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Computer simulations and machine learning provide complementary ways of identifying structure/property relation-
ships that are typically targeting toward predicting the ideal singular structure to maximise the performance on a given
application. This can be inconsistent with experimental observations that measure the collective properties of entire
samples of structures that contain distributions or mixture of structures, even when synthesized and processed with
care. Metallic nanoparticle catalysts are an important example. In this study we have used a multi-stage machine
learning workflow to identify the correct structure/property relationships of Pt nanoparticles relevant to oxygen reduc-
tion (ORR), hydrogen oxidation (HOR) and hydrogen evolution (HER) reactions. By including classification prior
to regression we identified two distinct classes of nanoparticles, and subsequently generate the class-specific models
based on experimentally relevant criteria that are consistent with observations. These multi-structure/multi-property re-
lationships, predicting properties averaged over a large sample of structures, provide a more accessible way to transfer
data-driven predictions into the lab.

I. INTRODUCTION

While it has been well established that the size, shape
and surface structure of metallic nanoparticles are responsi-
ble for their performance in a variety of applications, com-
plete control over the structure remains challenging1–4 due
to competition and collaboration between growth kinetics
and thermodynamics during synthesis.5–9 Considerable ef-
fort has been directed toward controlling the size and shape
of metal nanoparticles,10–15 but many samples persistently
contain imperfect shapes, disordered lattices, and defective
surfaces.16–18

In the case of platinum, it is known that nanoparticles with
controlled sizes and shapes, characterized by surface facets
and in specific crystallographic orientations, can be used to
tune the sensitivity and selectivity of many important catalytic
reactions.19,20 Important factors contributing to the morphol-
ogy of individual nanoparticles include the type and concen-
tration of the precursor, the reducing agent and stabilizer, the
introduction of seeds or foreign species,21 the impact of twin-
ning and structural defects,22,23 and temperature. Among the
methods developed to control these factors, solution-phase
synthesis is highly versatile24–27 and uses the reduction and
decomposition of a metal precursor in the presence of a sur-
factant to engineer the structure of platinum.28–31 Understand-
ing the relationship between these structural and processing
parameters and the desirable properties is one of the goals
of rational nanoparticle design, particularly in the engineer-
ing of nanocatalysts, and so the extensive body of experimen-
tal literature has been augmented with theoretical and com-
putational studies that provide insight into the properties of
specific structures. For example, a detailed computational
screening of surface structures for new nanocatalysts has been
performed for the methanation reaction,32 but due to the high
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computational cost of the electronic structure calculations was
limited to only a few dozen instances.33–37 Studies such as
these providing important information on reaction efficiency,
but are vulnerable to selection bias, confirmation bias and re-
porting bias,38 as each of the limited systems being studied
was carefully pre-determined. They also fail to capture the av-
eraged efficiency of real samples that contain a distribution or
mixture of sizes, shapes and defects, and are not in the ground
state.

The mismatch between the averaged performance measured
during experimental studies and the specific (and limited) fo-
cus of conventional computational studies presents a problem
when attempts are made to translate computational predic-
tions into the lab. This problem is not unique to platinum
nanoparticles, but is particularly relevant given the strong con-
nection between the highly complex surface structure and cat-
alytic performance. Machine learning (ML) methods, how-
ever, are ideally suited to studying the complex multi-structure
correlations that are difficult to identify using conventional
computational methods, and are free from some of the as-
sumptions and biases introduced by human researchers. It
has been previously established that ML can produce para-
metric functions of structural features capable of accurate pre-
dictions of useful properties based on a large set of atomistic
simulations.39 By combining a sufficiently large and diverse
ensemble of candidate nanostructures generated using con-
ventional simulations with an appropriate regressor it is possi-
ble to identify the set of features that drive performance,40 and
in some cases conditions required to deliver the right struc-
tures in practice.41 ML is also capable of determining classes
of like-structures based on similarity, and then correlate these
classes with some performance indicators to provide a more
averaged response to structure/property prediction, akin to
measuring a diverse mix of sizes and shapes.42,43 Most impor-
tantly, ML is providing to be invaluable in the modern design
of catalysts.44,45

