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Understanding the permeation of molecules through lipid membranes is fundamental to understanding and
predicting the cellular uptake of solutes and drug delivery mechanisms. In molecular simulations the usual
approach is to compute the free energy (FE) profile of a molecule across a model lipid bilayer, which can
then be used to estimate the permeability of the molecule. Umbrella sampling (US), which involves carrying
out a series of biased simulations along a defined reaction coordinate (usually the bilayer normal direction),
is a popular method for the computation of such FE profiles. However, US can be challenging to implement
because the results are dependent on the strength of the biasing potential and the spacing of windows along
the reaction coordinate, which, in practice, are usually optimized by an inefficient trial and error approach.
The steered molecular dynamics implementation of the Jarzynski Equality (JE-SMD) has been identified as
an alternative to equilibrium sampling methods for measuring the FE change across a reaction coordinate.
In the JE-SMD approach, equilibrium FE values are evaluated from the average of rapid non-equilibrium
trajectories, thus avoiding the practical issues that come with US. Here, we use three different corrections
of the JE-SMD method to calculate the FE change for the translocation of a toluene molecule across a lipid
bilayer, and compare the accuracy and computational efficiency of these approaches to the results obtained
using US. We show that when computing the free energy profile of a small molecule across a model membrane,
the JE-SMD approach suffers from sampling issues that may be alleviated through the use of a slower pulling
velocity, but at the cost of computational efficiency. We deduce that, despite its drawbacks, US remains the
more viable approach of the two for computing the FE profile.

I. INTRODUCTION

The translocation of molecules through lipid mem-
branes is a subject of much interest, due to the cell
membrane being the main barrier for nutrient or drug
molecules to enter a cell. Depending on the physiochemi-
cal properties of the permeating molecule and the compo-
sition of lipids and proteins in the membrane, transport
may be active (requiring energy expenditure by the cell)
or passive, where the permeant diffuses along its concen-
tration gradient1,2. Here we consider passive membrane
transport. Key factors that affect the passive perme-
ability include the lipid composition of the membrane
(which includes the chemical nature of the lipid head and
tail groups, the packing of the lipids and thus the free
area and/or volume and the fluidity of the membrane)
and the size, shape and hydrophilicity/phobicity of the
permeant3–6. It is important to be able to determine the
ease by which molecules permeate membranes in order to
predict the cellular uptake of solutes, the bioavailability
of drug molecules and the effectiveness of drug delivery
vehicles at getting encapsulated molecules into their tar-
get cells. The use of molecular simulation to rationalise
and predict the transport properties of molecules and
nanomaterials across cell membranes remains an field of
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significant growth7–10. In these simulations the cell mem-
brane is typically represented by a lipid bilayer with one
or more lipid components. The majority of these studies
aim to compute the potential of mean force (PMF) (or
free energy (FE) profile) along the permeation pathway,
from which one can determine the free energy of transfer
from the water to the membrane interior. If the local
diffusivity of the permeant along the permeation path-
way is also calculated, the permeability coefficient can be
estimated using the inhomogeneous solubility-diffusion
model11.

In molecular simulations, a number of enhanced sam-
pling methods are routinely used to compute the FE pro-
file along a reaction coordinate. In particular, the um-
brella sampling (US) method has been ubiquitous in its
use, due to its intuitive nature and relative simplicity
of implementation12–14. In the US method, the reac-
tion coordinate is divided into windows, and a series of
independent simulations are carried out where the sys-
tem is restrained by a Hook’s potential to sample within
each window. The resulting histograms of the sampled
values of the reaction coordinate in each simulation are
then recombined to reconstruct the unbiased FE profile.
The weakness of the US method comes from its rela-
tively high computational cost - the high energy parts
of the phase space need to be sampled adequately and
there needs to be adequate overlap between each sam-
pling window. Thus, in practice, implementation of US
usually requires a time-consuming trial and error pro-
cess to identify the most suitable spacing of simulation
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windows and associated force constants for the biasing
potential. As an alternative way to compute the free
energy profile, Jarzynski15 demonstrated a revolution-
ary equality (known as Jarzynski’s equality (JE)), which
showed that, independent of the velocity of the process
(i.e. it can be a non-equilibrium process), the force-
distance curve along the reaction coordinate can be used
to compute the work, a path-dependent function, to com-
pute the FE of the process, an equilibrium state function.

