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Replica Exchange Molecular Dynamics (REMD) is a widely used enhanced sampling method for 

accelerating biomolecular simulations. During the past two decades, several variants of REMD 

have been developed to further improve the rate of conformational sampling of REMD. One 

such variant, Reservoir REMD (RREMD), was shown to improve the rate of conformational 

sampling by around 5-20x. Despite the significant increase in sampling speed, RREMD methods 

have not been widely used due to the difficulties in building the reservoir and also due to the 

code not being available on the GPUs. In this work, we ported the AMBER RREMD code onto 

GPUs making it 20x faster than the CPU code. Then, we explored protocols for building 

Boltzmann-weighted reservoirs as well as non-Boltzmann reservoirs, and tested how each choice 

affects the accuracy of the resulting RREMD simulations. We show that, using the recommended 

protocols outlined here, RREMD simulations can accurately reproduce Boltzmann-weighted 

ensembles obtained by much more expensive conventional REMD simulations, with at least 15x 

faster convergence rates even for larger proteins (>50 amino acids) compared to conventional 

REMD. 

 

Introduction 

Conformational ensembles are essential to understand biological processes such as protein 

folding, drug binding, and protein-protein interactions, besides many others. They are also 

needed to evaluate force fields against experimental data, to study intrinsically disordered 

proteins (IDPs) which have multiple possible conformations under native conditions, and also to 

study unfolded state of non-IDPs under native conditions. Obtaining converged Boltzmann-

weighted ensembles even for small biomolecules using conventional Molecular Dynamics (MD), 
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however, still takes a long time (weeks to months) even on the latest computational hardware due 

to the rugged nature of the energy landscape.  

 Several enhanced sampling techniques have been developed to accelerate the convergence of 

MD simulations, a summary of which can be found in recent reviews.
1
 These techniques can be 

broadly categorized into two categories: (1) techniques that require user-defined collective 

variables to enhance sampling along these (but not all) degrees of freedom of the biomolecule, 

such as umbrella sampling
2
, metadynamics

3
, steered MD

4
, besides others; and (2) techniques that 

do not require collective variables, and enhance sampling of all degrees of freedom of the 

biomolecule, such as temperature Replica Exchange MD (REMD).
5
 The efficiency of the first 

category of methods is dependent on how accurately the collective variables correspond to the 

slowest motions of interest. Since identifying appropriate collective variables for biological 

processes is a non-trivial task, the applicability of these methods is limited, especially when full 

ensembles and not specific conformational changes need to be modeled. REMD, on the other 

hand, is a generic method that requires only the knowledge of the number of atoms in the 

simulation system. However, the applicability of REMD to large biomolecular systems is 

prohibitive as it requires significant computational resources (see below). Several variants of 

REMD have been developed to improve the efficiency of REMD for biomolecular systems with 

large number of degrees of freedom. Here, we explore the Reservoir REMD variants since these 

were shown to improve convergence of REMD simulations by at least 5x.
6
  

We briefly review the REMD and Reservoir REMD methods for context. In REMD, replicas 

of the simulation system are simulated simultaneously at different temperatures. At regular 

intervals, exchanges are attempted between replica pairs based on the Metropolis criterion. If an 

exchange is successful, the thermostats of the exchanging replica pairs are switched by rescaling 
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the velocities. These exchanges are repeated such that each replica traverses through different 

temperatures multiple times during the simulation. At high temperatures, the replicas can more 

easily overcome energy barriers and escape local minima with the added thermal energy. At low 

temperatures, the replicas explore the local minima that they visited at the high temperatures but 

with corrected weighting, thereby enhancing exploration of the conformational landscape even at 

low temperatures. Overall this results in faster convergence of conformational ensembles at all 

temperatures compared to standard MD. Figure S1 illustrates the faster convergence of 

conformational ensembles using REMD for the CLN025
7
 hairpin using the same number of MD 

runs and thermostats as for standard MD, but with the addition of exchanges between the MD 

runs at different temperatures. The fraction of native structures converges within 400 ns for all 

temperatures using REMD, compared to MD which requires greater than 400 ns to converge at 

lower temperatures. This reinforces that the coupling of temperatures allows the efficiently-

sampling high temperature simulations to accelerate the low temperature conformational 

sampling. Furthermore, the Metropolis criterion ensures that the canonical ensemble properties 

are maintained at each temperature, making it easier to compare the conformational probabilities 

at different temperatures to experimental data such as melting curves. 

The faster convergence of REMD sometimes comes at significant computational cost 

compared to the conventional MD runs due to the following reasons: (1) Even though REMD 

provides ensemble distributions at all temperatures, we are often interested in the ensemble 

distributions at only the lowest temperature. Even to obtain the ensemble distributions at only the 

lowest temperature, multiple replicas have to be simulated in REMD resulting in a n-fold 

increase in computational cost, where n is the number of replicas, compared to conventional MD. 

(2) Since the enhanced exploration of conformations is driven by temperature changes, it is 
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imperative for all the replicas to traverse to high and low temperatures multiple times during the 

course of the simulation
8
. To ensure this process occurs, the temperature spacing between the 

replicas must be optimal so that exchanges can be successful. However, since the optimal 

temperature spacing between the replicas is inversely proportional to the square root of the 

number of degrees of freedom, a greater number of replicas (increased computational cost) will 

be required to span the same temperature range between ones where sampling is efficient and 

ones where thermodynamic data are desired.  (3) Since at low temperatures, replicas only sample 

the local minima that they visited at the high temperatures, the rate of convergence of REMD is 

limited by the rate at which different minima are explored at the high temperatures, and until all 

the minima are properly sampled, none of the replicas represent a Boltzmann-weighted 

distribution and hence, cannot be considered converged. This means that the data collected from 

the low temperature replicas should be discarded until the exploration process is complete, 

resulting in a significant wastage of computational resources at the beginning of REMD 

simulations.  

Since most of the exploration of conformational landscape is done at high temperatures, it 

seems reasonable to generate a set of structures (reservoir) representing different minima using 

extensive simulations at a high temperature, and only then to reweight and locally refine them 

using REMD exchanges along the temperature ladder. In this way the exploration process of 

REMD at high temperatures can be decoupled from the thermal reweighting process of REMD at 

low temperatures, with potential for significant reduction in computational cost by avoiding the 

simulation of all temperatures during the time when only the high temperature runs are exploring 

new minima. This is the idea behind the Reservoir REMD (RREMD) methods.
6a-d
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In RREMD, a set of structures (reservoir) representing different energy minima are generated 

by performing extensive MD simulations at a high temperature. Then, these structures are 

coupled to REMD via allowing exchanges based on the Metropolis criterion between the replica 

at highest temperature and a randomly chosen structure from the reservoir. If an exchange is 

successful between the highest temperature replica and the reservoir structure, in addition to 

rescaling the velocities, the highest temperature replica structure takes on the reservoir structure. 

After reservoir structures are accepted into the replica at highest temperature, the normal REMD 

process of simulation across the temperature ladder provides local exploration/refinement of the 

basins sampled in the reservoir, and also reweights the probability of observing these structures 

at different temperatures. The exchanges with the reservoir are repeated multiple times, 

concurrently with the REMD exchanges so that every reservoir structure eventually is accepted 

and thermally reweighted many times during the simulation, resulting in converged Boltzmann-

weighted ensembles at all REMD temperatures.  

RREMD is similar to J-walking
9
, S-walking

10
, smart darting

11
, annealed swapping

12
, and cool-

walking
13

 methods. The primary difference between RREMD and these methods is that in the 

former, the highest temperature replica is coupled to the lowest temperature replica through 

multiple replicas in between, whereas, in the latter methods, the highest temperature replica is 

directly coupled to the lowest temperature replica through either quenching and heating 

(annealed swapping), or direct quenching (S-walking and smart-darting), or partial quenching 

(cool-walking), or no quenching (J-walking).  

The RREMD method is formally exact and satisfies detailed balance. In principle, the only 

change from standard REMD is that the highest temperature simulation is not run concurrently 

with the rest of the REMD ladder, and exchanges can take place to any time point sampled by 
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the reservoir generation MD, rather than only the current time as in standard REMD. In practice, 

a crucial assumption is that the set of structures obtained from the high temperature MD 

simulation represents a converged Boltzmann-weighted ensemble, i.e., the structures in the 

reservoir occur with correct relative populations of all the relevant minima. Otherwise, the use of 

the Boltzmann limiting distribution in the Metropolis criterion is incorrect. In practice, after a 

successful exchange with the reservoir, the reservoir typically is not updated with the structure in 

the highest temperature replica since it does not add any new information to what is assumed to 

be an already-complete reservoir, and bookkeeping is facilitated by simply discarding the 

structure being exchanged into the reservoir. Likewise, when the highest temperature accepts a 

structure from the reservoir, the original copy is not removed from the reservoir. Since the 

reservoir is finite in practice, adding or removing structures would change the relative weights of 

the minima and disrupt the ensemble. One assumes that each structure in the reservoir represents 

an infinite number of copies, and therefore adding or removing a single snapshot would not 

change the reservoir composition. Since the reservoir is assumed to be Boltzmann-weighted, this 

method is referred to as Boltzmann-weighted RREMD (B-RREMD).
6a, 6c

 

Prior application of B-RREMD resulted in ensemble distributions that were in excellent 

agreement with conventional REMD simulations for a wide variety of small molecules and 

peptides such as butane
6a, 6b

 and leucine dipeptide
6a

 in gas phase, leucine tripeptide in implicit 

solvent
6b

, Trpzip2 and DPDP in implicit solvent
6c

, and Aβ21-30 peptide
6e

 in explicit solvent. B-

RREMD also has been used to calculate binding affinities for different host-guest complexes 

using a combination of Hamiltonian REMD and B-RREMD
14

. In all cases except the study 

involving calculation of binding affinities (where conventional REMD data is not available), B-

RREMD simulations converged at least 5x faster (ignoring the time required to generate the 
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reservoir structures) than conventional REMD simulations. Moreover, the infrequent calculations 

(relative to forces) involving exchanges with the reservoir had a negligible effect on the wall 

clock time of the simulations. 

Despite the significant increase in convergence rate and reduced computational cost, the use of 

B-RREMD method has been limited to only small biomolecules (< 310 atoms) and has not been 

used for studying larger biomolecules with more complex folding landscapes. In part this is due 

to the challenge of needing a reliably Boltzmann-weighted ensemble for a reservoir, which may 

be easier to generate at elevated temperature but remains forbidding for systems with large 

number of degrees of freedom. On the other hand, simply generating a set of structures 

corresponding to the important local minima should be a much easier task (see Results and 

Discussions) than is sampling these same basins with the correct relative populations (a 

Boltzmann-weighted reservoir). Furthermore, many different physics-based sampling methods 

(such as metadynamics or accelerated MD
15

) and non-physics-based sampling methods (such as 

homology modeling
16

) could be used to generate sets of structures corresponding to different 

important minima, thereby significantly increasing the scope of applicability of structure 

reservoirs in accelerating biomolecular simulations.  

Recognizing this, non-Boltzmann RREMD (nB-RREMD)
6d

 was developed in which the 

Metropolis exchange criterion is modified to reflect the altered, non-Boltzmann distribution of 

structures in the reservoir. This criterion is used to exchange between the reservoir and the 

highest replica temperature. In its simplest form
6d

, a flat distribution is assumed (i.e., one 

structure is present for each minimum) and the exchange criterion uses only the energy of the 

reservoir structure and not its temperature. The exchange is formally equivalent to periodically 

allowing a Monte Carlo (MC) jump for the highest temperature replica during REMD, with the 
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possible target basin for the jump chosen randomly from those represented in the reservoir. Since 

the reservoir structures are chosen to correspond to different minima on the energy landscape, 

the MC exchange moves in nB-RREMD result in rapid exploration of conformational space 

unhampered by energy barriers, with reasonable acceptance ratios. Thus, the MC swaps in nB-

RREMD result in more efficient conformational sampling compared to traditional biomolecular 

MC simulation, where candidate structures are generated on the fly by adjusting only a few 

degrees of freedom in order to achieve tolerable acceptance probabilities. Moreover, the 

decoupling of time between the REMD run and the reservoir allows the REMD ladder to 

resample basins that may only have a single instance in the reservoir. This can be important to 

facilitate buildup of population across a range of low temperature replicas without the need to 

sample multiple independent (and potentially slow) folding events as would be needed in 

standard REMD. After the structure is accepted into the highest temperature replica through a 

non-Boltzmann exchange move, similar to B-RREMD, the REMD process reweights the 

probability of observing the accepted structure at different temperatures, and also carries out 

refinement and local exploration of the basin, which can be crucial if the reservoir structure was 

not generated using the same physics model as used for the REMD run.  

nB-RREMD was studied in the past for small systems, and resulted in conformational 

ensembles that were in good agreement with conventional REMD for alanine tetrapeptide
6g

, 

alanine undecapeptide
6g

, Trp-cage miniprotein
6g

, and Trpzip2 in implicit solvent
6d

, and for 

alanine dipeptide
6f

 and RNA (rGACC) tetramer
6f

 in explicit solvent. In all cases, similar to B-

RREMD, nB-RREMD was found to be at least 5x faster than conventional REMD simulations. 