In this study, we use ML to predict the different classes
of platinum nanocatalysts based on structural features and
two widely used synthetic processing conditions, and identify
class-specific structure/property relationships to established
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indicators of efficient hydrogen evolution reactions (HER),
hydrogen oxidation reactions (HOR) and oxygen reduction re-
actions (ORR).19,20,46–48 We have used an ensemble of 1300
unique platinum nanoparticles generated from molecular dy-
namics (MD) trajectories that sample a large variety of dif-
ferent temperatures and growth rates, and apply sophisticated
clustering, classification and regression algorithms to identify
how the overall characteristics of each class may enhance or
suppress performance. As we will show, the classification of
the nanoparticles into ordered and disordered structures is an
important first step to predicting the correct structure/property
relationships with machine learning. Following the separa-
tion of the particles into these classes, regression is able to ac-
curately identify the important structural features responsible
for ORR and HER/HOR reactions in agreement with exper-
imental observation, but without prior classification, the pre-
dictions are confused and provide no clear path to impact.

II. DATA SET AND METHODS

In this study, we have used an existing set of atomistic plat-
inum nanoparticles originally generated using molecular dy-
namics to simulate growth via random addition of single Pt
atoms and unguided sintering and coalescence events, or with
experimentally relevant morphologies relaxed using molecu-
lar dynamics at elevated temperatures to allow for the forma-
tion or annealing of twins. The set contains particles grown
using different atomic deposition rates (tau) and temperatures
(T ), to capture the effects of inhomogeneous reaction kinetics
and thermal fluctuations within a range of values character-
istic of experiments. The set is available for download, with
detailed information on the simulation procedure and an ex-
tensive list of 179 structural features based on atomic, crystal-
lographic and topological descriptors.49 This list was reduced
to 121 dimensions (including structural and processing fea-
tures) by eliminating features with zero variance, and then ap-
propriately normalized so that all features occupy the range
0 to 1. This data set supersedes previous versions50 has it is
larger, includes ordered shapes as well as anisotropic and dis-
ordered particles, has a larger range of processing conditions,
and a greater number of structural features. Growth time was
not included as a feature in this case, as some of the relaxed
nanoparticles were included as pre-grown structures.

Three indicators of molar catalytic activity have been used
as the target labels. The molar catalytic activity was esti-
mated using a surface coordination number (SCN) scheme
that groups types of surface imperfections based on the de-
gree of under-coordination of each surface atom, and the
similarity with respect to known surface features that have
been shown to enhance different catalytic reactions.19,20,46–48

Under this scheme Surface Defects include all adatoms in
configurations (“top", “bridge" and “hollow") where the Pt-
coordination number can be 1, 2 or 3; Surface Microstructures
include surface “kinks" and “steps", where the Pt coordination
number can be 4, 5, 6 or 7; and Surface Facets include con-
figurations (in any hkl orientation) where the Pt coordination
number can be 8, 9, 10 or 11 (recalling the coordination num-

ber of Pt atom in the bulk is 12). Although these assignments
may seem ambiguous, each of these groups are linked to a spe-
cific catalytic reaction, and were originally determined based
on a full survey of the literature.51–60 For example, Surface
Facet-driven catalytic activity is suitable for hydrogenation
reactions, whilst nanoparticles with Surface Microstructure-
driven activity are more efficient to catalyse combustion reac-
tions. A theoretical hydrogenation/combustion selectivity can
be defined as the ratio between Surface Facet-driven catalytic
activity and Surface Microstructure-driven catalytic activity.
This scheme has been shown to be suitable for investigating
active sites on nanoparticle surface in the past,61–63 and has
been successfully combined with theoretical analysis64 and
machine learning.65

In the present study, we concentrate on Surface Microstruc-
tures and Surface Facets, as we seek insights into HER, HOR
and ORR.

A. Clustering

Clustering methods are unsupervised pattern recognition
techniques that group samples based on a similarity index,
without reference to target labels. There are many differ-
ent clustering methods available, each with advantages and
disadvantages.66 In this study we have used a new clustering
method that has the advantage of including hyper-parameter
optimization.67 Iterative label spreading (ILS) is based on a
general definition of a cluster and the quality of a clustering
result, and is capable of predicting the number and type of
clusters and outliers in advance of clustering, regardless of the
complexity of the distribution of the data. ILS can be used to
evaluate the results from other clustering algorithms, or per-
form clustering directly. It has been shown to be more reliable
than alternative approaches for simple and challenging cases
(such as the null and chain cases) and to be ideal for studying
noisy data with high dimensionality and high variance, as is
typical for nanoparticle systems.

