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Abstract 

SMILES-based deep learning models are slowly emerging as an important research topic 

in cheminformatics. In this study, we introduce SMILES Pair Encoding (SPE), a data-driven 

tokenization algorithm. SPE first learns a vocabulary of high frequency SMILES substrings from 

a large chemical dataset (e.g., ChEMBL) and then tokenizes SMILES based on the learned 

vocabulary for deep learning models. As a result, SPE augments the widely used atom-level 

tokenization by adding human-readable and chemically explainable SMILES substrings as tokens. 

Case studies show that SPE can achieve superior performances for both molecular generation and 

property prediction tasks. In molecular generation task, SPE can boost the validity and novelty of 

generated SMILES. Herein, the molecular property prediction models were evaluated using 24 

benchmark datasets where SPE consistently either did match or outperform atom-level 

tokenization. Therefore SPE could be a promising tokenization method for SMILES-based deep 

learning models. An open source Python package SmilesPE was developed to implement this 

algorithm and is now available at https://github.com/XinhaoLi74/SmilesPE.  
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1. Introduction 

Over the past few years, the cheminformatics community has witnessed dramatic advances 

in using deep learning neural networks (DLNN) to tackle challenging tasks ranging from molecular 

property prediction1–5 to de novo molecular generation and optimization6–8. The success of deep 

learning techniques in natural language processing (NLP) makes the use of text-based molecular 

representations an attractive research area9. A vital part of processing text-based chemical 

representations for deep learning models is how to break them into a sequence of standard units 

(or ‘tokens’), a process called tokenization. The tokens are supposed to contain the essential 

structural information that are able to reliably and consistently characterize the molecules. Through 

the specific type of neural network architectures such as recurrent neural network (RNN)10, 

convolutional neural network (CNN)11 or Transformer12, the models will process the tokens and 

learn how to extract the useful knowledge for solving chemical problems.  

In that context, SMILES13,14 (Simplified Molecular Input Line Entry System) is the most 

popular text representation of chemicals; it encodes a molecular graph as a sequence of characters. 

One approach of SMILES tokenization is to simply break the SMILES character by character 

(character-level tokenization). One issue of character-level tokenization is that some chemically 

meaningful information of a single atom is represented by multiple characters and may thus result 

in ambiguous meanings. With character-level tokenization, ‘[C@@H]’ is tokenized into six 

characters ‘[’, ‘C’, ‘@’, ‘@’, ‘H’ and ‘]’ even though it encodes the stereochemistry of a carbon 

atom. The token ‘C’ can be the symbol of carbon or part of the symbol of chlorine (‘C’ and ‘l’). 

Atom-level tokenization is a more commonly used tokenization method that follows the character-

level tokenization with some modifications to ensure atoms are extracted as tokens: (1) multi-



characters element symbols such as ‘Cl’ and ‘Br’ are considered as individual tokens; (2) special 

characters encoded between brackets are considered as tokens (e.g., ‘[nH], ‘[O-]’ and ‘[C@]’).  

In this study, we proposed the SMILES Pair Encoding (SPE) method, a data-driven 

substructure tokenization algorithm for deep learning applications. The SPE is inspired by the byte 

pair encoding (BPE) algorithm15, one major tokenization method in NLP. BPE was initially 

developed as a data compression algorithm and further adopted as a subword tokenization 

algorithm. The core idea of BPE tokenization is to keep the more frequent words as unique tokens 

whereas less frequent words will be further decomposed into subword units. Similar to BPE, SPE 

identifies and keeps the frequent SMILES substrings as unique tokens. Starting from atom-level 

tokens, SPE generates the SMILES substring tokens by iteratively merging the high frequency 

token pairs from a large chemical dataset. SPE enhances the widely used atom-level tokenization 

in two major aspects: 

1. Chemically meaningful substructures: SPE ensures that the most common SMILES 

substrings will be represented as unique tokens. The SMILES substrings encode 

molecular substructures which contain richer information and better reflect the 

molecular functionalities compared to the atom-level tokens.  

2. Shorter input for deep learning models: The input token sequences from SPE are 

shorter than those from atom-level tokenization. The shorter input can reduce the 

computational cost and accelerate DLNN model training. In addition, it will relieve the 

burden of long-range dependencies16 for RNN-based models which usually caused by 

the exploding and vanishing gradients.  