The nB-RREMD method has also been recently adapted to pH replica exchange method (pH-
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REM), in which, in addition to the pH-REM scheme, the non-Boltzmann exchange move was 

used to integrate structures from reservoir into the pH-REM replicas.
6h

 

Current issues with RREMD 

Despite the significant promise, both RREMD variants have not been widely used due to the 

following reasons: 

 It was observed that the distribution of structures in the reservoir significantly affected the 

overall ensembles that were sampled by RREMD. If structures were missing from the reservoir, 

the likelihood of them being observed during RREMD was low.
6f

 Therefore, it is imperative that 

the reservoir used in RREMD simulations contains all of the relevant structures. Running very 

long simulations can ensure that the reservoir does not have any missing structures. However, it 

is difficult to estimate how long the simulations have to be run for a given biomolecule since 

different biomolecules will require different simulation time lengths to sample important basins, 

depending on the size and folding/unfolding rates of the biomolecule. For example, the high 

temperature MD simulations that have been used so far to generate reservoirs ranged from 20 

ns
14a

 to all the way up to 1.4 μs
6f

.  

It was not clear how many structures must be extracted from the high temperature MD 

simulation, to build a Boltzmann-weighted reservoir. The number of structures used so far in 

Boltzmann-weighted reservoirs ranged from 5000 to 150000
6a, 6c, 6e-g

. If the number of structures 

is too few, then the populations of different minima will have too low precision and might not 

reflect the true Boltzmann distribution; using such a reservoir in B-RREMD simulations could 

result in erroneous ensemble distributions at all temperatures. 

The nB-RREMD in its simplest form overcomes the issue of selecting structures with correct 

relative populations for each minimum by using only one structure instead of many structures for 
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each minimum. However, the accuracy of the nB-RREMD depends critically upon the 

assumption that the underlying reservoir distribution is flat, i.e., there is only one structure 

corresponding to each local minimum. To obtain a flat reservoir distribution, two methods have 

been used so far: (a) the high temperature MD trajectories were clustered and cluster 

representatives were used to build the non-Boltzmann reservoirs
6d

, and (b) Conformational space 

annealing (CSA)
17

 was used
6g

 which, in theory, generates structures with low potential energy 

that are separated by some distance in conformational space. While either method can result in 

flat reservoir distributions, both methods have the limitation that the ideal number of clusters (in 

the case of clustering) or the ideal number of low energy structures (in the case of CSA) is not 

known in advance, and the impact of over-sampling basins is unclear. For example, alanine 

tetrapeptide simulations using 64 and 256 conformations obtained from CSA produced similar 

results.
6g

 Also, clustering MD trajectories is a non-trivial task since the clustering results are 

influenced by the choice of the clustering method, and the clustering metric.
18

 It was not clear 

which clustering method was the most appropriate, and which clustering metric should be used 

to build a non-Boltzmann reservoir. Furthermore, what should the energies of the cluster 

representatives corresponding to different minima be – Is the energy of the cluster representative 

an accurate representation of the energy basin, or is the less-noisy average energy of all the 

structures in the cluster a more accurate representation? 

The temperature at which the high temperature MD simulation is run also plays a crucial role 

in generating reservoir structures. The reservoir generation temperature should not only be hot 

enough to traverse barriers and sample conformational space quickly, but also sample the basins 

important at low temperatures. Such an ideal reservoir generation temperature for a given 

biomolecule is difficult to know in advance. 
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RREMD code was implemented only on CPUs, which prohibited exploration of alternate 

approaches to these questions. Also, because the code was available only on the CPUs, the 

method has been tested only on very small biomolecules (<310 atoms) with trivial structures. It 

is not known if the faster convergence rates of RREMD will translate well to bigger 

biomolecules which might require both (a) a greater number of replicas which can slow down the 

convergence speed since the structures from the reservoir have to traverse through more replicas,  

and (b) more reservoir structures representing different minima on the energy landscape, which 

means more structures have to be evaluated before the simulations can be considered converged. 

Finally, rigorous testing of the method has been difficult due to the cost of obtaining highly 

precise reference data using the same force field and other simulation conditions, in order to 

critically compare and evaluate the various approximations made during reservoir construction 

and isolate these issues from confounding factors in comparison to experiment (such as force 

field accuracy). 

In this work, we ported AMBER’s RREMD code onto the GPUs which enabled testing various 

protocols to build reservoirs. We explored protocols for building both Boltzmann-weighted 

reservoirs and non-Boltzmann reservoirs, and tested how each choice (see below) affects the 

accuracy of RREMD compared to extensive conventional REMD simulations for CLN025 (10 

residues), Trp-cage (20 residues), and Homeodomain (52 residues) proteins.  

Specifically, we explore these key questions about the reservoir approach (1) How long should 

the high temperature MD simulation be run such that all the relevant minima are sampled at all 

(non-Boltzmann), and in the correct relative weights (Boltzmann-weighted reservoir)? (2) How 

sensitive is a Boltzmann-weighted reservoir simulation to the number of structures selected from 

a high temperature MD simulation, so that the relative populations of different minima are 
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precisely reproduced? (3) Which clustering methods are best suited to select representative 

structures corresponding to each minimum to build a non-Boltzmann reservoir, and how should 

one choose the ideal parameters for clustering such as how many clusters, which clustering 

metric, ideal cluster representative, etc.? (4) For a non-Boltzmann reservoir, how sensitive are 

the results to the potential energy of the reservoir structures, using the energy of the 

representative structure vs. average energy of all structures in the cluster? (5) Are there ways to 

identify an ideal temperature to generate structures for building a reservoir for a given protein? 

(6) For larger proteins, what is the expected accuracy of the ensemble generated at low T with a 

reservoir as compared to standard REMD? Are any inaccuracies offset by significant 

performance gains? 

Our results show that (1) both variants of RREMD are at least 2x faster for two small-sized 

proteins (CLN025 and Trp-cage) and at least 15x faster for a medium-sized protein 

(Homeodomain). (2) A correlation of cluster populations > 0.7, number of folding/unfolding 

event pairs > 100 are good indicators of adequate simulation lengths to generate Boltzmann-

weighted structure reservoirs. (3) The number of structures in a Boltzmann-weighted reservoir 

can be as low as 1000 to 5000. (4) KMeans and WL are the best clustering methods to build a 

non-Boltzmann reservoir, and non-Boltzmann RREMD is only slightly sensitive to the energy 

assigned to reservoir structures. (5) The reservoir temperature should not be too low, and it 

should not be too high either, though further work needs to be carried out to understand the effect 

of temperature on the efficiency of RREMD. Finally, we also observed that the RREMD 

simulations using the same reservoir will converge to the same, and sometimes, wrong answer 

indicating that it is critical to ensure that the reservoirs themselves are well converged before 

running RREMD simulations. 
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Methods 

Model systems 

Three proteins – (1) CLN025 (PDB ID: 2RVD, 10 residues)
7
, (2) Trp-cage (PDB ID: 1L2Y, 20 

residues)
21

, and (3) Homeodomain (PDB ID: 2P6J, 52 residues)
22

 were considered for this study 

since these proteins were previously shown
23

 to fold accurately using the force field and solvent 

models used in this study. This provides us with the ability to generate precise reference data 

using standard methods, and under conditions that are relevant to experiments. 

General details 

All structures were built via the LEaP module of AmberTools in the AMBER 18 package
24

. 

For each protein, two initial conformations were built – (1) Native conformation, for which the 

first NMR model was used, and (2) Extended conformation, in which φ, ψ angles for all residues 

except Proline were set to 180°. Proline residues were set to φ=-61.5°, ψ=-176.6°. The force field 

ff14SBonlysc
25

 was used for all simulations. The GB-Neck2
26

 (igb=8 in AMBER) implicit 

solvent model with mbondi3
26

 radii set was used for all simulations. No cutoff was used for 

calculation of non-bonded interactions. For Homeodomain simulations, in addition to the polar 

solvation energy term calculated using the GB-Neck2 implicit solvent model, a non-polar 

solvation energy term was also used by calculating the solvent accessible surface area using a 

fast pairwise approximation (gbsa=3 in AMBER) with a surface tension of 7 cal.mol
-1

.Å
-2

 

consistent with our previous study
23b

. The Langevin thermostat with a collision frequency of 1 

ps
-1

 was used for all simulations. SHAKE was performed on all bonds including hydrogen with 

the AMBER default tolerance of 0.00001 Å. 
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Minimization and Equilibration 

A time step of 1 fs was used for all MD simulations during equilibration. With 10 kcal.mol
-1

.Å
-

2
 positional restraints on all heavy atoms, the structures built using LEaP were minimized for 

1000 cycles using steepest descent and then heated from 100 K to 300 K for 250 ps followed by 

another 250 ps at 300 K. Then, with 10 kcal.mol
-1

.Å
-2 

positional restraints on only backbone 

heavy atoms, the structures were again minimized for 1000 cycles using steepest descent and 

then heated again from 100 K to 300 K for 250 ps followed by another 250 ps at 300 K. This was 

followed by 500 ps of MD at 300 K with 1 kcal.mol
-1

.Å
-2 

positional restraints on backbone heavy 

atoms and then another 500 ps of MD at 300 K with 0.1 kcal.mol
-1

.Å
-2

 positional restraints on 

backbone heavy atoms. Finally, 5 ns of unrestrained MD was performed at 300 K.  

Molecular Dynamics simulations 

For each protein, MD simulations were performed starting from both native and extended 

conformations at different temperatures (see System specific details). Chirality constraints and 

trans-peptide ω constraints obtained using makeCHIR_RST program in AMBER were used at all 

temperatures to prevent chirality inversions and peptide bond flips. A time step of 2 fs was used 

for all simulations. Coordinates were saved every 20 ps. 

Replica Exchange Molecular Dynamics 

For each protein, REMD simulations were performed starting from both native and extended 

conformations. Chirality constraints and trans-peptide ω constraints were used at all 

temperatures. A short 50 ps MD simulation using a time step of 1 fs was performed at each target 

temperature to briefly equilibrate each replica; thereafter the time step was 2 fs. Coordinates 

were saved every 20 ps. Exchanges between replicas were attempted every 1 ps for all 

simulations. 
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Reservoir Replica Exchange Molecular Dynamics 

B-RREMD and nB-RREMD simulations also used the same procedure as REMD simulations, 

however in addition to the exchanges between replicas, exchanges with the reservoir were also 

attempted every 2 ps, unless otherwise noted. Since the velocities were not saved during the high 

temperature MD simulations used to build the reservoir, velocities for structures obtained 

through exchange with the reservoir were assigned by evaluating the forces during the 

subsequent MD step. 

System specific details 

CLN025 and Trp-cage miniprotein 

Starting from each initial conformation, MD simulations were carried out for 2 μs to build 

reservoirs. For REMD and RREMD simulations, 4 replicas were used. Each replica was 

simulated for 2 μs and 400 ns for REMD and RREMD, respectively. 