Direct clustering is achieved using this algorithm by initial-
izing one labeled point and applying ILS to obtain the ordered
minimum distance (Rmin(i)) plot, as described in detail in Ref.
67. The number of clusters can be automatically extracted by
identifying peaks in the Rmin(i) plot (due to density drops be-
tween clusters) that divide the plot into n regions. This can be
automated using a continuous wavelet transform peak finding
algorithm with smoothing over p points. The smoothing es-
sentially sets the minimum cluster size to identify clusters of
no smaller than p. One point can be relabelled in each region
(preferably at the minima) to run ILS again, and obtain a fully
labeled data set with n clusters defined. ILS can also be ap-
plied to each individual cluster to confirm that each region is
a single cluster that should not be divided further.

B. Classi�ers

Classification is a type of supervised learning where the tar-
get labels are also provided with the features. A classifier is
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trained (using input training data) to recognise how unseen
instances relate to some known classes of instances and as-
signs them accordingly. There are numerous classification al-
gorithms available, and the superiority of one over another
depends on the application and the data set.

In this study we have used the (non-linear, non-parametric)
Extra Trees Classifier (ETC), which fits a number of ran-
domized decision trees to the training sub-set, and averages
over the results to improve the predictive accuracy and
control over-fitting. ETC is generally faster than similar
estimators and performs well in the presence of noisy
features typical of nanoparticle data sets. The hyper-
parameters of the ETC were optimised using a grid search
(criterion=‘gini’, max_depth=None, max_features=‘sqrt’,
min_impurity_split= 0.01, min_weight_fraction_leaf=0,
n_estimators=50, class_weight=None, oob_score=False,
warm_start=False) and applied using 10-fold cross validation,
and a 25/75 test/train split.

Decision trees are trained by recursively splitting the data,
but are prone to over-fitting. For this reason, we calculated the
learning curve test for convergence of the training and cross
validation scores. These results compare well with alterna-
tive classifiers, Logistic Regression (linear) and Random For-
est (non-linear), which confirmed the results (see Supporting
Information).

C. Regressors

Regression is a type of supervised learning to predict the re-
lationship between the features and a target label. A regressor
is trained (using input training data) to recognise a continu-
ous relationship and predict the expected target property for
unseen data based on the known features. Just as for classi-
fiers, there are numerous regression algorithms available, and
the superiority of one over another depends on the application
and the data set.

In this study, we have used the (non-linear, non-parametric)
Extra Trees Regressor (ETR) which, in a similar way to the
ETC, fits a number of randomized decision trees to a sub-set,
and averages over the results. Following classification, regres-
sion was performed on each class individually for each target
property label. The hyper-parameters were optimised for each
class using a grid search (as described later on) and applied
using 10-fold cross validation, and a 25/75 test/train split.

The results were compared with the ridge regression (lin-
ear) and random forest progression (non-linear), which re-
sulted in more significant under-fitting and over-fitting, re-
spectively (see Supporting Information).

III. RESULTS

To better understand the average performance of similar
types of platinum nanoparticles, clustering and classification
were undertaken before regression, in order to identify class-
dependent structure/property relationships.

FIG. 1. (a) x-y distribution of the 1300 platinum nanoparticles using
t-SNE, based on their similarity in 121 dimensions, and (b) the order-
labelled Rmin plot generated using ILS clustering showing two peaks
identifying the two distinct clusters (indicated by the peaks high-
lighted with arrows). Both plots are colored by the order in which
the labels were iterated, from blue to red.

A. Classi�cation

Using ILS we identified two well defined clusters in the
platinum nanoparticle ensemble. Shown in Fig. 1)(a) is the
distribution of the set visualised using t-distributed stochastic
neighbour embedding (t-SNE)69, which has successfully been
useful in visualising multi-dimensional nanoparticle data sets
in the past.70 In Fig. 1(b) we show the ILS Rmin(i) plot which
shows two distinct peaks identifying the two clusters. In both
cases, the points have been colored by the order in which the
labels were iterated (blue to red) by ILS, and we can see that
that dark red points (labeled last), are a greater distance from
the prior points, suggesting they may be outliers. This is also
supported by the t-SNE distribution where these points appear
at the edges of the clusters.