The computation of the FE using JE-based methods
introduced so-called fast-switching events (a series of sim-
ulations where the system is pulled along the reaction co-
ordinate at a relatively high constant velocity) as a possi-
ble efficient alternative to the US method. Should the va-
lidity of the equality be widely applicable, the advantages
of JE-based methods compared to US are such that one
would not need to sample discrete bins along the reaction
coordinate, which would overcome the challenges associ-
ated with US and potentially reduce the overall computa-
tional resources required. In principle this would enable
the exploration of more complex reaction coordinates, as
it would not be an explicit requirement for the system
to equilibrate before extracting the FE value. Schulten
et al. suggested the steered molecular dynamics (SMD)
method16 whereby a moving Hook’s potential drives the
system along the reaction coordinate, which enables the
computation of the the work distribution that is required
for the calculation of the FE. Hence, we abbreviate the
practical implementation of JE as JE-SMD.

Previous studies comparing the US and JE-SMD meth-
ods have established that the JE-SMD can give compa-
rable results to US for an accurate estimate of the PMF,
depending on the velocity chosen for the moving har-
monic potential16. However, there is also evidence to sug-
gest that sampling issues arise when applying JE-SMD to
complex many body systems17–19. Verification of the JE
involve relatively simple processes, such as the extension
of a DNA residue16 and the unfolding of RNA hairpins20,
which does not therefore, dismiss the possibility of error
in the JE-SMD method when applied to many body sys-
tems. The trial system which was used to verify the JE
method used a Langevin dynamics parameter to mimic
thermal fluctuations, and its small size allowed the re-
peat simulations (of the order 10,000 runs and more) to
be carried out with ease. This would not be feasible for
the vast majority of complex systems, where the simula-
tion costs relating to the level of atomic detail and sys-
tem size are the limiting factors for making a comparable
number of simulations. The application of the JE-SMD
to larger systems (of 10 - 100 nm scale) have shown mixed
results; Kuyucak et al18,19 investigated the flow of water
molecules across a carbon nanotube and a gramicidin A
channel in a bilayer and showed that FE profiles com-
puted using JE-SMD showed a large discrepancy com-
pared to the benchmark US results. This was suggested
to be due to the slow relaxation of the surrounding sys-
tem, which is dependent on the pulling velocity. Thus,
while the JE-SMD method shows considerable promise as

a FE sampling method, further optimization is required
for its application to simulations of realistic systems. A
recent review by Pienko and Trylska21 illustrated that
SMD was a good method for identifying translocation
pathways, but had outstanding issues to use as a reli-
able FE computation. In particular, it was noted that
the method deviates from an accurate prediction when
the reaction coordinate goes far from linearity. It was
also noted that when the pulling force from the JE-SMD
is large, it would distort flexible polymers and peptide
structures during permeation processes, which would pre-
vent the sampling of the true reaction pathway.

In this article, we compute the FE profile of a toluene
molecule translocating through a model 1,2-Dioleoyl-sn-
glycero-3-phosphocholine (DOPC) lipid bilayer using the
US and the JE-SMD methods. We use the US profile
as the benchmark for the true FE profile, and examine
the effects of three different interpretations of JE-SMD
that have been suggested in the literature and the effect
of the pulling velocity. We ascertain the degree to which
these modifications to the original JE-SMD method may
improve the computation of the true FE profile. We look
at the convergence behaviour of the JE-SMD methods
towards the US result with the assumption that the FE
profile from the US method represents the correct FE
profile. In addition we analyse the computational effi-
ciency of the various approaches.

II. COMPUTATIONAL METHODS

A. Simulated Systems

The system contained 128 coarse-grained (CG) DOPC
molecules in a bilayer configuration. A total of 4232
water beads in total were placed above and below the
leaflets. A single toluene molecule (at atomistic resolu-
tion, see below) was placed above the bilayer. Figure 1
shows the schematic of the CG-DOPC molecule and the
molecular structure of toluene used in these simulations.