Homeodomain 

Starting from each initial conformation, MD simulations were carried out for 4 μs to build 

reservoirs. For REMD and RREMD simulations, 8 replicas were used. Each replica was 

simulated for 4 μs and 400 ns for REMD and RREMD, respectively. 

For all three proteins, the temperatures at which the MD, REMD, and RREMD simulations 

were carried out are provided in the Supporting Information. 

Building Reservoirs 

Building Boltzmann-weighted reservoirs 

We tested how long the high temperature MD simulation should be run so that structures in the 

reservoir occur with correct relative populations of all the relevant minima. For each protein, 6 

Boltzmann-weighted reservoirs – BT1_(ext/nat), BT2_(ext/nat), and BEnd_(ext/nat) – were built 
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using structures obtained from different time lengths of the high temperature MD simulations. 

The “ext” indicates that the reservoir structures were obtained from MD simulations starting 

from extended conformations, and “nat” indicates that the reservoir structures were obtained 

from MD simulations starting from native conformations. “T1” and “T2” correspond to 

simulation time lengths when the correlation of cluster populations between the two independent 

simulations starting from different initial conformations is 0.40 and 0.65, respectively (see 

Results and Discussions). “End” corresponds to the entire reservoir generation simulation time 

length. For CLN025, T1, T2, and End correspond to simulation time lengths of 100 ns, 200 ns, 

and 2 μs, respectively. For Trp-cage, T1, T2, and End correspond to simulation time lengths of 

600 ns, 1.3 μs, and 2 μs, respectively. For Homeodomain, T1, T2, and End correspond to 

simulation time lengths of 500 ns, 1.2 μs, and 4 μs, respectively. For each of these reservoirs, 

5000 structures were used to build the reservoir. 

To test how many structures should be selected from the high temperature MD simulation to 

build a precisely Boltzmann-weighted reservoir, for each protein, 8 Boltzmann-weighted 

reservoirs – B100_(ext/nat),  B1000_(ext/nat), B5000_(ext/nat), and B10000_(ext/nat) – were 

built representing 100, 1000, 5000, and 10000 structures, respectively. The “ext” and “nat” 

definitions are the same as above. For CLN025 and Trp-cage, these 100, 1000, 5000, and 10000 

structures were extracted from the 2 μs MD runs with equal time spacing of 20 ns, 2 ns, 400 ps, 

and 200 ps, respectively, between the structures. For Homeodomain, 100, 1000, 5000, and 10000 

structures were extracted from the 4 μs MD runs with equal time spacing of 40 ns, 4 ns, 800 ps, 

and 400 ps, respectively, between the structures. Note that B5000_(ext/nat) and BEnd_(ext/nat) 

are the same set of reservoir structures since both used the same length of MD simulations and 

the same number of structures. 
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The energy for each structure was calculated using the imin=5 flag in sander program in 

AMBER using the same topology file and energy parameters (igb=8, gbsa=0/3) as used in MD 

and REMD, for each protein. Finally, reservoirs were built using the createreservoir command in 

cpptraj
27

 program in AMBER using a seed of 1.  

Building non-Boltzmann reservoirs 

For each clustering method, 40000 structures were extracted from the combined MD 

trajectories starting from two different initial conformations, totaling a time of 4 μs, 4 μs, and 8 

μs for CLN025, Trp-cage, and Homeodomain, respectively. For CLN025 and Trp-cage, an equal 

time spacing of 100 ps was used to extract the structures. For Homeodomain, an equal time 

spacing of 200 ps was used to extract the structures. Clustering was performed using Average-

Linkage (AL), KMeans, and Ward-Linkage (WL) algorithms. For each protein, for each 

clustering method, the entire backbone RMSD was used as the clustering metric. For each 

protein, details on choosing the appropriate target number of clusters for each clustering method 

are provided in Results and Discussions section. The clustering algorithm specific details are 

provided in the Supporting Information.  

Combining the cluster representatives and cluster energies to build non-Boltzmann reservoirs 

After clustering, the energy of each cluster representative (CRE) was calculated using the 

imin=5 flag in sander program as described above. The average energy of each cluster (CAE) 

was obtained by repeating the above step for all structures within a cluster and taking the average 

of the energies thus obtained. Finally, reservoirs were built using the createreservoir command 

in cpptraj program in AMBER using a seed of 1. Note that the non-Boltzmann reservoir 

structures were not minimized since minimization would alter the thermal energy and affect the 

MC exchanges with the reservoir. 
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Analyses: 

The various analysis methods used to generate the data presented in Results and Discussion 

are described in detail in the Supporting Information. 

 

Results and Discussion 

The following questions are addressed here: (1) How long should the high temperature MD 

simulation be run to ensure all relevant structures are sampled at all (non-Boltzmann), and in the 

correct relative weights (Boltzmann-weighted reservoir)? (2) How many structures should be 

selected from the high temperature MD simulation to build a Boltzmann-weighted reservoir so 

that the relative populations of different minima are precisely reproduced? (3) Which clustering 

methods are best suited to select representative structures corresponding to each minimum to 

build a non-Boltzmann reservoir, and how should one choose the ideal parameters for clustering 

such as how many clusters, which clustering metric, ideal cluster representative, etc.? (4) For a 

non-Boltzmann reservoir, what energy should be assigned to each representative structure? (5) 

What is the ideal temperature to generate structures for building a reservoir?  

Testing the above choices requires accurate and precise reference data for each system, since 

the experimental data will not represent the “correct” answer using a given force field and 

solvent model. To obtain the reference data, we performed extensive independent standard 

REMD simulations (see Methods for details) starting from native and extended conformations 

for each protein. For CLN025, Trp-cage, and Homeodomain, each independent REMD 

simulation used 4, 4, and 8 replicas, spanning a temperature range of 252.3 K to 327.2 K, 281.4 

K to 340.9 K, and 288.7 K to 377.7 K, respectively. Furthermore, each replica was simulated for 

2 μs, 2 μs, and 4 μs, for CLN025, Trp-cage, and Homeodomain, respectively. 
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As an initial check for the convergence of REMD simulations (though we apply stricter 

metrics below), we calculated the fraction of native structures (shown in column 1 in Figure 1) 

as a function of time at each temperature, for each independent simulation, for each protein. 

Since the two independent REMD simulations started from very distinct initial conformations 

(native and fully extended) for each protein, sampling a reproducible fraction of native structures 

at each temperature suggests reasonable convergence.  

 

Figure 1. Reference data obtained from extensive standard REMD simulations. The fraction of 

native structures vs time at each temperature (column 1), the melting curves (column 2) and the 

cluster populations at the calculated melting temperature (column 3) are shown for CLN025 

(top), Trp-cage (middle), and Homeodomain (bottom). The solid and dashed lines in column 1 
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indicate the fraction of native structures obtained from REMD simulations starting from native 

and extended conformations, respectively. The error bars in column 2 (shown as shaded regions) 

represent the half-difference between the melting curves obtained from each of the two-

independent simulations. “REMD_Nat” and “REMD_Ext” in column 3 indicate that the clusters 

were obtained from REMD simulations starting from native conformation and extended 

conformation, respectively. The color of each point in column 3 indicates the RMSD of the 

cluster representative structure to the native structure. The Pearson correlation coefficient 

between the cluster populations obtained from the two independent REMD simulations and the 

slope of the best fit line (represented by the dashed grey line) are shown inside the box for each 

figure in column 3 for each protein. 

For CLN025, both independent simulations converge to the same amount of fraction of native 

structures after 700 ns of simulation per replica. Interestingly, Trp-cage simulations converge 

faster than CLN025 even though Trp-cage is a bigger protein than CLN025 – the two 

simulations converge after 500 ns of simulation per replica. For Homeodomain, the two 

independent simulations converge after ~ 3 μs of simulation per replica. 

As an alternate illustration of the convergence of the native population for each protein at all 

temperatures, we calculated the average melting curves (shown in column 2 in Figure 1) across 

the two independent REMD simulations, with error bars reflecting the half-difference. For each 

protein, even though the two independent REMD simulations were started from distinct initial 

conformations, they result in similar melting curves (error bars are < 5% at all temperatures). 

Good agreement between the melting curves obtained from the two independent REMD 

simulations indicates that similar population of native structure is observed at all temperatures. It 
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is important, however, to analyze the convergence of the entire ensemble, including non-native 

as well as native structures.
28

 To test this, we combined the trajectories from the two independent 

runs at the calculated melting temperature, which is 275.1 K, 300.0 K, and 349.8 K for CLN025, 

Trp-cage, and Homeodomain, respectively, and performed cluster analysis (see Methods for 

details). The cluster populations obtained from the two independent REMD simulations at the 

calculated melting temperature are shown in column 3 in Figure 1. For all three proteins, a high 

correlation (R
2
 >0.96) with slope close to 1 is observed between the cluster populations at the 

calculated melting temperature, indicating that the REMD simulations not only sample similar 

population of native structures but also sample similar populations of non-native structures.  

Overall, the melting curves and the cluster populations indicate that these standard REMD 

simulations have generated highly-converged ensembles, and can be used as reference data to 

test the various choices involved in building Boltzmann-weighted reservoirs and non-Boltzmann 

reservoirs. In the following sections, we explore the impact of these choices, and how they affect 

the accuracy and efficiency of RREMD simulations as compared to the reference data from 

conventional REMD. 

 

Protocols for building Boltzmann-weighted reservoirs 

How long should the high temperature MD simulations be run to build a reservoir with 

accurate Boltzmann weighting? 

In order to represent the ensemble accurately, a Boltzmann-weighted reservoir must have 

appropriate structures populating each important local minimum. To ensure that the simulations 

are sampling different local minima, as an initial check, we calculated the number of 

folding/unfolding pair events (see Methods section) for each protein. Table 1 shows the average 
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number of folding/unfolding pair events during the 2 μs, 2 μs, and 4 μs high temperature MD 

simulations for CLN025, Trp-cage, and Homeodomain, respectively. The average number of 

folding/unfolding pair events for CLN025, Trp-cage, and Homeodomain, are 338 ± 4, 109 ± 5, 

and 294 ± 21, respectively, indicating that the simulations are not trapped in native-like clusters. 

Surprisingly, even though Homeodomain is a bigger protein than Trp-cage, it has more 

folding/unfolding pair events than Trp-cage, perhaps due to the use of different temperatures 

used to generate the reservoirs for the two proteins (see Ideal Temperature to generate reservoir 

section). 

Table 1. Average Number of folding/unfolding pair events for each protein. 

 

ǂ
The uncertainties correspond to half the difference between the two independent MD 

simulations. 

Then, to ensure that the reservoir faithfully represents the correct relative populations of the 

different local minima, we measured the correlation of cluster populations obtained from the two 

simulations (starting from different initial conformations) as a function of time. This is expected 

to be a more stringent measure of simulation convergence as compared to only evaluating the 

time-dependent population of the native-like cluster. The correlation between the cluster 

populations should improve as the simulation length is extended. It also requires no prior 

knowledge of the native structure, as is needed for folding event analyses. 

Figure 2A shows the correlation between cluster populations obtained from 2 high 

temperature MD simulations initiated from native and extended conformations. For all three 

Protein Number of Folding/Unfolding pair events
ǂ
 

CLN025 338 ± 4
 

Trp-cage 109 ± 5 

Homeodomain 294 ± 21 
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proteins, the correlation of cluster populations starts at 0 and increases over time resulting in a 

final correlation coefficient of 0.93 (after 2 μs), 0.72 (after 2 μs), and 0.87 (after 4 μs), for 

CLN025, Trp-cage, and Homeodomain, respectively. 

 

Figure 2. The correlation of cluster populations (A) between the two independent high-

temperature simulations starting from different initial conformations for each protein, shown as a 

function of time. The fraction of unique clusters (B) observed during each independent 

simulation for each protein is shown as a function of time. The solid lines indicate simulations 



Page 25 of 75 

 

starting from native conformation and the dashed lines indicate simulations starting from 

extended conformation. The Homeodomain_1000 indicates that the clustering was done with the 

target number of clusters set to 1000 instead of 2000. 