Based on this result we can assign each nanoparticle to a
cluster (1 and 2), as shown in Fig. 2(a) and perform classifi-
cation to determine if the clusters constitute classes. We first
removed outliers (reducing the number of instances to 1279),
which would otherwise introduce bias into our machine learn-
ing models, and applied the ETC. The results are captured in
the confusion matrix shown in Fig. 2(b) where there is perfect
accuracy, precision and recall. The impact of outlier removal
is shown in the Supporting Information. The classes are per-
fectly separable, based largely on the growth rate (tau), var-
ious order parameters (q6q6_X), and the growth temperature
(T ). This is shown in the feature importance plot (see Fig.
2(c)), which also indicates that the order parameters based on
surface coordination q6q6_S0 (number of surface atoms hav-
ing 0 nearest neighbours with similar bonding environments
as itself), coordination q6q6_S2 (number of surface atoms
having 2 nearest neighbours with similar bonding environ-
ments as itself), and q6q6_avg_bulk (the average number of
bulk atoms having an environment similar to itself) are impor-
tant. The order parameters are indicative of highly disordered
surfaces where few atoms are surrounded by similarly coordi-
nated atoms. These are followed by T , and a number of other
order parameters similarly indicative of neighbours with low
structural similarity (both surface and total number of atoms,
which are the same when the coordination numbers are small).
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FIG. 2. (a) Distribution of the 1300 platinum nanoparticles using t-SNE, colored by the cluster assigned using ILS, (b) the confusion matrix
showing the classes are perfectly separable, and (c) the feature importance histogram showing the classes are largely determined by the process-
ing conditions, tau and T , the order parameters based on surface coordination q6q6_S0 (number of surface atoms having 0 nearest neighbours
with similar bonding environments as itself), coordination q6q6_S2 (number of surface atoms having 2 nearest neighbours with similar bond-
ing environments as itself), and q6q6_avg_bulk (the average number of bulk atoms having an neighbours with bonding environment similar to
itself); this is followed by a number of other order parameters indicative of neighbours with low structural similarity.

FIG. 3. t-SNE distribution of set colored by the normalized process-
ing features, (a) the relative growth rate, tau, (b) the relative growth
temperature, T . Both plots are colored from 0 to 1 (from blue to red).

This Fig. shows only the top 21 features of the 121 features
used to train the model. Fig. 3 shows the distribution of these
two important features across the set, where we can see that
the Class 1 (upper right) exhibits a complicated spread of T ,
but obvious trends in tau. Class 2 (lower left) contains "as-
grown" platinum nanoparticles seeds relaxed using molecular
dynamics at 673 K.

Based on this classification we next examined the distri-
bution of the target property labels (the catalytic indicators,
Surface Microstructures and Surface Facets) in each of the
clusters, as shown in Figs. 4(b) and 4(d), respectively. Here
we can see that both clusters include the entire range of Sur-
face Microstructure and Surface Facet concentrations. This is
confirmed when we color encode the t-SNE plots with these
property labels, where we can see that the distribution for each
of these properties is different for the two classes (which were
only trained on the structural features), suggesting that they
will have different structure/property relationships, ordered
particles will behave very differently to disordered particles.
A comparison of the Figs. 4(a) and 4(c) with Figs. 3(a), 3(b)
and 3(c) suggest a stronger relationship between these prop-
erty indicators and tau, than for T . The t-SNE plot for tau,
Fig. 3a, indicates that if clustering were considered in this

single dimension four clusters might be appropriate. How-
ever, the property results in Fig. 4 show a clear trend across
the two clusters identified by ILS, in clear agreement with that
result, when the full feature set is taken into account.

B. Regression

Each of the two classes were then analysed separately using
the ETR, following stratification. Stratification was necessary
since the distribution of the property labels in each class is im-
balanced. Examples of the stratification for the 25/75 test/train
split is shown in Fig. 5 for each class and property label. This
process was repeated for each k-fold during our 10-fold cross
validation of each model.

The ETR was used to predict the normalised concentration
of Surface Microstructures and Surface Facets for Class 1 and
Class 2. In each case, the hyper-parameters were optimised
using a grid search, as summarised in Table I.