Herein, we performed two case studies to showcase the potential of SPE in both molecular 

generation and molecular property prediction. The goal of these case studies is to evaluate whether 



SPE tokenization could represent a better alternative to the atom-level tokenization. We 

demonstrate that for both generative and predictive (QSAR) tasks, the SPE tokenization shows 

superior performances compared to the atom-level tokenization. In the molecular generation case 

study, we trained RNN-based language models (LM) with SPE and atom-level tokenization, 

respectively. One common issue of LM-based molecular generative models is the low validity 

rates of generated SMILES. Our result shows that SPE tokenization significantly improves the 

validity rate compared to the atom-level tokenization. In the second case study, we compared the 

two tokenization methods using 24 datasets for QSAR modeling purposes. The SPE did achieve 

better or comparable prediction performances for 23 out of the 24 datasets and on average, did 

offer a five times speed up for model training. 

Our major contributions of this study are:  

1. Propose a new SMILES tokenization algorithm that would be useful for a wide 

range of cheminformatics DLNN modeling tasks;  

2. Develop an open source Python package SmilesPE, which enables the training of 

SMILES pair encoding on a large dataset and the use of trained SPE vocabulary to 

tokenize SMILES for deep learning applications. SmilesPE is freely available at 

https://github.com/XinhaoLi74/SmilesPE and can be installed via pip. 

2. Method 

2.1. SMILES Pair Encoding  

The SMILES pair encoding algorithm consists of two major steps: the vocabulary training 

step which learns the high frequency SMILES substrings from a large chemical dataset and the 

tokenization step which applies the trained vocabulary to new SMILES, returning a sequence of 

https://github.com/XinhaoLi74/SmilesPE


tokens. In this section, we describe how to train a SPE vocabulary and how to use the trained 

vocabulary to tokenize SMILES for deep learning. 

A SMILES Pair Encoding (SPE) vocabulary is trained according to the following steps: 

• Step 1: Tokenize SMILES from a large dataset (e.g., ChEMBL17) at atom-level; 

• Step 2: Initialize the vocabulary with all unique tokens; 

• Step 3: Iteratively count the occurrence of all token pairs in the tokenized SMILES, merge 

the most frequent occurring token pair as a new token and add it to the vocabulary. This 

step will stop when one of the conditions is met: (1) A desired vocabulary size is achieved 

or (2) No pair of tokens affords a frequency larger than a given frequency threshold. The 

maximum vocabulary size and frequency threshold are hyperparameters for training 

SMILES pair encoding.  

After training the SPE vocabulary, we can then tokenize SMILES based on the trained 

vocabulary. The SMILES substrings in the trained vocabulary are ordered by their frequency. 

During the tokenization process, each SMILES string is first tokenized at atom-level. SPE can then 

iteratively check the frequency of all pairs of tokens and merge the pair of tokens that have the 

highest frequency count in the trained SPE vocabulary until no further merge operation can be 

conducted.  

It is worth noting that the proposed algorithm can also be applied to other popular text-

based representation of chemicals for DLNN applications such as DeepSMILES18 and SELFIES19. 

DeepSMILES is a variant of SMILES which changes the way of representing branches and rings. 

It has the same atom-level characters as SMILES. Moreover, SELFIES represents all information 

of a molecular graph (atoms, bonds, branches and rings) as characters in brackets. These characters 



can be directly recognized as tokens by the atom-level tokenization we used. As a result, we can 

train a specific SPE vocabulary dedicated for DeepSMILES or SELFIES without any modification. 

2.2. Dataset Preparation 

ChEMBL2517 was used to train the SPE vocabulary and language models. The QSAR 

benchmark datasets were taken from a previous study by Cortés-Ciriano et.al20 that include the 

curated pIC50 values for 24 protein targets. All molecules were standardized with the following 

steps using MolVS21 and RDKit22 packages in Python: (1) Sanitizing with RDKit; (2) Replace all 

atoms with the most abundant isotope for that element; (3) Remove counterions in the salts and 

neutralize the molecules; (4) Remove the mixtures. The canonical SMILES were then generated 

for modeling. After curation, about 1.7 million ChEMBL25 SMILES did remain. The QSAR 

benchmark datasets are summarized in Table 1. 