As expected, due to its relatively small size compared to the other two proteins, CLN025 has 

the fastest increase in correlation of cluster populations (R
2
 = 0.8 after 0.5 μs). Surprisingly, even 

though Trp-cage is a much smaller protein than Homeodomain, the correlation of cluster 

populations increases at a similar rate for Trp-cage (R
2
 = 0.72 after 2 μs) and Homeodomain (R

2
 

= 0.75 after 2 μs), suggesting that Trp-cage, like Homeodomain, might need longer simulations 

for complete convergence. 

In contrast to the population correlation, Figure 2B shows that more than 0.9 fraction of 

unique clusters are observed within the first 0.5 μs of simulations starting from both initial 

conformations for CLN025 and Trp-cage. In contrast to CLN025 and Trp-cage, the 

Homeodomain simulations sample only 0.75 fraction of unique clusters within the first 2 μs, 

suggesting that these simulations of the larger protein still may not have sampled all relevant 

minima and perhaps should be extended. The discrepancy between the rate of sampling of 

unique clusters for Trp-cage and Homeodomain simulations could also be due to the higher 

target number of clusters for Homeodomain (2000 clusters compared to only 1000 for Trp-cage) 

which means that to achieve a similar fraction as Trp-cage simulations, more clusters must be 

sampled for Homeodomain as compared to Trp-cage. However, even after setting the target 

number of clusters to 1000, the Homeodomain simulations sample only 0.85 fraction of unique 

clusters after 2 μs indicating that Homeodomain reservoir generation simulations must be 

extended. Therefore, Homeodomain reservoir generation simulations were extended to 4 μs to 

ensure that the two reservoir generation simulations were well converged. 
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Nevertheless, Figure 2A and Figure 2B also show that, especially for Trp-cage, both 

independent simulations sample the majority of the minima significantly earlier than they sample 

these minima with the correct relative populations. This is because, in the latter scenario, each 

minimum has to be revisited multiple times to obtain precise population estimates and thus, is a 

time-consuming process compared to simply sampling each minimum at least once. This 

illustrates the potential advantage of nB-RREMD compared to B-RREMD since nB-RREMD 

reservoirs do not require relative populations of different minima, and thus could be generated 

more quickly. This will be explored in more detail in a later section. 

Overall, multiple folding/unfolding pair events, the correlation of cluster populations between 

the two independent simulations, and the rate of observing unique clusters in each of the two 

independent simulations indicate that the simulation times of 2 μs, 2 μs, and 4 μs might be 

sufficient to build precisely Boltzmann-weighted reservoirs for each independent run for 

CLN025, Trp-cage, and Homeodomain, respectively. Moreover, if the two independent 

simulations are reasonably converged, then B-RREMD simulations employing reservoirs built 

from these independent simulations should generate ensembles at low T that are similar to the 

reference data that were obtained without using reservoirs. 

To test these hypotheses, for each B-RREMD simulation used below, we built 6 (3 different 

time lengths * 2 high temperature MD simulations) reservoirs using structures obtained from 

three different time lengths (T1, T2, and End) from each independent high temperature MD 

simulation to determine the length of reservoir generation time required to build a reliable 

Boltzmann-weighted reservoir for each protein. “T1” and “T2” correspond to simulation time 

lengths when the correlation of cluster populations (shown in Figure 2A) between the two 

independent reservoir generation simulations starting from different initial conformations (native 
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and extended) are 0.40 and 0.65, respectively. “End” corresponds to the entire reservoir 

generation simulation time length. Consequently, T1, T2, and End correspond to different 

reservoir generation time points for the three proteins since the cluster population correlation 

values are different at different time points for each protein (see Methods for details).  

To distinguish between the six reservoirs for each protein, the following reservoir naming 

convention was used: reservoir B(T)_(c) indicates a Boltzmann-weighted reservoir with 5000 

structures obtained from the high temperature MD simulation starting from “c” conformation up 

to the reservoir generation time length “T”. For example, BT1_ext and BT1_nat indicate that the 

reservoir has 5000 structures that were obtained from the high temperature MD simulations up to 

time T1 starting from extended conformation and native conformation, respectively. In summary, 

these reservoirs represent 2 different ensembles, each sampled at 3 different accuracies. Figure 3 

shows the melting curves obtained from B-RREMD simulations using each of these six 

reservoirs compared to standard REMD simulations, for all three proteins. When the correlation 

of cluster populations between the two independent reservoir generation simulations starting 

from different initial conformations is 0.40 (T1 time point), the melting curves obtained from B-

RREMD do not match with standard REMD melting curves – the fraction of native structures are 

often overestimated or underestimated at all temperatures. For CLN025, the B-RREMD 

simulations using BT1_nat and BT1_ext result in 0.44 and 0.39 fraction of native structures at 

300 K, respectively, compared to 0.21 from standard REMD simulations. For Trp-cage, the B-

RREMD simulations using BT1_nat and BT1_ext result in 0.63 and 0.30 fraction of native 

structures at 300 K, respectively, compared to 0.53 from standard REMD simulations. For 

Homeodomain, the B-RREMD simulations using BT1_nat and BT1_ext result in 0.43 and 0.24 
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fraction of native structures at 300 K, respectively, compared to 0.80 from standard REMD 

simulations. 

 

Figure 3. The melting curves obtained using standard REMD (black) and B-RREMD 

simulations using structures obtained from three different time lengths are shown for CLN025 

(top), Trp-cage (middle), and Homeodomain (bottom). T1, T2, and End, indicate different time 

lengths for which the reservoir generation simulations were run (see text for details). The “nat” 

(blue) and “ext” (orange) indicate that the B-RREMD simulations were carried out with reservoir 

structures obtained from high temperature MD simulations starting from native and extended 
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conformations, respectively. The error bars indicate the half difference of the melting curves 

obtained from two B-RREMD simulations – one starting from native conformation and the other 

starting from extended conformation, using the same set of reservoir structures. For some B-

RREMD simulations, the error bars are negligible and hence are not visible on the graphs. 

Increasing the time length to T2 (R
2 
= 0.65) significantly improves the agreement between B-

RREMD and standard REMD simulations for CLN025 and Trp-cage but not for Homeodomain. 

For CLN025, the B-RREMD simulations using BT2_nat and BT2_ext result in 0.29 and 0.29 

fraction of native structures at 300 K, respectively. For Trp-cage, the B-RREMD simulations 

using BT2_nat and BT2_ext result in 0.50 and 0.51 fraction of native structures at 300 K, 

respectively. For Homeodomain, the B-RREMD simulations using BT2_nat and BT2_ext result 

in 0.46 and 0.92 fraction of native structures at 300 K, respectively. 

Further increasing the reservoir generation time length to End (R
2 

>0.70) results in good 

agreement between the melting curves obtained using B-RREMD and standard REMD 

simulations for all three proteins including Homeodomain. For CLN025, Trp-cage, and 

Homeodomain, the BEnd_nat and BEnd_ext reservoirs result in 0.21 and 0.27 (compared to 0.21 

from standard REMD), 0.49 and 0.46 (compared to 0.53 from standard REMD), and 0.83 and 

0.76 (compared to 0.80 from standard REMD), fraction of native structures, respectively. 

Also, for all three proteins, irrespective of the length of simulation used to generate reservoir 

structures, the error bars on the individual melting curves for B-RREMD simulations using the 

same reservoir are significantly smaller (sometimes negligible) than the difference between 

simulations using different reservoirs, indicating that RREMD simulations starting from different 

initial replica conformations but using the same reservoir will converge to the same (perhaps 

incorrect) answer. 
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In summary, the above results indicate that, as expected, there is no one size fits all solution to 

estimate length of reservoir generation simulations for building an accurate  Boltzmann-weighted 

reservoir for a given protein – CLN025, Trp-cage, and Homeodomain require 200 ns, 1.3 μs, and 

4 μs, of reservoir generation simulations, respectively. More importantly, while standard REMD 

simulations can be improved by extending them, B-RREMD simulations using inaccurate 

reservoirs will possibly converge to the wrong answer and running  B-RREMD simulations 

longer won’t help. Instead, it is critical to ensure that the reservoirs are well converged by 

measuring observables such as the correlation of cluster populations before running B-RREMD 

simulations. 

 

How many reservoir structures are needed to represent a Boltzmann-weighted ensemble? 

For a given reservoir generation MD length, one next needs to determine how many snapshots 

to place in a reservoir. If the number of structures in the reservoir are too few, the reservoir might 

not reflect the relative populations of the different minima precisely enough and using such a 

reservoir for B-RREMD simulations could result in erroneous ensemble distributions at all 

temperatures. To determine the minimum number of structures required for building a precisely 

Boltzmann-weighted reservoir, for each protein, we built 8 (4*2) reservoirs using 100, 1000, 

5000, and 10000 equidistant structures selected from each independent high temperature MD 

simulation. Note that these structures were obtained from the full 2 μs, 2 μs, and 4μs, reservoir 

generation simulations for CLN025, Trp-cage, and Homeodomain, respectively (the “End” data 

sets in the previous section).  

To distinguish between the eight reservoirs for each protein, the following reservoir naming 

convention was used: reservoir B(N)_(c) indicates a Boltzmann-weighted reservoir with “N” 
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structures obtained from the high temperature MD simulation starting from “c” conformation. 

For example, B100_ext and B100_nat indicate that the reservoir has 100 structures that were 

obtained from the high temperature MD simulations starting from extended conformation and 

native conformation, respectively. In summary, these reservoirs represent 2 different ensembles, 

each sampled at 4 different precisions. Since all of these reservoirs were built using the entire 

reservoir generation simulations, we expect that the B-RREMD simulations using these 

reservoirs will match well to the standard REMD results, unless the reduction in number of 

structures reduces the precision such that the reservoir is no longer properly Boltzmann 

weighted. 

Figure 4 shows the melting curves obtained from B-RREMD simulations using six 

(B10000_(ext/nat), B1000_(ext/nat), and B100_(ext/nat)) of the eight reservoirs compared to 

standard REMD simulations, for all three proteins. B-RREMD simulations using 

B5000_(ext/nat) are the same as the BEnd_(ext/nat) shown in Figure 3 and hence, are not 

included in Figure 4. Similar to melting curves in Figure 3, the error bars on the individual 

melting curves for RREMD simulations are significantly smaller (sometimes negligible) than the 

difference between simulations using different reservoirs, irrespective of the number of 

structures used in the reservoir. 
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Figure 4. The melting curves obtained using standard REMD (black) and B-RREMD 

simulations using different number of reservoir structures are shown for CLN025 (top), Trp-cage 

(middle), and Homeodomain (bottom). B10000, B1000, and B100 reservoirs indicate reservoirs 

having 10000, 1000, and 100 structures, respectively. The “nat” (blue) and “ext” (orange) 

indicate that the B-RREMD simulations were carried out with reservoir structures obtained from 

high temperature MD simulations starting from native and extended conformations, respectively. 

The error bars (shaded area) indicate the half difference of the melting curves obtained from two 

B-RREMD simulations – one starting from native conformation and the other starting from 
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extended conformation, using the same set of reservoir structures. For some B-RREMD 

simulations, the error bars are negligible and hence are not visible on the graphs. 

When 10000 structures are used in the reservoir, the melting curves obtained using B-RREMD 

simulations are in close agreement with standard REMD melting curves. Simulations using 

10000 structure reservoirs obtained from two different MD runs are also in good agreement.  For 

CLN025, the B-RREMD simulations using B10000_nat and B10000_ext result in 0.22 and 0.27 

fraction of native structures at 300 K, respectively, compared to 0.21 from standard REMD 

simulations. For Trp-cage, the B-RREMD simulations using B10000_nat and B10000_ext result 

in 0.50 and 0.48 fraction of native structures at 300 K, respectively, compared to 0.53 from 

standard REMD simulations. For Homeodomain, the B-RREMD simulations using B10000_nat 

and B10000_ext result in 0.82 and 0.79 fraction of native structures at 300 K, respectively, 

compared to 0.80 from standard REMD simulations. 

Reducing the number of structures to 5000 does not affect the melting curves significantly (see 

BEnd_(ext/nat) data in Figure 3 and related discussion). Further reducing the number of 

structures to 1000 results in slightly but not significantly worse agreement between B-RREMD 

and standard REMD melting curves. For CLN025, Trp-cage, and Homeodomain, the B1000_nat 

and B1000_ext reservoirs result in 0.26 and 0.19, 0.45 and 0.58, and 0.82 and 0.90, fraction of 

native structures, respectively. 