1. Class 1

The results of Class 1 reveal similar structure/property re-
lationships for the concentration of Surface Microstructures
and Surface Facets, with some important differences. In Fig.
7 we show the ETR model fit for the training sets (Fig. 7(a,e)),
and testing sets (Fig. 7(b,f)), for the Surface Microstructures
and Surface Facets, respectively. For the Surface Microstruc-
tures (left column) we obtained a training score of R2 = 0.998,
a testing score of R2 = 0.976 and a cross-validation score of
R2 = 0.98±0.013. For the Surface Facets (right column) we
obtained a training score of R2 = 0.999, a testing score of R2 =
0.985 and a cross-validation score of R2 = 0.989± 0.006. In
both cases, these results indicate there is no under-fitting (the
model is sufficiently sophisticated to capture the complexity
in the data) and minimal over-fitting (the model is not fitting
to the noise). This is confirmed by the learning curves shown
in Figs. 7(c) and 7(g), respectively.
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FIG. 4. (a) Distribution of the 1279 platinum nanoparticles (excludes outliers) using t-SNE, colored by the normalized concentration of Surface
Microstructures, and (b) a histogram of the distribution of Surface Microstructures, separated by class. (c) Distribution of the set using t-SNE,
colored by the normalized concentration of Surface Facets, and (d) a histogram of the distribution of Surface Facets, separated by class. Both
t-SNE plots are colored from 0 to 1 (from blue to red).

FIG. 5. Stratified 27/75 test/train splits for (a) Surface Microstructures in Class 1, (b) Surface Microstructures in Class 2, (c) Surface Facets in
Class 1, and (d) Surface Facets in Class 2.

The most useful results come from the feature importance
histograms of the Surface Microstructures and Surface Facets,
provided in Figs. 7(d) and 7(h), respectively. These Figs.
shows only the top 21 features of the 121 features used to train
the models. Here we can see two different structure/property
relationships. In the case of the Surface Microstructures, the
top 5 most important features all relate to coordination num-
bers (the average coordination number of Pt in the particle,
Avg_total; the concentration of Pt atoms with a total coordi-
nation of 10, TCN_10; the concentration of Pt atoms with a
total coordination of 8, TCN_8; the concentration of Pt atoms
with a total coordination of 11, TCN_11; and the concentra-
tion of surface atoms with a coordination of 8, SCN_8). These
coordination numbers are predominantly indicative of internal
disorder (recalling the ideal bulk Pt coordination is 12). The
three next most important features all relate to the size of the
nanoparticles (the average particle radius, R_avg; the mini-
mum particle radius, R_min; and the total number of bulk-like
(non-surface) atoms, N_bulk). An example of a high Surface
Microstructures Class 1 nanoparticle with atoms coloured by
the top 5 coordination numbers is shown in Fig. 6(a).

In the case of the Surface Facets, the top 5 most impor-
tant features all relate to the size of the nanoparticles (the
average particle radius, R_avg; the total number of bulk-like
(non-surface) atoms, N_bulk; the total number of Pt–Pt bonds,
N_bonds; the total number of Pt atoms, N_total; and the to-
tal volume of the nanoparticle, Volume). The three next most
important features all relate to Pt atoms with a coordination
number of 7, (the concentration of surface atoms with a co-
ordination of 7, SCN_7; the concentration of Pt atoms with a

total coordination of 7, TCN_7; and the total concentration of
Pt atoms a q6q6 order parameter of 7, q6q6_T7). These atoms
occupy sites on {110} facets surfaces, and the total coordi-
nation number (TCN) for a {110} surface atom is the same
as the surface coordination number (SCN). An example of a
high Surface Facets Class 1 nanoparticle with atoms coloured
by the top 5 coordination numbers is shown in Fig. 6(b).

2. Class 2

The results of Class 2 also show unique structure/property
relationships for the concentration of Surface Microstructures
and Surface Facets. In Fig. 7 we show the ETR model fit for
the training sets (Fig. 8(a,e)), and testing sets (Fig. 8(b,f)), for
the Surface Microstructures and Surface Facets, respectively.
For the Class 2 Surface Microstructures we obtained a training
score of R2 = 0.998, a testing score of R2 = 0.888 and a cross-
validation score of R2 = 0.983±0.013. For the Surface Facets
we obtained a training score of R2 = 0.999, a testing score
of R2 = 0.979 and a cross-validation score of R2 = 0.97 ±
0.034. Although the Surface Microstructures model gave a
lower testing score than the Surface Facets model (and the
models for Class 1) the learning curves shown in Figs. 8(c)
and 8(g) attest to minimal over-fitting.