B. Forcefield Parameters

The ELBA biomolecule mixed resolution coarse-
grained and all-atomic (CG-AA) compatible FF was used
to model the DOPC bilayer22,23. The ELBA-CG-AA
hybrid model offers an intriguing possibility for new in-
sights, with AA-level detail coupled with CG-level simu-
lation scales. The CG-AA compatibility of ELBA allows
the CG potentials of the lipid molecules to be used in
combination with the AA interatomic potentials of the
General Amber FF (GAFF)24, which gives it wide ap-
plicability to known libraries of small molecules. Hence,
the GAFF FF was used to model the toluene molecule.
The details of the ELBA FF have been included in the
supplementary information.
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C. Simulation Parameters

Each simulation was run using the LAMMPS molecu-
lar dynamics package25. Each bilayer system was initially
run in the NVT ensemble with the Langevin thermostat
for 100 ns at temperatures of 298 K. A production sim-
ulation run with the Berendson barostat and Langevin
thermostat (i.e. a NPT equivalent) was then carried out
for 100 ns to ensure that the system had equilibrated.
The temperature and pressure of the NPT simulation
was set to 298 K and 1 atm respectively. The pair-wise
interactions were a shifted-force type with a 1.2 nm cut-
off. The reversible-Reference System Propagator Algo-
rithm (rRESPA) was used to divide the total timestep
to compute the AA and CG components on a different
timescales26. Outer level timesteps updated the CG-CG
interactions (i.e. between the ELBA-beads) every 4.0 fs
while the AA-CG and AA-AA interaction were updated
in the inner level every 1.0 fs. The LAMMPS input file is
included in the supplementary information (Listing 1).

D. Free Energy Calculations

1. Umbrella Sampling

For the US simulations, the reaction coordinate (the
z coordinate along the bilayer normal) was divided into
1 Å intervals from the center of the bilayer (0 Å) to the
bulk water above the headgroup region (30 Å). The bias
potentials of each US window were set to 2.5 kcal mol−1,
increased to 5.0 kcal mol−1 for 2 Å above and below the
headgroup region (this corresponds to a FE barrier re-
gion and follows closely the US procedure followed by
Genheden et al.27). In total, 30 US windows were sim-
ulated with an initial equilibration run of 10 ns, and a
production run of 30 ns used to construct the free energy
profile using the weighted histogram analysis method
(WHAM)28. Further detail on the WHAM procedure
is included in the supplementary information.

2. Jarzynski Equality

The Jarzynski equality (JE) is defined as:

e−β∆G(z) = 〈e−βW (z)〉 (1)

where β is 1
kβT

, where kβ is the Boltzmann constant, T

is the temperature, ∆G (z) the FE at the given z coordi-
nate, and W is the work15. What is intriguing with this
equality is that W is a path-dependent property, whereas
∆G is a state function - an equilibrium property. Hence,
this value equates a non-equilibrium property to a equi-
librium property. Issues regarding the practical use of
the JE are the inherent bias related to insufficient sam-
pling and the dissipated work. A direct interpretation of

the JE to map a FE profile can be interpreted from the
following equation:

∆GJ =
1

β
ln

[
1

N

N∑
i

eβWi(z)

]
(2)

Where N is the total number of work samples. The use of
the JE for FE calculations may suffer from a significant
amount of bias (i.e. the difference between the expected
value of the FE and its estimate, ∆G - ∆GJ) due to in-
sufficient sampling along the reaction coordinate. Also,

the exponential average value
(

1
N

∑N
i e

βWi(z)
)

is domi-

nated by rarely occurring small work values. The second
order cumulant expansion term for the JE was used to
correct the bias due to this sampling problem16:

∆Gcumulant = 〈W (z) 〉− N

N − 1

β

2

(
〈W (z)

2 〉 − 〈W (z) 〉2
)

(3)

Where the
(
〈W (z)

2 〉 − 〈W (z) 〉2
)

term is the variance of

the work along the reaction coordinate (where the angu-
lar brackets represent the averaged value over N trajec-
tories), and the 〈W (z)〉 term is the averaged work. This
modified JE term for the FE difference is valid on the
condition that the work distribution along the reaction
coordinate is Gaussian, as this enables the elimination
of cumulants higher than that of second order of the JE
to equal 0. When using this estimator to compute the
FE, another factor to consider is the distribution of the
dissipation work, where the dissipated work is defined as
the difference between the averaged work and the true
FE difference at the reaction coordinate; the magnitude
of the dissipated work dictates the width of the Gaus-
sian probability distribution. The dissipation work may
therefore be estimated by:

W (z)dissipation =
1

2
βσ2

W (z) (4)

Where σ2
W (z) represents the variance of the work. We

note that this term is identical to the factor in variance

of the work in the term β
2

(
〈W (z)

2 〉 − 〈W (z) 〉2
)

, which

shows that the variance of the work along the reaction
coordinate is equal to the W (z)dissipation. The proba-
bility of observing a trajectory with negative dissipation
work can be described as29:

P
(
W (z)dissipation < 0

)
=

1

2

[
1− erf

(√
〈W (z)dissipation〉/2

)]
(5)

Where 〈W (z)dissipation〉 represents the averaged dissipa-
tion work along the trajectory. The equation implies that
with a larger Wdissipation, the probability of observing a
negative dissipation work sharply decreases. Hence, an
increased magnitude of dissipated work corresponds to a
lower probability of observing negative work events, and
is undesired. An alternate method for taking into ac-
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FIG. 1: (a) a schematic of the CG DOPC molecule, where the headgroup is represented by charged choline and
phosphate beads, the backbone region is represented by glycerol and ester beads with opposing point dipoles and
the hydrophobic tailgroups are represented by C-triplet beads, where each bead represents three carbon atoms (b)

molecular structure of toluene.

count the bias of insufficient sampling was suggested by
Gore et al.29,30 who proposed an alternative correction
to reduce the sampling bias, following the observation
that the bias over a small number of trajectories (N <
102) has a linear relationship with N , meaning that an
approximate bias can be numerically computed. This
modified JE sampling bias is defined by Gore as:

BJ =
〈W (z)dissipation 〉

Nαb
(6)

where αb is the rate at which the bias goes to zero with
a small number of samples:

αb =
ln
[
βCb〈W (z)dissipation〉

]
ln
[
Cb

(
e2β〈W (z)dissipation〉 − 1

)] (7)

where Cb is a fitted parameter that determines the
boundary of the small N - large N regime. We have
utilised Cb = 15, as tested by Gore29. From this, we can
estimate a bias-corrected Jarzynski estimator:

∆Gbias = ∆GJ −BJ (8)

When computing the average work along the reaction co-
ordinate, we followed a block-averaging procedure, where
every value in a 1 Å interval along the reaction coordinate

was binned and averaged, and the variance within each
bin was determined using the mean value of each bin. For
each bin, we computed several terms to assess the validity
of the JE for the elucidation of an accurate FE profile.
We computed the ∆GJ term, ∆Gcumulant, ∆Gbias, and
the σ2

W (z).

For the JE-SMD simulations our approach to compute
the work was as follows. After 10 ns of equilibration of the
bilayer, the toluene molecule was inserted at 30 Å from
the bilayer center of mass, in the normal (z ) direction.
Four different constant velocities were then assigned to
four independent simulations: 8 × 10−6 Å fs−1 (faster),
5 × 10−6 Å fs−1 (fast), 8 × 10−7 Å fs−1 (slow) and 5 ×
10−7 Å fs−1 (slower). For each simulation, the toluene
was pulled from z = 30 Å to z = 0 Å. The faster ve-
locities are consistent with those used in previous studies
and slower velocities were also included here to systemati-
cally analyse the effect of velocity. For example, Schulten
et al. used velocities of 0.0001 Å fs−1 , 0.01 Å fs−1 and
0.1 Å fs−1 when validating JE-SMD through stretching
deca-alanine16, where in each case highly exaggerated ve-
locities were used to test the validity of JE in a truly non-
equilibrium environment. In other examples, Kucuyak et
al.18,19 used velocities ranging from 1.25 × 10−6 Å fs−1 to
10.0 × 10−6 Å fs−1, which are directly comparable to the
velocities used in our simulations. Given this, we can con-
clude that the velocities we have chosen are reasonable
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to test the JE-SMD method. The faster and fast ve-
locities can be defined as the ‘fast-growth’ regime, while
slow and slower velocities can be recognised as the ‘slow-
growth’ regime. The biasing potential (Hook’s potential)
to anchor the toluene molecule to the reaction coordinate
used a force constant of 25 kcal mol−1 Å. The work val-
ues were collated over 20 repetitions of the pulling simu-
lation. To analyse the effect of using increased sampling
blocks, we measured the ∆GJ term, ∆Gcumulant, ∆Gbias

and the σ2
W (z) term over N = 10, 15 and 20 simulation

runs. Table I summarises the simulations undertaken in
this study.