In contrast, when only 100 structures are used, the melting curves obtained using B-RREMD 

simulations do not match with standard REMD melting curves; the fraction of native structures 

are significantly overestimated or underestimated at all temperatures. Furthermore, the results 

from 2 different sets of 100 structures also do not match, even though the data above show that 

the reservoir generation simulations are themselves well converged. When only 100 snapshots 
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are used, the reservoirs become unreliable at representing the long MD run from which they were 

obtained. For CLN025, the B-RREMD simulations using B100_nat and B100_ext result in 0.24 

and 0.46 fraction of native structures at 300 K, respectively. For Trp-cage, the B-RREMD 

simulations using B100_nat and B100_ext result in 0.10 and 0.80 fraction of native structures at 

300 K, respectively. For Homeodomain, the B-RREMD simulations using B100_nat and 

B100_ext result in 0.08 and 0.99 fraction of native structures at 300 K, respectively. 

The above results indicate that the optimal number of structures for building a Boltzmann-

weighted reservoir at high T can be as low as 1000 to 5000. This number is significantly less 

than the 10000 to 150000 number of structures that have been previously used to build 

Boltzmann-weighted reservoirs for similar sized biomolecules.
6c-f

 It may be that a few thousand 

structures is sufficient at high T because the important basins have similar populations when 

sampled well above the melting temperature. At lower T, the differences in population are likely 

amplified, and thus more structures would be needed in the reservoir to be able reproduce these 

population differences. 

 

Can B-RREMD simulations reproduce the overall ensemble obtained from standard REMD 

simulations? 

The good agreement seen above between the melting curves obtained from B-RREMD and 

standard REMD simulations suggests that both methods result in similar population of native 

structure at all temperatures. Ideally, B-RREMD simulations also should reproduce the full 

ensemble from the reference data, including populations of non-native as well as native 

structures. 
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To test if B-RREMD simulations can accurately reproduce the ensembles obtained from 

standard REMD simulations, we performed clustering on the combined trajectories of B-

RREMD simulations and standard REMD simulations at the temperature close to the calculated 

melting temperature, where multiple conformations should contribute (see Methods). This 

combined clustering ensures a consistent set of clusters for the reference and B-RREMD 

ensembles. The cluster populations at 275.1 K, 300.0 K, and 349.8 K, for CLN025, Trp-cage, 

and Homeodomain, respectively, from B-RREMD and standard REMD simulations are shown in 

Figure 5. 
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Figure 5. Cluster populations obtained using standard REMD (X-axis) and B-RREMD (Y-axis) 

for CLN025 (top), Trp-cage (middle), and Homeodomain (bottom) at 275.1 K, 300.0 K, and 
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349.8 K, respectively. The color of each point indicates the RMSD of the cluster representative 

to the native structure. The error bars on the X-axis indicate the half difference of cluster 

populations obtained from the two REMD runs – one starting from native conformation and the 

other starting from extended conformation. The error bars on the Y-axis indicate the standard 

deviation of cluster populations obtained from the two sets of B-RREMD runs (4 simulations in 

total) – one starting from native conformation and the other starting from extended 

conformations, for both B5000_ext and B5000_nat reservoirs. Error bars for some clusters are 

not visible since they are smaller than the point size. The Pearson correlation coefficient between 

the cluster populations obtained from standard REMD and B-RREMD simulations and the slope 

of the best fit line (represented by the dashed grey line) are shown inside the box for each 

protein. 

For all three proteins, the ensembles sampled by B-RREMD simulations are in good 

agreement with ensembles sampled by standard REMD simulations. The most populated cluster 

is the same between standard REMD and B-RREMD. In addition to accurately reproducing the 

most populated cluster from standard REMD, B-RREMD also reproduces the populations of 

other clusters reasonably well. For CLN025, the correlation of cluster populations between the 

two methods is 1.00 and the slope is 0.96. For Trp-cage, the correlation of cluster populations is 

0.99 and the slope is 0.90. For Homeodomain, the correlation of cluster populations is 0.88 and 

the slope is 0.83.  

For all three proteins, the error bars on the X-axis (standard REMD) in Figure 5 are small. 

This is expected since the two standard REMD simulations starting from different initial 

conformations were extended until they were well converged (see Figure 1). The error bars on 

the Y-axis, on the other hand, are non-negligible and reflect the difference in populations of four 
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different B-RREMD simulations – two simulations (starting from different initial conformations) 

each using B5000_ext and B5000_nat reservoirs. 

There are two possible sources for these non-negligible differences in the cluster populations 

of B-RREMD simulations: (1) Given the same reservoir, B-RREMD simulations starting from 

two different initial conformations may result in different ensembles, with significant differences 

in cluster populations between the two simulations, or (2) the differences in the populations 

could stem from the use of two different reservoirs and not from sensitivity to the initial 

structures. However, the small error bars in the B-RREMD melting curves in Figure 3 and 

Figure 4 suggest minimal uncertainty from varying the initial structures. 

To further explore this, the cluster populations between B-RREMD simulations, using the 

same reservoir but starting from two different initial conformations, are shown in Figure S2. 

When the same set of reservoir structures are used (either B5000_ext reservoir or B5000_nat 

reservoir), the clusters obtained by the two B-RREMD simulations starting from different initial 

conformations are in excellent agreement – the correlation of cluster populations is >0.96 for all 

three proteins. This supports our conclusion above that independent B-RREMD simulations 

using the same reservoir converge to the same ensembles, irrespective of initial structure for the 

REMD step.  Therefore, it is critical to ensure that the reservoirs are well converged before 

running B-RREMD simulations, perhaps by comparing cluster populations as shown above. 

Nonetheless, performing long MD simulations at a single high temperature followed by short B-

RREMD simulations at all temperatures may save considerable computing resources compared 

to performing long REMD simulations at all temperatures. 

 

Protocols for building non-Boltzmann reservoirs 
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Motivation for use of non-Boltzmann reservoirs. As seen above, generating a properly 

Boltzmann-weighted ensemble of structures at high temperatures requires considerable 

computing resources for a Homeodomain-sized biomolecule (4 μs of simulation), and this will 

only get more costly for larger biomolecules (particularly in explicit solvent). Moreover, only 

those sampling methods that generate a canonical ensemble of structures can be used, further 

limiting the range of efficient sampling methods that could be harnessed to rapidly construct a 

reservoir. 

On the other hand, since it is significantly faster to sample the unique clusters at least once 

than to sample enough transitions to obtain the correct relative populations (see Figure 3), 

generating a reservoir with a non-Boltzmann population should be a much more tractable task in 

MD. Moreover, a non-Boltzmann reservoir offers greater flexibility in generating structures 

since many sampling methods (physics-based and non-physics-based) could, in principle, be 

used to obtain the structures. However, a non-Boltzmann reservoir still requires a well-defined 

distribution of structures; ensuring such distributions is also challenging, and may require careful 

consideration.
6d

 In the following section, we explore protocols for building a non-Boltzmann 

reservoir, and the impact of these choices on the resulting nB-RREMD ensembles generated 

using these reservoirs. 

Critical components for building a non-Boltzmann reservoir 

nB-RREMD in its simplest form requires an unweighted (“flat”) distribution of reservoir 

structures, i.e., structures corresponding to each relevant local minimum should be selected and 

represented equally.
6d

 One way to obtain a flat distribution is to cluster the structures and select 

only one structure per cluster. However, there is not a one-size-fits-all clustering algorithm, and 

different clustering protocols are often tailored to the specific problem for which clustering is 
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used. For example, to identify the most populated cluster, density-based clustering algorithms 

such as DBSCAN might be suitable
18c

. However, to identify metastable states with very low 

density, a partitioning algorithm such as KMeans might be better
18e

. Besides, the parameters of 

both DBSCAN and KMeans can be fine-tuned and used for the same clustering problem. 

So, which clustering methods are ideal for building a non-Boltzmann reservoir? Which metric 

should be used for clustering? How should the ideal number of clusters (or minima) be identified 

for a given clustering method (or protein)? We explored above how many structures are needed 

to represent basin weights in a Boltzmann reservoir, but the ideal number of structures for a non-

Boltzmann reservoir likely differs.  Also, since only a single structure is used to represent each 

local minimum, the accuracy of nB-RREMD might be sensitive to the energy used for the 

structure during the exchange. While the potential energy of the representative structure seems 

intuitive, is the average energy of all structures in the cluster more indicative of the energy of the 

basin it represents? In this section, we explore different protocols that can help in making the 

appropriate choices necessary to build a “good” non-Boltzmann reservoir. 

Trajectories used for building non-Boltzmann reservoirs 

Since the exchange criterion for the non-Boltzmann RREMD (nB-RREMD) uses only the 

energy of the reservoir structure and not its temperature, for building non-Boltzmann reservoirs, 

we used the MD trajectories at the same temperature as the highest replica temperature for each 

protein. This will reduce the thermal energy differences between the reservoir structures and the 

structures in the highest temperature replica, ensuring efficient MC exchanges with the reservoir. 

In this manner, exchange with the non-Boltzmann reservoir directly corresponds to a standard 

MC jump to a randomly selected basin on the energy landscape, which happens in this case to 

have been sampled in advance during reservoir generation. 
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We begin construction of the non-Boltzmann reservoirs by combining the trajectories from the 

same high temperature MD simulations that were used to build Boltzmann reservoirs. 

Importantly, since the B-RREMD simulations gave similar results to standard REMD (Figures 

3, 4, and 5), if the NB-REMD gives different results it would indicate issues with the protocols 

for selecting representative structures and energies, rather than problems with the source MD 

data for the reservoir. 

Next, we clustered the combined trajectories using different clustering methods (see Methods) 

to extract representative structures corresponding to each minimum. A reservoir built using only 

these representative structures should, in principle, result in a flat distribution i.e., the weights for 

each cluster are absent/ignored. While removing the cluster weights could result in reduced 

accuracy vs. a converged Boltzmann reservoir, using a method that does not employ weights 

may improve the results as compared to using a poorly converged Boltzmann reservoir with 

inaccurate weights. 

 

Identifying a good clustering protocol for building non-Boltzmann reservoirs 

A good clustering protocol should result in homogeneous clusters, i.e. all the structures in each 

cluster should look alike. Therefore, a metric for validating good clusters is a low intra-cluster 

RMSD variance. Also, if a given cluster is homogeneous (no outliers), the difference between 

average and median intra-cluster RMSD should be close to zero. 

In practice, obtaining homogeneous clusters from MD trajectories is a non-trivial task due to 

the following reasons: (1) the choice of the clustering method influences the final clusters that 

are obtained, (2) the metric (RMSD or backbone dihedrals, which region, besides others) used 

for clustering also changes the clustering results, (3) it is difficult to know beforehand the ideal 
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number of clusters for a given trajectory, and (4) as stated before, the choice of the clustering 

method, the choice of clustering metric, and identifying the ideal number of clusters are in turn 

dependent on the clustering problem. Since it is prohibitive to test all possible combinations, we 

outline here a simple clustering protocol to extract structures for building a non-Boltzmann 

reservoir and compare results with a few variants of each key step. 

Clustering methods used in this study 

Selecting structures for building non-Boltzmann reservoirs is akin to identifying the macro-

states to build a Markov-state model. We should be able to identify the native states, 

intermediate states, and also the unfolded ensemble. Since hierarchical clustering using Ward-

Linkage (WL) and partitioning clustering using KMeans were found to result in the best Markov-

state models
18d

, we used these clustering algorithms in this study. We also used hierarchical 

clustering using Average-Linkage (AL) since it is a commonly used clustering algorithm for 

clustering MD trajectories. In addition to these three clustering methods, we also tried 

hierarchical clustering using Complete-Linkage which resulted in clusters with very high 

variance (data not shown), and DBSCAN which resulted in too few (<15) and mostly native-like 

clusters (data not shown). 