Turning to the feature importance histograms of the Surface
Microstructures and Surface Facets provided in Figs. 8(d)
and 8(h), respectively, we can see that the structure of the
surface is much more important in this structurally ordered
Class. In the case of the Surface Microstructures, half of the
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TABLE I. Hyper-parameters optimized using a grid search for each class and property label, using the Extra Trees Regressor.

Class Property Indicator Hyper-parameters
criterion max_depth min_samples_leaf min_samples_split n_estimators max_features oob_score

1 Surface Microstructures mse None 2 3 100 auto False
1 Surface Facets mse None 2 3 200 auto False
2 Surface Microstructures mse None 2 3 500 auto False
2 Surface Facets mse None 2 3 200 auto False

FIG. 6. Examples of Pt nanoparticles in the set, of comparable size, with atoms encoded by the coordination number, for a (a) Class 1
nanoparticle with a high concentration of Surface Microstructures, (b) Class 1 nanoparticle with a high concentration of Surface Facets, (c)
Class 2 nanoparticle with a high concentration of Surface Microstructures, and (d) Class 2 nanoparticle with a high concentration of Surface
Facets. The colouring scheme designates dark blue atoms as having a coordination of 7, light blue 8, green 9, yellow 10 and red 11.

top 8 most important features relate to surface structure (the
concentration of surface atoms with a curvature between 1 to
10 degrees, Curve_1-10; the concentration of surface atoms
with q6q6 order parameter based coordination of 9, q6q6_S9;
the concentration surface atoms with a coordination number
of 9, SCN_9; and the fraction of atom occupying a {111}
facet, S_111). There are three features related to coordination
numbers in this top group (Avg_total, SCN_9 and TCN_9)
and three order parameters based coordinations (q6q6_T8,
q6q6_S9 and q6q6_T9) indicating that it is not just under-
coordinated surfaces, but ordered under-coordinated surfaces
that are important; particularly planar surfaces with a low cur-
vature (Curve_1-10) The number 9 is associated with closed
packed surfaces such as the {111} surfaces. An example of a
high Surface Microstructures Class 2 nanoparticle with atoms
coloured by the top 5 coordination numbers is shown in Fig.

6(c).

In the case of the Surface Facets for Class 2, half of the
top 8 important features also related to the surface structure
(SCN_7, q6q6_S7, Curve_31-40 and Curve_21-30), with a
strong emphasis on a coordination of 7 (SCN_7, q6q6_T7,
q6q6_S7, TCN_7). These features are related to {110} facets,
and the following important features contain coordination and
order parameter of 11, which are the subsurface atoms along
[110] channels. The size is also a consideration (R_min). An
example of a high Surface Facets Class 2 nanoparticle with
atoms coloured by the top 5 coordination numbers is shown
in Fig. 6(d), where the {110} surface atoms are shown in dark
blue and the sub-{110} surface atoms are shown in red.
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FIG. 7. Results for the extra tree regression models for the Surface Microstructures (left) and Surface Facets (right), for the disordered
Pt nanoparticles of Class 1, including: (a) the Surface Microstructures training result, (b) the Surface Microstructures testing result, (c)
the learning curves for predicting the Surface Microstructures, (d) the top 21 structural features determining the concentration of Surface
Microstructures, (e) the Surface Facets training result, (f) the Surface Facets testing result, (g) the learning curves for predicting the Surface
Facets, (h) the top 21 structural features determining the concentration of Surface Facets.
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FIG. 8. Results for the extra tree regression models for the Surface Microstructures (left) and Surface Facets (right), for the ordered Pt nanopar-
ticles of Class 2, including: (a) the Surface Microstructures training result, (b) the Surface Microstructures testing result, (c) the learning curves
for predicting the Surface Microstructures, (d) the top 21 structural features determining the concentration of Surface Microstructures, (e) the
Surface Facets training result, (f) the Surface Facets testing result, (g) the learning curves for predicting the Surface Facets, (h) the top 21
structural features determining the concentration of Surface Facets.



Classification of Platinum Nanoparticles 9

IV. DISCUSSION

Since Surface Microstructures are indicative of ORR reac-
tions, and Surface Facets are indicative of HER and HOR re-
actions, these results can be interpreted in terms of their po-
tential impact on catalytic performance.