Table 1. Summary of QSAR benchmark. 

Targets  Number of Molecules* 

A2a 199 

Dopamine 469 

Dihydrofolate 573 

Carbonic 591 

ABL1 755 

opioid 777 

Cannabinoid 1,086 

COX-1 1,306 

Monoamine 1,307 

LCK 1,336 

Glucocorticoid 1,387 

Ephrin 1,507 

Caspase 1,584 

Coagulation 1,591 

Estrogen 1,622 

B-raf 1,717 

Glycogen 1,724 

Vanilloid 1,761 

Aurora-A 2,084 

JAK2 2,388 



COX-2 2,759 

Acetylcholinesterase 2,966 

erbB1 4,742 

HERG 5,010 

* Sorted from small to large 

2.3. Machine Learning 

The molecular generation was formulated as a language modeling task23. The RNN-based 

language models were trained using a large chemical data set to predict the next token ti+1 given a 

sequence of tokens {t1, t2, …., ti} preceding it. The models learn a probability distribution of the 

training molecules and can then sample from the learned distribution to generate new molecules.  

The QSAR models were developed using the MolPMoFiT framework from our previous 

study24. MolPMoFiT is an effective transfer learning method for QSAR modeling, which uses the 

chemical language model pre-training + task-specific fine-tuning strategy25 to enable the 

knowledge learned from the large unlabeled chemical data to be transferred to smaller supervised 

datasets.  

2.4. Evaluation Metrics 

2.4.1. Evaluation Metrics for Generative Models 

• Validity: the percentage of generated SMILES that can be converted to valid molecules;  

• Novelty: the percentage of valid molecules that are not included in the training set; 

• Uniqueness: the percentage of valid molecules that are unique. 

2.4.2. Evaluation Metrics for QSAR Models 

All 24 QSAR benchmark datasets correspond to regression tasks. The root-mean-square-

error (RMSE), coefficient of determination (R2) and mean absolute error (MAE) were used as 

evaluation metrics for the regression models.  



Cohen’s d26 (eq 1) measures the relative performances of two methods. The x̅1 and x̅2 are 

the mean values for each group of results. The SD1 and SD2 are the standard deviations for each 

group of results. A positive d value means method 1 has a larger mean than method 2 while a 

negative d value means method 1 has a smaller mean than method 2. The thresholds of small, 

medium and large effects are set to 0.2, 0.5 and 0.8 as recommended26,27. The effect with a |d| 

(absolute value of d) less than 0.2 as no difference; between 0.2 and 0.5 as of minor difference; 

between 0.5 and 0.8 as medium difference; greater than 0.8 as large difference. In the following 

analysis, method 1 references as SPE tokenization and method 2 references as atom-level 

tokenization. 

Cohen’s 𝑑 =  
𝑥̅ 1 − 𝑥̅ 2

√(𝑆𝐷1
2 + 𝑆𝐷2

2)/2
 (1) 

2.5. Experiments 

 Training a SPE vocabulary. SPE is a data-driven algorithm so that both the quality and 

quantity are crucial. SMILES augmentation24,28–31 is widely used as a data augmentation technique 

in deep learning applications. In order to capture common SMILES substrings in both canonical 

and non-canonical SMILES, we generated one non-canonical SMILES for each canonical 

SMILES in the curated ChEMBL dataset. As a result, 3.4M SMILES were obtained for training 

the SPE vocabulary. The maximum vocabulary size was set to 30,000 and the frequency threshold 

is set to 2000 to ensure the common SMILES substrings can be included in the vocabulary.  

Language models. We trained two language models with SPE tokenization and atom-level 

tokenization, respectively. 9 million SMILES (1 canonical + 5 non-canonical SMILES for each 

compound) generated from the curated ChEMBL25 dataset are used for the model training. The 

model architecture we choose for language modeling is AWD-LSTM32 (ASGD Weight-Dropped 



LSTM), a variant of LSTM (long short-term memory) models that is enhanced with various kinds 

of dropouts and regularizations. Specially, dropouts are applied to embedding layer, input layer, 

weights and hidden layers. It has shown strong performances on language modeling in NLP. We 

choose the same model architecture and hyperparameters as our previous study24. The models have 

an embedding layer with a size of 400, three LSTM layers which 1152 hidden units per layer, and 

a softmax layer. We apply embedding dropout of 0.1, input dropout of 0.6, weight dropout of 0.5 

and hidden dropout of 0.2. Both models are trained with a base learning rate of 0.008 for 10 epochs 

using one cycle policy33.  