Clustering metric used in this study 

For all three proteins, for all three clustering algorithms, we used the entire backbone heavy-

atom RMSD of the protein as the clustering metric. Using the entire backbone for clustering 

ensures that the reservoir accounts for alternate arrangements of termini or loop regions even if 

they are not well ordered in the native fold; furthermore, these regions of the protein also 

contribute to the energy of the structures (see below) that is assigned to the cluster in the 
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reservoir. If not included in the metric, it is possible that the single representative structure for a 

basin could exhibit an atypical conformation for these regions. 

Identifying the ideal number of clusters 

To approximately identify the ideal number of clusters for each clustering method and for each 

protein, we performed cluster analysis by setting the target number of clusters to different 

numbers. We then looked for consistent trends across the model systems. For example, for 

Homeodomain, we performed six different cluster analyses using KMeans by setting the target 

number of clusters to 100, 500, 1000, 2000, 3000, and 4000. Then, for each target number of 

clusters using KMeans, we calculated the average, median, and variance of intra-cluster RMSDs 

for all the clusters that were obtained using that target number of clusters. These RMSD values 

corresponding to each cluster obtained by setting the target number of clusters to 100, 500, 1000, 

2000, 3000, and 4000, using KMeans for Homeodomain, are shown in Figure S3. 

For all the clusters, the difference between average and median intra-cluster RMSDs is always 

close to zero indicating that the clusters might be homogeneous, however, setting the target 

number of clusters to only 100 results in many (>85%) clusters having a high intra-cluster 

RMSD variance (>0.5Å
2
) indicating that a higher target number of clusters should be used for 

clustering to obtain homogeneous clusters. Increasing the target number of clusters to 500 or 

1000 results in around 51% and 70% of non-singleton clusters with an intra-cluster RMSD 

variance of <0.5 Å
2
, respectively. Further increasing the target number of clusters to 2000 results 

in >84% of the clusters with an intra-cluster RMSD variance of <0.5Å
2
. While setting the target 

number of clusters to 3000 or 4000 also results in many clusters (>85%) with an intra-cluster 

RMSD variance of <0.5Å
2
, they also result in many (>45%) singleton clusters. These singleton 

clusters (with only one structure in them) have a variance of zero and hence, are invisible in 
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Figure S3. Based on these results, we chose the clusters by setting the target number of clusters 

to 2000 for Homeodomain using KMeans, since it resulted in >80% clusters with a low intra-

cluster RMSD variance and only 35% singleton clusters. 

After clustering, we sorted the best clusters in descending order based on the number of 

structures in them and selected the representative structures of clusters that contain at least 4 

structures, rounded off to the nearest upper multiple of 50. For example, if the first 1145 clusters 

have at least 4 structures in them and the clusters after that have 3 or fewer structures, we picked 

representative structures from the first 1150 clusters to build the reservoir.  

The choice of using intra-cluster RMSD variance <0.5 Å
2
, using <35% singleton clusters as 

cutoff, picking clusters that have at least 4 structures, and rounding off to the nearest multiple of 

50 are arbitrary and the possible impact of these choices could be explored further in future 

work. 

The above process was repeated for all three proteins using all three clustering methods and 

the resulting number of clusters that were selected for each clustering method for each protein 

are shown in Table 1. 

Table 1. Number of clusters used for each protein for each clustering method. 

 CLN025 Trp-cage Homeodomain 

Average-Linkage (AL) 400 (500) 1000 (1000) 1400 (2000) 

KMeans 500 (500) 1000 (1000) 1150 (2000) 

Ward-Linkage (WL) 500 (500) 1000 (1000) 2000 (2000) 

Numbers in parenthesis indicate the target number of clusters that was used to obtain these 

clusters. 

 

Limitations in the clustering protocol 
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Using trajectories from both independent simulations and clustering them together might seem 

very costly since two simulations were used to generate structures for the reservoir. However, 

since the B-RREMD simulations indicated (see Figures 3, 4, and 5) that the high temperature 

MD simulations have sampled all the relevant minima, using the combined trajectories and 

clustering them can inform us which clustering methods are the best at selecting structures for 

each minimum given that all the relevant minima are present. This also allows comparison of 

clusters between the reservoir generation runs. 

Alternatively, since most of the clusters were observed in the first 500 ns for CLN025 and Trp-

cage (see Figure 2), using the trajectories up to 500 ns for these two proteins and clustering on 

them might be sufficient. Here, we initially focus on quantifying the accuracy of the nB-RREMD 

approach given complete reservoir sampling, rather than identifying the most inexpensive 

approach to generating the reservoir; that will be explored in the future. 

Using only the backbone heavy-atoms for clustering might also be a limitation since each 

backbone conformation may have multiple side chain rotamers in the original ensemble. For 

simplicity here we assume that the best backbone representative will also have the best side 

chain rotamers, and that side chain transitions can be sampled readily during the REMD phase. 

In principle, however, this approach neglects possible side chain entropy differences between the 

backbone clusters, since side chain variants on the same backbone correspond to unique clusters 

on the multidimensional landscape. Inclusion of side chains in the cluster analysis should be a 

straightforward extension. Nevertheless, influence of the side chain rotamer variance on 

reservoirs also can be explored in more detail in future work. 

Creating the non-Boltzmann reservoirs 
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After following the above clustering protocol, we built six (3*2) non-Boltzmann reservoirs for 

each protein as follows: (1) For each cluster, the structure with the lowest cumulative backbone 

heavy-atom RMSD (which is the same mask used for clustering) to all other structures in the 

cluster was chosen as the representative. This was a straightforward choice, since the Amber 

cpptraj
27

 program outputs this representative structure by default. (2) Then, for each set of 

representative structures from each clustering method, we built two sets of reservoirs using (a) 

the energy of only the representative structure for each cluster, denoted as cluster representative 

energy (CRE), and (b) the average of the energies of all structures in the cluster, denoted as 

cluster average energy (CAE). Since only the backbone was used for clustering, using the 

average energy of all structures in a cluster could account for possible multiple side chain 

orientations of the cluster representative and thus, may be a better representative of the overall 

relative energy of that cluster (minimum).  

To distinguish between the six non-Boltzmann reservoirs for each protein, the following 

reservoir naming convention was used: nB_(CM)_(CE) reservoir indicates that the “CM” 

clustering method and the “CE” cluster energy was used for each structure in the non-Boltzmann 

reservoir. For example, nB_AL_CRE and nB_AL_CAE indicate that a non-Boltzmann reservoir, 

built using representative structures obtained from Average-linkage clustering method, and using 

the cluster representative energy (CRE) or cluster average energy (CAE), respectively. 

Sensitivity of nB-RREMD to clustering method and the energy (CRE or CAE) used in building 

the non-Boltzmann reservoirs. 

For each non-Boltzmann reservoir built using the above protocols, we performed nB-RREMD 

simulations for each protein to test the influence of the chosen clustering method (Average-

Linkage, KMeans, or Ward-Linkage) and the chosen energy (CRE or CAE) of each cluster for 
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building non-Boltzmann reservoirs. All simulations were repeated with different initial replica 

conformations. Figure 6 shows the melting curves obtained from nB-RREMD simulations using 

each of the six non-Boltzmann reservoirs compared to standard REMD simulations, for all three 

proteins. 

 

Figure 6. The melting curves obtained using standard REMD (black) and nB-RREMD 

simulations using different clustering methods are shown for CLN025 (top), Trp-cage (middle), 

and Homeodomain (bottom). AL, KMeans, and WL indicate that the cluster representatives used 

to build the reservoir were obtained from Average-Linkage, KMeans, and Ward-Linkage 
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clustering algorithms, respectively. CRE (blue) and CAE (orange) indicate that the cluster 

representative energy and the cluster average energy were used to build the reservoir (see text), 

respectively. The error bars indicate the half difference of the melting curves obtained from two 

nB-RREMD simulations, one starting from native conformation and the other starting from 

extended conformation, using the same set of reservoir structures. For some nB-RREMD 

simulations, the error bars are negligible and hence are not visible on the graphs. 

For CLN025, for all three clustering methods, the melting curves obtained from nB-RREMD 

simulations are in good agreement with the standard REMD melting curve. The fraction of 

native structures at 300 K obtained from reservoirs built using CREs are 0.15, 0.18, and 0.18, for 

AL, KMeans, and WL clustering methods, respectively. The corresponding reference value from 

standard REMD simulations is 0.21. Using CAEs instead of CREs results in only slightly more 

stable melting curves – the fraction of native structures at 300 K are 0.26, 0.27, and 0.29, for AL, 

KMeans, and WL clustering methods, respectively. Overall, CLN025 appears insensitive to the 

clustering details. 

For Trp-cage, the nB-RREMD simulations using clusters obtained from WL perform the best 

followed by KMeans and AL clustering methods. The fraction of native structures at 300 K using 

CREs are 0.17, 0.33, and 0.42, for AL, KMeans, and WL clustering methods, respectively. These 

values are lower than the 0.53 fraction of native structures obtained from reference standard 

REMD simulations. Similar to CLN025, using CAEs increases the stability of the melting curves 

for nB-RREMD Trp-cage simulations, thereby, resulting in a better match between nB-RREMD 

simulations and standard REMD simulations. The fraction of native structures at 300 K using 

CAEs are 0.37, 0.43, and 0.51 for AL, KMeans, and WL, respectively, compared to the reference 

0.53 fraction. 
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For Homeodomain, only KMeans and WL produce melting curves that are in reasonable 

agreement with the standard REMD melting curves, whereas AL performs most poorly and 

results in mostly non-native ensembles even at 300 K. The fraction of native structures at 300 K 

using CREs are 0.24, 0.75, and 0.63, for AL, KMeans, and WL, respectively, compared to the 

reference 0.80 from standard REMD. For AL clustering method, the agreement between nB-

RREMD data and standard REMD data does not improve when CAEs are used. The fraction of 

native structures at 300 K is only 0.21 which is similar to the fraction of native structures 

obtained from reservoir using CREs. For KMeans, the fraction of native structures at 300 K is 

0.75 with CAEs, while WL using CAEs results in a fraction of 0.73; both are in good agreement 

with the reference fraction of 0.80. 

In all cases except for Homeodomain nB-RREMD simulations using AL, using CAEs results 

in slightly more stable melting curves compared to using CREs. Overall, irrespective of whether 

CREs or CAEs were used to build the reservoir, WL and KMeans clustering methods result in 

melting curves that are in good agreement with standard REMD melting curves for all three 

proteins while AL clustering method results in melting curves that are in reasonable agreement 

for only CLN025 and Trp-cage but not for Homeodomain. 

Can nB-RREMD simulations reproduce the overall ensemble obtained from standard REMD 

simulations? 

As stated above, good agreement between the melting curves obtained from nB-RREMD and 

reference standard REMD simulations indicates that both methods result in similar population of 

native structure at all temperatures. As discussed above, it is important to verify that the reservoir 

approach also reproduces non-native structures in the reference ensemble. Since the non-

Boltzmann reservoir includes only one structure to represent each minimum, there is a greater 
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risk that an important structure may be missed in the reservoir. Therefore, evaluating the 

populations of the entire ensemble can further validate the clustering methods used to select the 

structures, as well as any potential impact of the choice of representative energy on the final 

populations. 

We performed clustering on the combined trajectories of nB-RREMD simulations and 

reference standard REMD simulations at a temperature close to the simulated melting 

temperature (see Methods). The cluster populations at 275.1 K, 300.0 K, and 349.8 K, for 

CLN025, Trp-cage, and Homeodomain, respectively, from nB-RREMD and standard REMD 

simulations are shown in Figure 7. 

