkane. The reaction energy is

then G(decarbonylation) = G(hydrogenation) - G (hydroformylation). gTOFfee is already

prepared to handle this type of cases, however, it is always advisable to check the proposed
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Figure 2: Reaction scheme for Co-catalyzed hydroformylation catalytic cycle (adapted from
Rush27) (left) and full reaction network mapping chemical structures to nodes and edges
(right).

mechanisms before using them for further calculations. A mechanism example for each of

the three reaction routes (propene hydrogenation (M3), aldehyde decarbonylation (M4) and

propene hydroformylation (M7), respectively) is provided in Figure 3.

Regarding the selectivity of the process to yield either aldehyde (via hydroformylation) or

alkane (via hydrogenation or via decarbonylation), we should group the mechanisms by the

formed product and add the corresponding turnover frequencies accordingly. As the alkane

is thermodynamically favored, but the aldehyde is the major product in the experiments,

the selectivity insights from turnover frequencies are undoubtedly relevant to improve the

analysis of the computational data.

To begin with, we will compute TOFs for three di�erent situations: i) semi-standard

state, ii) high reactant concentrations Chigh: [CO] = 1.5 M, [H2] = 1.0 M, [Alkene] = 2.0 M,

[Aldehyde] = [Alkane] = 0.01 M and iii) low reactant concentrations Clow: [CO] = 0.2 M,

[H2] = 0.1 M, [Alkene] = 0.5 M, [Aldehyde] = [Alkane] = 0.01 M.

For the most simple situation (semi-standard state) hydroformylation is shown to be
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Figure 3: Mechanism examples for Co-catalyzed hydroformylation. From left to right:
propene hydrogenation (M3), aldehyde decarbonylation (M4) and propene hydroformyla-
tion (M7).

Table 1: Derived valid mechanisms for the Co-catalyzed alkene hydroformylation. Mecha-
nism index, edge removed from the main graph, Greac and δEeff values, in kcal mol−1, for
the three cases: semi-standard state (c0), at high (chigh) and at low (clow) concentrations,
respectively. Below, conjoined δEeff for aldehyde and alkane-producing routes.

Mech. Edge Gr δE0
eff δEhigh

eff δElow
eff Product

1 2-3 -14.7 28.6 29.5 23.4 Decarbonylation
2 2-5X -5.0 48.3 24.9 39.4 Hydroformylation
3 2-9X -19.7 33.6 29.6 44.0 Hydrogenation
4 3-4 -14.7 37.7 38.2 35.7 Decarbonylation
5 4B-5X -5.0 25.2 28.9 43.4 Hydroformylation
6 9X-9 -19.7 33.6 37.3 51.8 Hydrogenation
7 4-4B -5.0 30.0 29.8 48.2 Hydroformylation
8 4-5 -19.7 43.3 42.8 55.1 Hydrogenation
9 5-6 -19.7 39.1 39.3 48.2 Hydrogenation
10 6-7 -19.7 31.8 31.6 53.8 Hydrogenation
11 7-8 -19.7 33.3 33.1 47.6 Hydrogenation
12 8-9 -19.7 28.4 28.2 42.7 Hydrogenation

Aldehyde 25.2 24.9 39.4
Alkane 27.9 27.9 23.4
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kinetically preferred to hydrogenation. A more thorough analysis shows that only mechanism

M5 contributes to aldehyde formation, while for alkane production both M1 and M12 have

similar e�ective TOFs and both in�uence the global reactivity. If we analyze the preferred

mechanism, M5, we observe that it lacks the 4B-5X edge, which blocks the interconversion

between these two nodes and therefore hinders the formation of the alkane.

A completely di�erent picture emerges when we bring concentrations into play. At low

reactant quantities (clow set) the hydroformylation is completely shut down, and only hydro-

genation is feasible: aldehyde will not be formed and the catalyst will only produce propane.

However, when we consider high concentrations we recover the hydroformylation-favoring

trend, with values (25.0 vs 25.2) that are very close to the semi-standard state concentration

results. All of this is in line with known experimental behavior and with computational

kinetic studies27 that point at the need for using large H2 and CO pressures to drive the

reaction to the aldehyde.

These trends can be explored in much more depth through our new methodology straight-

forwardly. Instead of testing individual concentration value sets, we can automate changes

in the concentration of some of the species and see how the overall TOF for each process

(hydrogenation or hydroformylation) changes, and then build maps of reactivity depend-

ing on initial concentrations. As a more compact measure of selectivity, we can consider

the quotient TOFaldehyde/TOFalkane
33 as the descriptor for our mapping. As CO and H2

concentrations are known to be crucial to this selectivity, they were chosen as the mapping

variables, while setting [Alkene]=3.0 M and [Aldehyde] = [Alkane] = 0.25 M (assuming some

production of both species).