Molecular Generation and Evaluation. For each language model, ten sampled sets of 

1,000 SMILES strings were generated and evaluated with validity, novelty, and uniqueness. The 

validation of generated SMILES is evaluated by RDKit. 

 QSAR models. The QSAR models were fine-tuned on the pre-trained language models 

following the procedure of MolPMoFiT. All the models were tuned with base learning rates and 

training epochs on the validation sets and evaluated on the test sets on ten random 80:10:10 splits. 

SMILES augmentation was applied as descripted in our previous study24. During training, the 

SMILES of training sets were augmented 25 times and the SMILES of validation sets were 

augmented 15 times. Test time augmentation (TTA) was applied to compute the final predictions: 

for each compound, the final prediction is generated by averaging predictions of the canonical 

SMILES and four augmented SMILES. 

2.6. Implementation 

 The SPE algorithm was implemented in Python. We implemented machine learning 

models using PyTorch34, fastai35 and MolPMoFiT. The MolPMoFiT code is available at 

https://github.com/XinhaoLi74/MolPMoFiT. 

https://github.com/XinhaoLi74/MolPMoFiT


3. Result and Discussion 

3.1. SMILES Pair Encoding on ChEMBL 

A dataset with ~3.4 million SMILES generated from the curated ChEMBL dataset, 

containing both canonical and non-canonical SMILES, was used to train a SPE vocabulary. The 

trained SPE vocabulary contained 3,002 unique SMILES substrings with length ranges from 1 to 

22 (Figure 1). The length was computed by counting the number of atom-level characters in the 

SMILES substrings. As shown in Figure 2, the SMILES substrings are human-readable and 

mostly correspond to chemically meaningful substructures and functional groups. The full list of 

SPE vocabulary can be found in the project GitHub repository. Some machine learning 

architectures36 and techniques31,37 can interpret the model predictions by computing the 

importance/contribution scores of the input tokens. In this regard, the SMILES substrings are more 

interpretable than individual atom characters. 

 

Figure 1. Distribution of length of SMILES Pair Encoding substrings trained on ChEMBL. 

 



 

Figure 2. Representative SPE fragments. 

 

Table 2 shows some examples of tokenized SMILES from SPE. Compared to atom-level 

tokenization, SPE provides a more compact representation of SMILES for deep learning models. 

Figure 3 shows the results of SPE and atom-level tokenization on the ChEMBL dataset. The SPE 

tokenization has a mean length of approximately 6 tokens while the atom-level tokenization has a 



mean length of approximately 40. Such shorter input sequences can dramatically benefit DLNN 

models in different aspects. Due to the sequential nature of RNN-based models, they require longer 

training time and suffer long-term dependencies in case of long input sequences. The newer 

Transformer models12 replace the recurrent components with attentions, which makes them no 

longer suffer the long-term dependency issue. However, the computational cost will scale 

quadratically with the length of input sequence due to the mechanism of self-attention. As a result, 

for the same deep learning application, SPE can save the computational cost and accelerate the 

training and inference processes. 

Table 2. Example of Tokenized SMILES. 

SMILES 
Tokenized SMILES 

Substrings 

CC(CCCCC(=O)Nc1ccc(C(F)(F)F)cc1)NCC(O)c1cccc(Cl)c1 

'CC(',  'CCCC',  

'C(=O)Nc1ccc(',  

'C(F)(F)F)cc1)',  'N',  'CC(O)',  

'c1cccc(Cl)c1' 

CCC(O)(C(=O)Nc1ccccc1Cl)C(F)(F)F 
'CCC(O)(',  'C(=O)N',  

'c1ccccc1Cl)',  'C(F)(F)F' 

O=C1CS/C(=N/N=C\c2ccco2)N1Cc1ccccc1 

'O=C1',  'CS',  '/C(',  '=N/N',  

'=C\\',  'c2ccco2)',  'N1',  

'Cc1ccccc1' 

 

 



 

Figure 3. Distribution of length of tokenized SMILES of ChEMBL. Blue: SMILES Pair 

Encoding tokenization; Orange: Atom-level tokenization. 