 

Figure 7. Cluster populations obtained using standard REMD (X-axis) and nB-RREMD (Y-axis) 

for CLN025 (top), Trp-cage (middle), and Homeodomain (bottom) at 275.1 K, 300.0 K, and 
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349.8 K, respectively. AL, KMeans, and WL indicate that the cluster representatives used to 

build the reservoir were obtained from Average-Linkage, KMeans, and Ward-Linkage clustering 

algorithms, respectively. The color of each point indicates the RMSD of the cluster 

representative to the native structure. The error bars on the X-axis indicate the half difference of 

cluster populations obtained from the two REMD runs, one starting from native conformation 

and the other starting from extended conformation. The error bars on the Y-axis indicate the 

standard deviation of cluster populations obtained from the two sets of nB-RREMD runs (4 

simulations in total) – one starting from native conformation and the other starting from extended 

conformations, for both CRE and CAE reservoirs. Error bars for some clusters are not visible 

since they are smaller than the point size. The Pearson correlation coefficient between the cluster 

populations obtained from standard REMD and B-RREMD simulations and the slope of the best 

fit line (represented by the dashed grey line) are shown inside the box for each protein. 

CLN025 once again shows very little sensitivity to reservoir clustering method and energies, 

and all three clustering methods result in ensembles that are in close agreement with standard 

REMD ensembles. The correlation of cluster populations is 0.98, 0.97, and 0.99, and the slope is 

1.00, 0.92, and 0.90, for AL, KMeans, and WL, respectively. This reinforces that simple peptides 

may have limitations when used to validate protocols that will be applied to more complex 

systems.  

For Trp-cage, all three clustering methods result in similar correlation of cluster populations. 

The correlation coefficient is 0.89, 0.90, and 0.94, for AL, KMeans, and WL, respectively. 

However, the three clustering methods result in different slopes – AL, KMeans, and WL, result 

in a slope of 0.48, 0.66, and 0.77, respectively. The higher slopes using KMeans and WL 

indicates that using KMeans and WL result in not only the correct relative populations of 
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different clusters but also in better absolute cluster populations compared to reference data. This 

is also reflected in the melting curves, where KMeans and WL result in melting curves with a 

better match to the reference standard REMD melting curves than AL. 

For Homeodomain, the correlation of cluster populations is 0.75 and 0.82 and the slope is 0.58 

and 0.78, for KMeans and WL respectively, indicating that the ensembles sampled by nB-

RREMD simulations using clusters obtained from these two clustering methods are in reasonable 

agreement with reference ensembles. Once again, the performance with AL is inferior, and the 

correlation of cluster populations is only 0.11 with a slope of 0.05. 

KMeans results in the same most populated cluster as reference ensembles for all three 

proteins. WL results in the same most populated cluster as reference simulations for CLN025 but 

not for Trp-cage and Homeodomain. However, the difference in the populations sampled by 

reference REMD simulations and nB-RREMD using WL amounts to a free energy difference of 

<0.2 kcal.mol
-1

 for the most populated cluster from REMD simulations and vice-versa. AL 

results in the same most populated cluster as standard REMD simulations for CLN025 and Trp-

cage, however, it favors non-native clusters for Homeodomain. Furthermore, for all three 

proteins, similar to B-RREMD simulations, multiple native-like clusters are observed. Overall, 

KMeans and WL clustering algorithms, but not AL, tend to result in ensembles that are in good 

agreement with reference REMD data given the major simplification of the reservoirs.  

Effect of CREs and CAEs on nB-RREMD ensembles 

Since the exchange criterion for nB-RREMD uses only the energy of the reservoir and not its 

temperature, the nB-RREMD results might be sensitive to the energies assigned to the reservoir 

structures. We know from Figure 6 that using CAEs results in slightly more stable melting 

curves compared to using CREs. However, the small Y-error bars in Figure 7 indicate that the 
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nB-RREMD simulations are mostly insensitive to the energies used to build the reservoir. To 

confirm this, we combined the trajectories from the nB-RREMD simulations using CREs and 

CAEs and clustered them together (see Methods). For all three proteins, for all three clustering 

methods, the correlation of cluster populations obtained from nB-RREMD using CREs vs. CAEs 

is >0.84 (Figure S4) indicating that nB-RREMD ensembles obtained with reservoirs using CREs 

are in close agreement with ensembles obtained using CAEs. Nevertheless, using CAEs tends to 

result in more population of native-like clusters which is indicated by a slope >1.04 for all 

proteins, for all clustering methods. 

Ideal temperature to generate the reservoir 

To explore the sensitivity to the temperature at which the reservoir is generated, we performed 

MD simulations at different temperatures for each protein (see Methods). Then, similar to the 

analyses in Figure 2 and Table 1, we calculated the correlation of cluster populations, fraction 

of unique clusters, and number of folding/unfolding event pairs at each temperature. For Trp-

cage, the correlation of cluster populations and fraction of unique clusters are shown in Figure 8, 

and the number of folding/unfolding event pairs are shown in Table 2. The corresponding data 

for CLN025 and Homeodomain are shown in Figures S5 and S6, Tables S1 and S2, 

respectively. 

Low temperature simulations would not be expected to be useful for reservoir generation, 

since this abandons the temperature-accelerated barrier crossing that underpins REMD. At 281.4 

K, the correlation of cluster populations between runs is <0.0 for the first 0.7 μs. The fraction of 

unique clusters observed during the MD simulation starting from the native structure plateaus at 

this temperature (solid blue line in bottom panel of Figure 8) indicating that the simulation is 

stuck in a local minimum. The correlation of cluster populations increases after 0.7 μs but 
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remains below 0.5. Moreover, the average number of folding/unfolding event pairs observed at 

this temperature is only 13 ± 5, indicating that 281.4 K is too low a temperature to build the 

reservoir (as expected).  

At 300.0 K, the correlation of cluster populations is > 0.9 after 1 μs of simulation, and the 

average number of folding/unfolding pair events is 80 ± 13, indicating that 300.0 K might be a 

suitable temperature to build the reservoir. However, the two independent simulations have only 

sampled 0.85 fraction of unique clusters after 1.5 μs indicating that long simulations would be 

needed.  
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Figure 8. Identifying optimal temperatures for Trp-cage reservoir generation. The correlation of 

cluster populations (top) between the two independent simulations at different temperatures 

starting from different initial conformations is shown as a function of time. The fraction of 

unique clusters (bottom) observed during each independent simulation at different temperatures 

is shown as a function of time. The solid lines indicate simulations starting from native 

conformation and the dashed lines indicate simulations starting from extended conformation. 
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Table 2. Average Number of folding/unfolding pair events for Trp-cage at different 

temperatures. 

 

The error indicates the half difference between the two independent MD simulations at the same 

temperature. 

 

At 319.8 K, around 0.85 fraction of unique clusters are observed within the first 1 μs, and the 

average number of folding/unfolding event pairs is 175 ± 10, more than double that from 300 K. 

Surprisingly, the correlation of cluster populations is close to 0.9 within the first 0.5 μs but drops 

to 0.55 around 1 μs (possibly because one of the simulations becomes trapped in a local 

minimum), and then gradually rises again to 0.77. Thus 319.8 K improves sampling but is still 

susceptible to kinetic trapping. 

At temperatures higher than 319.8 K, the rate at which unique clusters are explored, and the 

correlation of cluster populations are relatively insensitive to temperature. Around 0.9 fraction of 

unique clusters are observed within the first 0.5 μs and the final correlation of cluster populations 

is in the range of 0.7-0.8, suggesting that any of these temperatures should be suitable for 

building a reservoir. However, the average number of folding/unfolding event pairs drops 

significantly as the temperature increases; at 340.9 K, 175 ± 8 number of folding/unfolding event 

Temperature Number of Folding/Unfolding pair events 

281.4 K 13 ± 5 

300.0 K 80 ± 13 

319.8 K 175 ± 10 

340.9 K 175 ± 8 

363.3 K 109 ± 5 

387.3 K 54 ± 3 
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pairs are observed followed by 109 ± 5 and 54 ± 3 at 363.3 K and 387.3 K, respectively. This 

likely reflects the non-Arrhenius behavior of folding at high temperatures. 

These results confirm that use of low temperatures is not ideal to generate structures for 

building the reservoir, since the simulations tend to get trapped in local minima. On the other 

hand, using very high temperatures to generate reservoir structures can also be detrimental since 

the native state is less accessible at these high temperatures. Therefore, the ideal temperature to 

build a reservoir should be somewhere in between. While we have tested many different 

temperatures to identify the ideal temperature for reservoir structure generation for each protein, 

in practice, and in our experience, it is sufficient to generate the structures at two temperatures 

and pick the one that has around 10-25% fraction of native structures (which is the range used in 

this current work). 

If the native structure for the system (or for the simulation conditions) is not known, radius of 

gyration can be used to validate the sampling large transitions across the energy landscape. The 

ideal temperature in that case would be one that quickly alternates between conformations with 

low and high radius of gyration, ideally multiple times (see Figure S7). Alternatively, REMD 

simulations with two high temperature replicas can be used to identify the ideal temperature to 

generate the reservoir structures for a given protein. It is beyond the scope of this work to 

generate Boltzmann-weighted reservoirs and non-Boltzmann reservoirs at every temperature and 

predict the effect of reservoir generation at different temperatures on the overall ensembles that 

can be obtained from RREMD.  

Is reservoir REMD more efficient than standard REMD? 

 The sections above focused largely on the accuracy of the reservoir methods, and how the 

final results depend on choices made in reservoir generations. Next, we compare the 
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convergence speeds of RREMD and standard REMD simulations, and explore why RREMD 

simulations are much more efficient than standard REMD simulations. 

In RREMD, extensive MD simulations are performed only at one high temperature, whereas 

standard REMD simulations require extensive simulations at all temperatures. Therefore, at least 

in theory, RREMD should be more efficient than standard REMD simulations. 

To test this, we calculated the fraction of native structure as a function of time for standard 

REMD simulations, B-RREMD simulations, and nB-RREMD simulations. Since we performed 

two different simulations starting from very distinct initial conformations (native and fully 

extended) for each method, the rate at which the two different simulations for each method 

converge to the same amount of fraction of native structures at all temperatures serves as a good 

indicator for measuring the convergence rate of each method. The fraction of native structures 

observed in the simulations as a function of time for standard REMD simulations, B-RREMD 

simulations using B5000_nat reservoirs, and nB-RREMD simulations built using KMeans 

clustering method and CAEs (the most reliable nB protocol that we explored) are shown in 

Figure 9 for all three proteins. 

For CLN025, standard REMD requires more than 400 ns of simulation per replica for each 

independent simulation to converge to the same amount of fraction of native structures. In 

contrast, B-RREMD and nB-RREMD simulations converge in 150 ns and 50 ns, respectively, 

resulting in at least 3-8-fold increase in convergence speed, excluding the time required to 

generate reservoirs. 

Similar to CLN025, Trp-cage simulations with standard REMD also take longer to converge 

compared to the RREMD methods – each replica has to be simulated for 400 ns for each 

independent simulation using standard REMD, whereas B-RREMD and nB-RREMD simulations 
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converge in 200 ns and 40 ns, respectively, resulting in 2-10-fold increase in convergence speed, 

excluding the time required to generate reservoirs. These results are consistent with the 5-20-fold 

increase in convergence speed observed in previous studies for similar sized molecules.
6c-h

 

 

Figure 9. Fraction Native vs Time using standard REMD (left), B-RREMD (center), and nB-

RREMD (right) for CLN025 (top), Trp-cage (middle), and Homeodomain (bottom). The solid 

lines indicate the fraction of native structures for simulations starting from native conformation 

while the dashed lines indicate the fraction of native structures for simulations starting from 

extended conformations. B-RREMD data is from simulations using B5000_nat reservoirs. nB-

RREMD data is from simulations using nB-KMeans_CAE reservoir. The standard REMD data is 
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the same as the data shown in Figure 2 except that only the first 0.4 μs are shown here for all 

three proteins so the methods can be directly compared. 

However, as mentioned before, RREMD methods have only been used so far for small sized 

biomolecules (<310 atoms) and it is not known if the faster convergence rates will also be 

observed for medium to large sized biomolecules such as Homeodomain. The bottom row of 

Figure 9 indicates that RREMD methods can significantly improve the convergence rates of 

even medium sized proteins like Homeodomain. None of the replicas converge within the first 

400 ns for Homeodomain. In fact, each replica has to be simulated for around 3-4 μs (see Figure 

2) for each independent standard REMD simulation to converge to the same amount of fraction 

of native structure. On the other hand, both the B-RREMD and the nB-RREMD simulations 

converge within the first 200 ns of simulations at each temperature, resulting in at least a 15-fold 

increase in convergence speed, excluding the time required to generate reservoirs. Moreover, 

even though the Homeodomain simulation required twice the number of replicas as the other two 

proteins, RREMD simulations still converge on a time scale similar to the other two proteins, 

indicating that having more replicas does not slow down the convergence speed of RREMD 

simulations. 