Figure 4 shows how quite large concentrations of both CO and hydrogen are required to

drive the reaction to butyraldehyde formation: the selectivity for this product in the upper

left corner ([CO]↓,[H2]↓) is really poor. This matches very well with the known experimental

trends, where large pressures of both reagents have to be used.

Once we enter the hydroformylation-enhancing region (in dark red in Figure 4), the ef-
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Figure 4: Selectivity of the reaction regarding [CO] and [H2]. Concentrations in mol·L−1

fect of the excess of one or the other reactant is drastically di�erent. If the concentration of

carbon monoxide rises (going down in the y-axis), the selectivity for butyraldehyde remains

high. However, an excess of H2 has the opposite e�ect: selectivity is progressively lost and

at the right side of the map the hydrogenation route will be preferred. These two behaviors

align well with the trends that we may expect through chemical intuition. If we want to

insert CO into the propene sca�old, it is coherent that larger quantities of this species keep

the selectivity high. In contrast, when more H2 is added to the medium, the favored process

is the insertion of hydrogen, which results on shutting down hydroformylation to form more

propane. If we look at experimental data, the agreement of our approach remains excel-

lent. The reaction is carried out with excess of carbon monoxide against hydrogen, so as to

maximize the aldehyde selectivity. The experimental and microkinetic-based values for this

selectivity27 are around a 90-92% percent, in perfect agreement with the 10:1 ratio obtained

with our model. Similar maps can be obtained for other variables (see Supporting Informa-

tion), demonstrating that reaction selectivity is almost insensitive to the concentrations of

propene and butyraldehyde, but very dependent on the quantity of the propane byproduct:
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the presence of alkane blocks its own production route (hydrogenation). The conjunction

of all of these factors explains the robustness of the catalytic system once the appropriate

quantities of CO and H2 have been selected. It is mostly because of this robustness that

this homogeneous reaction is employed e�ectively in the chemical industry. The current

application of the ESM, despite its relative simplicity, is able to extract and highlight this

crucial feature from a standard homogeneous catalysis reaction network.

Heterogeneous Catalysis: CO2 Hydrogenation

Although the ESM was developed with homogeneous catalysis in mind, once the step to

consider any reaction network under this framework has been taken, the framework could

also be applied to heterogeneous catalytic systems in which reaction networks are actually

more commonly used.

Nevertheless, some practical considerations limit the applicability of the energy span

model to this �eld of catalysis. First of all, the semi-standard approximation is designed

to include concentrations in solution, and thus to deal only with homogeneous systems.

Therefore, our test application to heterogeneous systems will only consider the 'bare' TOF.

Second, we should acknowledge the di�erences in the way that reaction networks are

reported in homogeneous and heterogeneous catalysis. While in solution the focus is on the

di�erent forms adopted by the catalyst, and how it transforms along the process, in the solid

phase this focus is on the individual elemental reactions undergone by reactants and products.

In this sense, an heterogeneous network must be �translated� to a more homogeneous-like

form in which all energies refer to the current state of the metal catalyst and how it should

return to its original, all-free-site form.

Finally, heterogeneous catalysis usually describes relatively simple reactions in a very

detailed manner, while homogeneous studies aim for more complicated transformations in

a coarser way. Therefore, heterogeneous reaction networks might probably include more

intermediates, edges and intertwined cycles, thus producing a much larger number of mech-
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anisms and trees. Because of all these issues, we are only aiming for the basic possibilities

that gTOFfee may o�er for heterogeneous catalysis, but reckoning the limitations of the

approach: a full development of a ESM/gTOFfee variant capable of treating large heteroge-

neous networks thoroughly will be a totally new branch to look at in the future.

For this qualitative depiction, we have chosen the CO2 hydrogenation over Cu(111) on

the basis of the reaction network proposed by Zhao et al.34, which is relatively simple but

still remains a clearly di�erent challenge than the homogeneous hydroformylation reaction.

The corresponding simpli�ed network is shown in Figure 5. It contains 28 nodes and 31

edges, which de�ne three interconnected cycles that produce methanol as main product, and

formaldehyde as intermediate byproduct.

Figure 5: Reaction network for the Cu(111) catalyzed reaction between CO2 and H2
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Despite the apparent simplicity of the network, up to 240 mechanisms and 1117 spanning

trees are generated from it. This large number of subgraphs is due to combinatorics: when

multiple individual cycles are present on the network, the number of possible subgraphs with

di�erent branching patterns grows quickly. Although the exact number of valid mechanisms

or trees is not predictable, the number of tested subgraphs depends on the combinatorial

number
(
Nedges

Nremoval

)
. Here, Nedges is the total number of edges in the network, while Nremoval

refers to the number of edges that need to be removed to form the required subgraph (mech-

anism or edge). This Nremoval value is directly related to the minimal number of cycles

required to form the network: the more cycles we have, the more edges we need to remove

to obtain one-cycle or acyclic subgraphs. In this speci�c case, we have 31 edges and the

minimal cycle basis comprises 3 cycles. Therefore, there will be
(

31
3−1

)
= 465 mechanism pro-

posals (from which 240 are valid mechanisms) and
(

31
3

)
= 4495 tree candidates (accepting

1117 of them). However, as we actually generate trees from mechanisms and not from the

main network (see Supporting Information for details), the number of acyclic subgraphs to

be tested will be much smaller.