Index Method N v(Å fs−1) k(kcal mol−1 Å) t(ns)
1

JE-SMD 20

8 × 10−6

25

100
2 5 × 10−6 120
3 8 × 10−7 720
4 5 × 10−7 1200
5 US 30 - 25/50 900

TABLE I: List of simulations run in this study. 1-4 are
the JE-SMD simulations at different velocities and 5 is

the set of US simulations used as the benchmark/control
to compare against. N is the number of simulation

trajectories used for averaging the work or the number
of sampling windows for US, v is the velocity of the
toluene in the JE-SMD simulations, k is the spring

constant used for constant velocity pulling in JE-SMD
or for restraining the toluene molecule to the reaction
coordinate in US and t is the total simulation time.

III. RESULTS

A. JE-SMD/US Comparison

Snapshots from the JE-SMD simulations of the toluene
molecule at different positions relative to the bilayer are
shown in Figure 2. Table II shows the compiled ∆G val-
ues and growth regimes of the different JE-SMD imple-
mentations at four different velocities and for the bench-
mark US simulations. The αb plot used for computing the
∆Gbias values is shown in Figure 3. The results from US
are shown in Figure 4. The development of the FE pro-
file with respect to the simulation time of each window is
also shown, demonstrating that the calculation had con-
verged by 20 ns (per window). The sampling profile for
the US is shown in Figure S1. An overall FE change
of -5.2 kcal mol−1 (corresponding to -23.0 kJ mol−1) was
calculated by US, which is slightly larger favourable FE
change than the values obtained with the united-atom
Berger and CG MARTINI FFs of -12.5 kJ mol−1 and -
20.92 kJ mol−1 respectively32–34. The overlap of the plots
at 25 and 30 ns for the FE profile of the US indicated
convergence. Here, a key feature to compare with the
JE-SMD results is the energy minimum near z = 15 Å.
This energetic preference and localization has been noted

to be due to the cation-π interactions between the un-
charged aromatic substrates and the choline groups of
the DOPC lipids, which has been shown to be present
with substrates without a dipole such as benzene35,36.

The free energy profiles obtained from the ∆GJ,
∆Gcumulant, and ∆Gbias implementations of JE-SMD for
each velocity are shown in Figure 5. Each JE-SMD plot
also shows how the profiles converge as averaging is car-
ried out over successively larger numbers of JE-SMD sim-
ulations. For the v = 8 × 10−7 Å fs−1 (faster) simula-
tions, we see an overall change of -3.0 to 6.0 kcal mol−1,
-3.0 to 9.0 kcal mol−1 and -3.0 to 6.5 kcal mol−1 for the
∆GJ, ∆Gcumulant and ∆Gbias values respectively. Similar
results are seen with the v = 5 × 10−7 Å fs−1 (fast) simu-
lations, which show very similar patterns with increasing
N simulations - it is clear that the JE-SMD simulations
in the ‘fast-growth’ regime (faster and fast velocities), do
not reproduce the US results effectively, and that there
is minimal effect on the FE profile upon increasing the
number of simulations, N .