The above analysis indicates that RREMD simulations are significantly more efficient than 

standard REMD simulations. However, to effectively characterize the cost of RREMD compared 

to standard REMD, one must also include the time required to generate the reservoir. Our B-

RREMD simulations indicate that reservoir generation simulations should be run for 200 ns, 1.3 

μs, and 4 μs, to generate precise Boltzmann-weighted ensembles for CLN025, Trp-cage, and 

Homeodomain, respectively. Taking these times into account, B-RREMD simulations are 2-fold, 

0.8-fold, and 6-fold faster than standard REMD simulations for CLN025, Trp-cage, and 
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Homeodomain, respectively. As we showed above, Trp-cage folds rapidly at temperatures above 

300 K and may be too “easy” to require advanced methods, especially in implicit solvent. 

Overall, there can be some gain with using a Boltzmann-weighted reservoir, but the cost of using 

MD to converge the ensemble even at a single T can be significant. Nonetheless, the reservoir 

generation simulation lengths mentioned above are upper bounds.  

The main advantage to non-Boltzmann reservoirs is that the simulations used to generate 

reservoirs do not need long MD simulations to converge the populations. As shown in Figure 2, 

non-Boltzmann reservoirs should require significantly shorter reservoir generation simulations. 

Moreover, slowly converging MD may not be necessary at all for sampling the reservoir basins 

in the reservoir; structures obtained from different enhanced sampling techniques such as 

accelerated MD, metadynamics, umbrella sampling, or even standard REMD could be used in 

combination with structures from experiments or homology modeling, further reducing the time 

required to generate reservoir structures. This will be explored in future work. 

Why are Reservoir REMD simulations more efficient than standard REMD? 

In RREMD simulations, in addition to swapping thermostats / scaling velocities between 

replicas, structures also can be swapped between the highest replica temperature and the pre-

sampled reservoir structures. If these MC steps to pre-sampled reservoir structures result in faster 

structural transitions compared to REMD, then these structural transitions should be reflected in 

the trajectories of each replica. To check this, we calculated the temperature and also the RMSD 

of the structure for each replica during standard REMD and RREMD simulations for each 

protein. In Figure 10, the temperature and RMSD of one replica  during the first 400 ns of 

standard REMD and B-RREMD simulations for Trp-cage are shown (similar results are 

observed for other replicas, data not shown). 
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Figure 10. The distribution of temperature and RMSD of one replica during the first 400 ns of 

standard REMD (center/left) and B-RREMD (center/right) simulations for Trp-cage. The color 

of each point represents the temperature, while the position of each point on the Y-axis 

represents the RMSD to native NMR structure. Blue colored points indicate temperatures less 

than 310 K and red colored points indicate temperatures greater than 310 K. For clarity, the 

central two images are split into four images. The top left and bottom left images represent the 

REMD replica data when the temperature of the replica is less than 310 K and greater than 310 

K, respectively. The top right and bottom right images represent the B-RREMD replica data 

when the temperature of the replica is less than 310 K and greater than 310 K, respectively. 

The standard REMD replica (center left image in Figure 10) appears to be trapped in either 

low or high RMSD conformations with very few transitions between low/high RMSD 

conformations compared to RREMD. This is probably because the exploration of different 

structures during the MD part of REMD is still a slow process relative to structure swaps, even at 

high temperatures.  
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To illustrate this, we split the REMD replica data into two parts, in one part we only show the 

RMSD and temperature distributions when the temperature of the replica is less than 310 K (top 

left image in Figure 10) and in the other part, we only show the RMSD and temperature 

distributions when the temperature of the replica is greater than 310 K (bottom left image in 

Figure 10). 

If the higher temperatures result in faster structural transitions, then the bottom left image in 

Figure 10 (hot replicas) should have a greater spread of RMSD values compared to the top left 

image (colder replicas), however, the RMSD distributions in both images are similar, indicating 

that temperature transitions can improve sampling only limitedly. Moreover, the changes in 

temperature occur much faster than structural transitions; this can be clearly seen in between 80 

– 120 ns and also in between 160 – 200 ns where even though the replica visits both high and 

low temperatures, it only samples structures having an RMSD of <2.0 Å during these phases. It 

appears that swapping to higher temperature does not help this replica to escape the basin in 

which it is trapped. 

In contrast, a replica in RREMD simulation (center right image in Figure 10) samples low and 

high conformations at a significantly faster rate than standard REMD simulation. This can be 

seen clearly from the split RREMD replica data where high (>2.0 Å) RMSD structures are 

routinely sampled even at low temperatures (top right image in Figure 10) and low (<2.0 Å) 

RMSD structures are routinely sampled even at high temperatures (bottom right image in Figure 

10). These fast-structural transitions are only possible because of MC steps using structure 

reservoirs. 

Since the exploration of structures is done beforehand in RREMD, when a successful 

exchange with the reservoir occurs, a different region of the conformational landscape is 
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immediately explored, thus, eliminating the lag time that would otherwise be required to traverse 

the barrier between the two structures. Since structures are swapped via MC, the MD part of 

REMD is no longer a limiting step. On the contrary, the MD part of REMD is mostly used to 

refine (locally explore) the accepted reservoir structure as it passes through different 

temperatures in the REMD ladder.  

If the MC steps are responsible for accelerated convergence, exchanging less often with the 

reservoir should slow down the convergence rate of RREMD. To explore this, we performed nB-

RREMD simulations for Trp-cage in which we switched from exchange attempts with the 

reservoir each 2 ps for the data shown above, to attempting exchange with the reservoir every 50 

ps. The exchange attempt frequency between the replicas was unchanged. As expected, less 

frequent MC steps slow convergence; when exchanges with the reservoir are attempted every 50 

ps, the nB-RREMD simulations take 200 ns to converge compared to only 40 ns when exchanges 

are attempted every 2 ps (Figure S8).  

Nevertheless, since RREMD simulations swap structures with a pre-sampled reservoir, as long 

as the rate of exchange with the reservoir is faster than the rate of conformational change at high 

temperatures, RREMD simulations will always be more efficient than standard REMD 

simulations. Moreover, exchanging less frequently with the reservoir in some cases could 

improve the accuracy of nB-RREMD simulations. Figure 11 shows the effect of reservoir 

exchange frequency on the Trp-cage melting curves obtained using nB-RREMD simulations 

using structure reservoirs obtained using the three clustering methods. 

When the exchanges with the reservoir were attempted every 50 ps, the melting curve obtained 

from nB-RREMD simulations using WL clustering method matches very closely with the 

standard REMD melting curve. Likewise, exchanging less frequently with reservoir also 
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improves the melting curve obtained from nB-RREMD simulations using KMeans clustering 

method compared to exchanging every 2 ps. A similar trend is observed for nB-RREMD 

simulations using AL, but the improvement is only marginal. These improvements in the melting 

curves might be due to the possibility that the accepted structures have more time to explore and 

sample alternate rotamer conformations that might not be sampled if the exchanges are too rapid 

(since the reservoir structures include only a single rotamer example for each backbone). These 

results also indicate that exchanging less frequently with the reservoir can potentially fix slightly 

imperfect reservoirs (WL and KMeans) but not poorly built reservoirs (AL). 
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Figure 11. Effect of exchange frequency on the accuracy of nB-RREMD simulations of Trp-

cage. The black curves indicate the melting curves obtained from standard REMD (same as 

Figure 1). The blue curves are the melting curves obtained when exchanges with the reservoir 

are attempted every 2 ps (same as Figure 6). The orange curves are the melting curves obtained 

when exchanges with the reservoir are attempted every 50 ps. CRE indicates that the energy of 

the representative structure for each cluster is used to build the reservoir. Error bars, if visible, 

indicate the half differences between two simulations starting from different initial 

conformations using the same set of reservoir structures. 

 

ConclusionsDespite the significant increase in convergence speed compared to standard 

REMD, reservoir REMD methods have not been widely used due to the difficulties in building 

the reservoir and also due to the code not being available on the GPUs. In this work, we ported 

the AMBER RREMD code on to the GPUs and explored protocols to build reservoirs to 

accelerate the convergence of REMD simulations. Results were evaluated using three systems 

for which reliable ensembles could be obtained using standard methods. 

Specifically, we explored protocols that use the correlation of cluster populations and the 

fraction of unique clusters observed as a function of time, and the number of folding/unfolding 

event pairs to identify how long the high temperature MD simulations should be run and how 

many structures should be used to build a Boltzmann-weighted reservoir. Our results indicate 

that a correlation of cluster populations >0.7, number of folding/unfolding event pairs >100 are 

good indicators of simulation time lengths to generate the structure reservoirs. Our results also 

show that the number of structures in a Boltzmann-weighted reservoir can be as low as 1000 to 

5000. 



Page 68 of 75 

 

We also showed that RREMD simulations using the same reservoir will converge to the same, 

and sometimes, wrong answer. Therefore, it is critical to ensure that the reservoirs themselves 

are well converged before using them to run RREMD simulations. Nonetheless, we also showed 

that performing long MD simulations at a single high temperature followed by short B-RREMD 

simulations at all temperatures will save considerable computing resources compared to 

performing long REMD simulations at all temperatures. 

We have also shown that generating structures for a non-Boltzmann reservoir will require 

significantly less time since the majority of the relevant minima are sampled significantly earlier 

in simulations than sampling of these same minima with the correct relative populations. 

Therefore, we have also explored protocols to build a non-Boltzmann reservoir. Specifically, we 

explored which clustering methods are most suitable to pick structures for building a non-

Boltzmann reservoir, and observed that KMeans and WL were the most reliable. Our results also 

show that the non-Boltzmann RREMD is only slightly sensitive to the energy used to build the 

reservoir. nB-RREMD simulations using cluster average energies tend to slightly favor more 

native-like structures compared to the corresponding simulations using the energy of the single 

representative snapshot. Nonetheless, the overall ensembles obtained from both approaches were 

similar. 

The clustering protocols described here for building non-Boltzmann reservoirs may not be 

optimal, i.e., identifying the ideal number of clusters using intra-cluster RMSD variance might 

not result in the perfect number of clusters for a given protein for a given clustering method. 

However, we do note that the difference between the nB-RREMD simulation results using 

KMeans and WL clustering methods, and those using AL clustering method, appear too large for 

these differences to stem only from the clustering protocols and not from the underlying 
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clustering algorithm itself. Also, our results are consistent with previous studies that have 

identified WL and KMeans clustering methods as the best for clustering MD trajectories.
18a, 18b, 

18d
 Nevertheless, we have also shown that the imperfections in a non-Boltzmann reservoir can be 

slightly ameliorated by exchanging less frequently with reservoir. 

We explored protocols for choosing the ideal temperature to run the MD simulations to 

generate reservoir structures. Our results indicate that the reservoir temperature should not be too 

low, and it should not be too high either. This remains a challenge of the reservoir approach. 

Our results demonstrated that MC moves using structure reservoirs significantly accelerate 

convergence of REMD simulations. Our results indicate that RREMD is 2-15x faster (excluding 

the time required to generate the reservoir) than standard REMD, and the improvement in 

convergence speed becomes even more apparent for biomolecules which undergo slow structural 

transitions in standard MD/REMD simulations. 

Finally, since the non-Boltzmann reservoir does not require a canonical ensemble of structures, 

structures obtained from physics-based enhanced sampling methods such as accelerated MD, 

metadynamics, umbrella sampling, standard REMD, etc. can be used in conjunction with non-

physics-based methods such as homology modeling, further increasing the scope of applicability 

of RREMD simulations. Such non-Boltzmann reservoirs may be useful to quickly test the 

accuracy of new force fields, and design novel peptides. Future work should focus on using the 

alternate methods for building reservoirs. 
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 The detailed simulation setup for each system is provided in the Supporting Information along 

with the temperatures used for all replicas. 
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