The volume of feasible mechanisms prevents us from carrying out an individual analysis

of each one as we did for hydroformylation (where only 12 possibilities had to be treated):

we should instead try to implement a way to let the code summarize the most important

information about the system.

First of all, we should categorize these 240 mechanisms. The reaction network by Zhao et

al. considers the formation reactions of methanol or formaldehyde from the hydrogenation

of carbon dioxide, which are exergonic processes. However, referring to our previous analysis

above, mixed routes can appear throughout the network: e.g. pre-formed formaldehyde

could be hydrogenated to form methanol. To identify all possibilities, we can focus on the

closed cycle step of each mechanism, ignoring the branch patterns, and obtain all unique

typologies.

Six mechanism types, as shown in Figure 6, are much more manageable than the 240
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Figure 6: Graph depiction of the six unique closed-cycle typologies arising from Cu(111)-
catalyzed CO2 hydrogenation network

.
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individual mechanisms. We can then proceed to inspect the details of these six typologies

and get the corresponding e�ective TOF values for each one.

Table 2: Summary of mechanism typologies for Cu(111)-catalyzed CO2 hydrogenation net-
work. All energies in eV. From left to right, typology tag, formed product, number of
associated mechanisms, reaction energy, e�ective energy span of the best mechanism, and
e�ective energy span for the sum of all TOFs.

Type Prod. N Gr δE∗
eff δEeff

R1 H2CO 75 -0.57 1.51 1.51
R2 H2CO 20 -0.57 1.99 1.99
R3 CH3OH 73 -1.04 1.51 1.48
R4 CH3OH 6 -1.04 2.61 2.58
R5 CH3OH 27 -1.61 1.73 1.73
R6 CH3OH 39 -1.61 2.21 2.21

Table 2 shows that from the six possible catalytic cycle types, two routes will be clearly

favored: R1, forming formaldehyde from CO2, and R3, forming methanol from pre-existing

H2CO. The best δE∗ values are 1.51 eV for both cases, but R3 becomes slightly favored

when all of its mechanisms are added up, which lowers the e�ective energy span δEeff (R3)

to 1.48 eV. Therefore, the catalytic system would be adequate for methanol production:

although formaldehyde generation is competitive, the resulting H2CO will be transformed

onto methanol. However, the barriers are high, and require large temperatures (around 500

K).

To get a better grasp into the contribution of the di�erent mechanisms assigned to each

typology, we also plotted the corresponding histograms for the e�ective energy span values

per mechanism group (Figure 7), which reveal that R3-type mechanisms show indeed lower

e�ective energy spans than those of R1-type.

While every mechanism type in table 2 is mostly reduced to the single, best-performing

mechanism, the histogram view gives an idea on how many accessible mechanisms do actually

exist for each typology. For example, when comparing R1 and R3, the curve for R3 is centered

at lower e�ective energy span values, which means that the average R3 mechanism is more

accessible than the average R1 mechanism. In this sense, even if some individual mechanisms
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Figure 7: Density plots for the two major contributing typologies R1 and R3. Energies in
eV.

were to be blocked due to pressure, coverage or multi-site catalysis e�ects that we currently

cannot predict, we can still have a good qualitative picture of how the overall reactivity of the

system should behave, instead of limiting our view to a single numerical value. Therefore,

the network analysis capabilities that gTOFfee provides show the strengths of our approach

even in cases that might seem far from the original reach of the energy span model.

Final remarks

We have developed a suitable computational implementation, gTOFfee, for the graph-based

TOF calculation scheme originally proposed by Kozuch, using the minimum number of

approximations in order to tackle the full complexity of catalytic cycles. In line with the

original spirit of the energy span model, our new tool allows for a computationally inexpensive

and versatile analysis of catalytic cycles, including the e�ects of reaction conditions such as

temperature or reactant/product concentrations.
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Apart from obtaining raw values for the turnover frequencies, more complex analyses of

the reaction network are possible such as mapping product selectivities or changes in the

reaction performance to di�erent initial catalytic conditions. Moreover, the study of the

formally de�ned individual reaction mechanisms provides yet another layer of information

to work with in complex systems.

The new analysis of chemical reaction networks that we present is able to reproduce

experimental trends both in homogeneous and heterogeneous catalysis, through very simple

mathematical expressions, providing a quick, easy-to-setup tool for a profound analysis of

computed catalytic cycles. We think that this combination of simplicity and completeness

makes gTOFfee an interesting addition to the computational chemist's toolbox.
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