Interpreting the ‘slow-growth’ regime simulations, for
the v = 8 × 10−7 Å fs−1 JE-SMD simulations (slow),
we see a overall improvement in the PMF profiles -
we see an overall change of -2.9 to 2.0 kcal mol−1, -
2.3 to 4.0 kcal mol−1 and -2.3 to 2.5 kcal mol−1 for the
∆GJ, ∆Gcumulant and ∆Gbias respectively. There is an
0 and 20.0 Å with the ∆Gcumulant and ∆Gbias, which
represents a marginal improvement, but is clearly not
close to convergence to the US result. At velocities of
v = 5 × 10−7 Å fs−1 (slower), we see the closest con-
sistency with the US profile at N = 10 simulations,
with the emergence of the FE minimum at 15 Å. Within
these profiles, we see the key features that are consis-
tent with the US profile, i.e. the minima in the re-
gions 10.0 to 20.0 Å and 0.0 to 7.0 Å. The results are
marginally improved by averaging over larger number
of samples (N = 10, 20), where we see an overall FE
change of -3.2 kcal mol−1, -0.5 kcal mol−1 and -2.5 kcal
mol−1 for the ∆GJ, ∆Gcumulant and ∆Gbias profiles re-
spectively. Here, it is clear that the ∆GJ and ∆Gbias

shows the clearest consistency with the US results, while
the ∆Gcumulant profile shows a smaller FE minimum near
the 10 to 20 Å region. The W (z)dissipation used to com-
pute BJ for ∆Gbias is shown in the supplementary in-
formation (Figure S2). We observe a dramatic trough
below z = 20 Å, which represents the bilayer region. The
trend we see is an overall decrease in the magnitude of
the W (z)dissipation, where we see convergence towards

values of 10.0 kcal mol−1 (faster), 8.0 kcal mol−1 (fast),
5.5 kcal mol−1 (slow), 4.5 kcal mol−1 (slower).

IV. DISCUSSION

From the work distributions along the reaction co-
ordinate (Figure S3), we have shown that the distri-
bution follows a series of Gaussian-like profiles, which
satisfies the condition for the cumulant approximation
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(a) z = 30 Å (b) z = 20 Å (c) z = 0 Å

FIG. 2: Snapshots from the simulation trajectories of the US simulations showing the toluene molecule in the
DOPC bilayer at a selection of z coordinates of the toluene molecule. The snapshots were produced using VMD31.
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FIG. 4: The US simulations for the toluene. The
WHAM collated values at 5, 10, 15 and 25 ns is shown

to illustrate the convergence of the FE profile at
approximately 30 ns.

of the JE-SMD method to be applicable. In the JE-
SMD validation by Schulten16, the W (z)dissipation was

reported to be between 1.9 and 4.3 kcal mol−1 (3.1 kBT
to 7.1 kBT), where a smaller estimate corresponded to

FE Method v (Å fs−1) ∆G(kcalmol−1) Type

∆GJ

8 × 10−6 6.0 fast-growth
5 × 10−6 5.5 fast-growth
8 × 10−7 2.0 slow-growth
5 × 10−7 -3.2 slow-growth

∆Gcumulant

8 × 10−6 9.0 fast-growth
5 × 10−6 9.0 fast-growth
8 × 10−7 3.8 slow-growth
5 × 10−7 -0.5 slow-growth

∆Gbias

8 × 10−6 6.0 fast-growth
5 × 10−6 6.0 fast-growth
8 × 10−7 2.5 slow-growth
5 × 10−7 -2.5 slow-growth

US - -5.2 -

TABLE II: Data for the overall change in ∆G for each
JE-SMD simulation and the benchmark US simulations.

a PMF profile that was closer in convergence with the
corresponding US example. With our toluene simula-
tions, we observe W (z)dissipation values in the ranges

of 1.0 to 10.0 kcal mol−1, 1.0 to 8.0 kcal mol−1, 1.0 to
5.0 kcal mol−1, and 1.0 to 4.5 kcal mol−1 for the faster,
fast, slow, slower simulations respectively (Figure S2).
The highest values for W (z)dissipation occur in the bilayer

interior (z < 20 Å). A greater value of W (z)dissipation

results in a broader probability distribution for the
W (z)dissipation

29,30, and shows that the convergence of

an accurate estimate of P
(
W (z)dissipation

)
is a concern

within the bilayer interior regions. Other bilayer compar-
ison studies of the JE-SMD and US methods by Kuyucak
et al.18,19 show that even a small inclusion of Coulombic
interactions and flexible peptide molecules can affect ef-
ficient sampling with both fast and slow simulations due
to the slow relaxation time. In other studies, Warshel
et al.37 has shown that, showing that the convergence
of a simple gramacidin A channel takes of the order of
s, which clearly highlights this issue. Hence to make a
valid comparison of the FE methods, we were compelled
to select a system that was minimally affected by these
factors. In our example, the toluene molecule was explic-
itly chosen as a rigid, non-ionic, hydrophobic molecule
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simulation profiles was shown from N = 10, 15 and 20 simulations respectively. The units for ∆GJ, ∆Gcumulant and