 

3.2. Molecular Generation Case Study 

 We evaluated the performance of SPE versus atom-level tokenization on molecular 

generation using an RNN-based language model architecture described in the Experiments 

Section. The models were trained using 9 million SMILES (1 canonical + 5 non-canonical 

SMILES for each compound) generated from the curated ChEMBL25 dataset. We compared the 

validity, novelty and uniqueness of ten sets of 1,000 sampled SMILES from each model. The 

results are summarized in Table 3. The model trained with atom-level tokenization can only 

produce 58.1% valid SMILES whereas the model trained with SPE tokenization can produce 93.1% 

valid SMILES. The invalidation of SMILES-based generative models is mainly due to the 

constraints of SMILES syntax: (1) the missing of ring or branch closures; (2) wrong bond numbers 

of atoms. Instead of generating a molecule atom-by-atom, the model trained with SPE tokenization 

uses a fragment-by-fragment approach, which is naturally more error proofing. In addition, SPE 



tokenization also has a higher novelty compared to the atom-level tokenization (97.3% vs. 96.7%). 

Both models can generate 100% unique molecules. Figure 4 shows some sampled molecules. 

Table 3. Metrics for Molecular Generation. 

 SMILES Pair Encoding Atom-level 

Validity 0.931 ± 0.008 0.581 ± 0.011 

Novelty 0.973 ± 0.006 0.967 ± 0.006 

Uniqueness 1.0 1.0 

 

 

 

 

 

(a) SMILES Pair Encoding  (b) Atom Level 

Figure 4. Random sampled examples of Generated Molecules. (a) examples from 

the model trained with SMILES Pair Encoding tokenization; (b) examples from the 

model trained with atom level tokenization 

 



3.3. Molecular Property Prediction Case Study 

 We also compared the performances for molecular property prediction models trained with 

the two tokenization methods on 24 regression datasets (pIC50). The models were evaluated on 

ten 80:10:10 random splits. RMSE (Figure 5a), R2 and MAE (Tables S1 and S2) were used as 

evaluation metrics. The Cohen’s d was used to measure the relative performance of the two 

methods (Figure 5b). The thresholds of small, medium and large effects were set to 0.2, 0.5 and 

0.8 as recommended26,27. As shown in Figure 5, models trained with SPE tokenization showed 

comparable or better performances for 23 out of 24 datasets compared to those trained with atom-

level tokenization. Specifically, SPE tokenization showed a large effect on Cannabinoid and 

medium effect on A2a, LCK, Estrogen and Aurora-A. In addition to the strong performances, the 

models with SPE were trained on average 5 times faster due to the shorter input sequence.  

 
(a) 



 
(b) 

Figure 5. Results of QSAR benchmark. (a) Test set RMSE (b) The effect size 

(Cohen’s d value) of difference between models trained with SPE tokenization and 

atom-level tokenization. A positive d value means atom-level tokenization 

performances better than SPE tokenization. A negative d value means SPE 

tokenization performances better than atom-level tokenization. The size effect with 

a |d| (absolute value of d) less than 0.2 as no difference; between 0.2 and 0.5 as of 

minor difference; between 0.5 and 0.8 as medium difference; greater than 0.8 as 

large difference. 

 

Conclusion 

In this study, we proposed SMILES Pair Encoding (SPE), a data-driven substructure 

tokenization algorithm for deep learning. SPE learns a vocabulary of high frequency SMILES 

substrings from ChEMBL and then tokenizes new SMILES into a sequence of tokens for deep 

learning models. SPE splits SMILES into human-readable and chemically explainable substrings 

and shows superior performances on both generative and predictive tasks compared to the atom-

level tokenization. In the generative task, it leads to a significantly higher validity and novelty of 

generated SMILES. In the predictive tasks, SPE shows better or comparable performances on 23 



out of 24 datasets. In addition to the strong performances, SPE has shorter input sequences which 

saves the computational cost of both model training and inferencing. SPE could represent a better 

tokenization method for the development of future deep learning applications in cheminformatics. 
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Supplemental Materials 

Table S1. Performance of QSAR models trained with SPE tokenization. 