In Class 1 the results for disordered nanoparticles indicate
that ORR efficiency can be controlled by suppressing the crys-
tallinity of the particles (as well as the sizes), which can be
done by controlling the tau and T (see section on Classifi-
cation). This is consistent with experimental evidence that
amorphous particles display a higher reactivity71 and comple-
mentary statistical analysis.72 Disordered particles have disor-
dered surfaces, and it has been confirmed using density func-
tional theory73 that stepped Pt(111) surfaces and nanoparti-
cles with concave features can outperform the activity of flat
Pt(111).74 In this study the authors concluded that concave
features can only occur on regular nanoparticles, but the the
disordered structures contained in our data set have an enor-
mous fraction of concave atoms. Both steps, and sufficient
surface disorder, can increase ORR activity. Other studies
have found that (metastable) thin nanorods are also high per-
forming oxygen reduction catalysts,75 but this sort of structure
is not present in our data set where each nanoparticle was op-
timised as using molecular dynamics during generation. This
would be an interesting topic for future work. Our data set
is also well beyond the sizes of small clusters that have also
been shown to be active.76

The results for this class also indicate that HER and HOR
efficiency can be controlled by moderating the overall size of
disordered nanoparticles (and affecting {110} facets), which
can also be done by controlling the tau and T . This is consis-
tent with evidence that disordered amorphous particles have
a higher fraction of edge-like atoms, which are known to en-
hance hydrogen evolution and oxidation reactions77 and scale
as 1/R2.

In the case of the ordered Class 2, the Surface Microstruc-
tures model indicates that ORR efficiency of ordered Pt
nanoparticles can be controlled by the moderating of the frac-
tion of flat {111} surfaces. This is consistent with experimen-
tal observations.78–80 The Surface Facets model indicates that
HER and HOR efficiency can be controlled by the moderating
of the fraction of {110} surfaces, and the overall size. This is
also entirely consistent with the experimental observation that
HER/HOR is typically an order of magnitude higher on this
surface.79–81

In both cases, the regressor successfully identifies the right
structure/property relationship and highlighted the importance
of features that are known to be important experimentally
from the entire list of 121. This experimentally consistent and
actionable result was only achieved because of the prior clas-
sification, that perfectly separated the ordered and disordered
particles. If we eliminate this step and apply regression to
the entire set, ignoring the classes, the results contain impor-
tant features for each group combined, as would be expected.
Such predictions are confusing and do not provide any logical
path as a basis for future work, or a clear way to guide experi-
mental processes. This reinforces the need to apply a strategy

of data science and machine learning protocols when seeking
to understand complicated structure/property relationships in
nanoscience.

V. CONCLUSIONS

In this study we have used an open data set of ordered and
disordered platinum nanoparticles simulated using molecule
dynamics to predict the collective structure/property relation-
ship for classes containing distributions of Pt nanoparticles
based on their similarity in 121 dimensions. The data set was
cleaned and processed to handle redundant features, outliers,
normalization and imbalances. Based on clustering using iter-
ative label spreading (ILS), which is well suited to noisy and
high-dimensional materials data sets, we identified two clus-
ters that were perfectly separable as classes using the non-
linear, non-parametric extra trees classifier. One class con-
tained exclusively disordered nanoparticle, and the other ex-
clusively ordered nanoparticles, which can be separated based
on the degree of surface disorder and the growth rate.

Using non-linear, non-parametric extra trees regressors we
have subsequently shown that the two classes have different
structure/property relationships. Disordered particles (typical
of high growth rates and low temperatures) perform better for
oxygen reduction reactions if the disorder is increased, and
perform better for hydrogen evolution and hydrogen oxidation
reactions if the particles are small. Both conditions serve to in-
crease the amount of surface disorder and maximize edge-like
atoms. The same machine learning methods identified that or-
dered nanoparticles will perform better for oxygen reduction
reactions if the {111} surface area is increased, and will per-
form better for hydrogen evolution and hydrogen oxidation
reactions if the {110} surface area is increased. These results
agree with experimental observations and support the use of
machine learning for multi-structure/multi-property relation-
ships, based on properties averaged over a large sample of
structures, rather than specific predictions for individual sizes
or shapes that may not be easily controlled in the lab.
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