Targets RMSE R2 MAE 

A2a 0.669±0.111 0.724±0.116 0.523±0.078 

Dopamine 0.719±0.055 0.522±0.080 0.551±0.045 

Dihydrofolate 0.771±0.053 0.545±0.049 0.586±0.042 

Carbonic 0.582±0.035 0.781±0.046 0.427±0.032 

ABL1 0.746±0.050 0.637±0.067 0.566±0.045 

opioid 0.636±0.046 0.742±0.042 0.477±0.032 

Cannabinoid 0.671±0.041 0.715±0.036 0.500±0.021 

COX-1 0.655±0.064 0.486±0.064 0.489±0.046 

Monoamine 0.604±0.054 0.645±0.046 0.454±0.037 

LCK 0.758±0.035 0.673±0.048 0.589±0.028 

Glucocorticoid 0.541±0.042 0.692±0.057 0.426±0.030 

Ephrin 0.652±0.051 0.647±0.037 0.494±0.026 

Caspase 0.586±0.098 0.835±0.079 0.440±0.093 

Coagulation 0.771±0.037 0.622±0.039 0.580±0.031 

Estrogen 0.630±0.037 0.780±0.024 0.459±0.032 

B-raf 0.599±0.057 0.756±0.046 0.452±0.036 

Glycogen 0.731±0.028 0.593±0.041 0.548±0.023 

Vanilloid 0.669±0.055 0.543±0.080 0.522±0.032 

Aurora-A 0.711±0.049 0.723±0.033 0.530±0.035 

JAK2 0.623±0.046 0.725±0.041 0.467±0.026 

COX-2 0.728±0.043 0.605±0.050 0.537±0.032 

Acetylcholinesterase 0.675±0.0049 0.749±0.033 0.495±0.033 

erbB1 0.658±0.023 0.757±0.011 0.492±0.019 

HERG 0.536±0.019 0.625±0.033 0.395±0.019 

 

  



Table S2. Performance of QSAR models trained with atom-level tokenization. 

Targets RMSE R2 MAE 

A2a 0.776±0.224 0.612±0.215 0.550±0.151 

Dopamine 0.748±0.097 0.479±0.140 0.576±0.071 

Dihydrofolate 0.794±0.101 0.525±0.101 0.592±0.072 

Carbonic 0.578±0.069 0.792±0.046 0.421±0.052 

ABL1 0.750 0.046 0.635±0.046 0.574±0.034 

opioid 0.642±0.072 0.735±0.066 0.485±0.049 

Cannabinoid 0.717±0.055 0.679±0.034 0.552±0.033 

COX-1 0.665±0.094 0.484±0.089 0.478±0.058 

Monoamine 0.624±0.061 0.633±0.053 0.467±0.048 

LCK 0.835±0.165 0.591±0.181 0.617±0.047 

Glucocorticoid 0.535±0.058 0.695±0.074 0.411±0.042 

Ephrin 0.664±0.055 0.636±0.043 0.508±0.027 

Caspase 0.587±0.061 0.837±0.050 0.444±0.046 

Coagulation 0.770±0.037 0.622±0.045 0.582±0.023 

Estrogen 0.655±0.044 0.761±0.028 0.474±0.031 

B-raf 0.599±0.067 0.762±0.046 0.443±0.043 

Glycogen 0.744±0.045 0.579±0.052 0.555±0.040 

Vanilloid 0.670±0.065 0.542±0.082 0.515±0.040 

Aurora-A 0.744±0.073 0.698±0.044 0.547±0.040 

JAK2 0.642±0.035 0.708±0.042 0.481±0.023 

COX-2 0.736±0.064 0.596±0.074 0.543±0.048 

Acetylcholinesterase 0.679±0.060 0.745±0.044 0.485±0.037 

erbB1 0.661±0.019 0.754±0.013 0.492±0.016 

HERG 0.531±0.025 0.637±0.030 0.391±0.020 

 