∆Gbias are kcal mol−1.
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FIG. 6: The collated FE profile JE-SMD simulations, as shown by the v = 8 × 10−6 Å fs−1, 5 × 10−6 Å fs−1, 8 ×
10−7 Å fs−1, 5 × 10−7 Å fs−1 (corresponding to the faster, fast, slow, and slower velocities respectively) JE-SMD

simulations (∆GJ, ∆Gcumulant, ∆Gbias) with the US result as the benchmark profile.

which would circumvent the sampling issues related to
the coulombic potentials.

The final comparison between the JE-SMD and US
FE profiles are shown in Figure 6. In the faster, fast and
slow cases, the region between 0 and 20 Å fails to cap-
ture the overall shape or magnitude entirely. It is only
with the 5 × 10−7 Å fs−1 (slower) JE-SMD samples that
we start to see a pattern of consistency with the US re-

sult in terms of the shape of the profile, though not with
the magnitude. The closest estimate is the change of -3.2
kcal mol−1 with the ∆GJ, with similar changes seen with
the ∆Gbias result of -2.5 kcal−1. The ∆Gcumulant result
shows the worst agreement with the US result, where
the small trough in the range 10 to 15 Å is barely no-
ticeable. The cumulant estimator, which was designed
to correct the original JE-SMD estimator, proves infe-
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rior in this case compared to both the original and bias-
corrected estimator. The overall trend we observe with
a JE-SMD simulation is that the slower the velocity, the
greater the improvement towards the US result. There-
fore, although Schulten et al.16 has commented that the
JE is valid for processes at any velocity, even at velocities
where it becomes seemingly more practical compared to
the US method, the bias due to the under sampling of
rare-trajectories makes the JE-SMD method impractical
to use, except for the simplest systems.

V. CONCLUSION

We have used a model of a toluene molecule crossing a
phospholipid bilayer to establish the validity of JE-SMD
methods compared to US for computing the FE profile
of a molecule crossing a membrane. We have divided
the JE-SMD experiments into two velocity regimes - a
‘fast-growth’ regime where the total simulation time is
low compared to the US method, and a ‘slow-growth’
regime where the total simulation time is comparable to
or exceeds the total simulation for US sampling. The FE
profile from the US simulations confirmed that the FF
we have used produces FE data that are consistent with
known literature, and hence is valid to use as a bench-
mark to compare the JE-SMD simulations. To measure
the efficiency and accuracy of JE-SMD methods com-
pared to US, we implemented three interpretations of the
JE: the raw JE interpreter, ∆GJ, the cumulant second-
order interpreter ∆Gcumulant which corrects the sampling
bias, and ∆Gbias, which is an alternate method for taking
into account high sampling bias. Within the scope of a
simple bilayer/toluene simulation, we failed to see a con-
vergence towards the US result for N = 20 repeat runs in
the ‘fast-growth’ regime, with all interpretations of the
JE-SMD. In the ‘slow-growth’ regime the results varied;
while we observed significant improvements in terms of
the appearance of the shape of the FE profile (partic-
ularly the location of the FE minimum), the JE-SMD
did not fully converge towards the US result at even the
slowest velocities. Hence neither bias corrected interpre-
tation of JE-SMD significantly alleviated the sampling
problem.

It is clear that the primary factor in improving the JE-
SMD profile is the convergence of the W (z)dissipation and
sampling - slower velocities allows for this, but at the
rate which this sampling space is reached, the number
of simulations required becomes such that US remains
the most efficient option. In the ‘slow-growth’ regime,
we have already allocated a longer total simulation time
compared to the US simulations, which again indicates
that the the JE-SMD method needs modification if it
is to be practically utilised. As this bilayer system was
chosen as a simple benchmark bilayer system, it is likely
that the sampling issues seen in this study would apply
to larger systems with heterogenous and complex com-
ponents. Hence, while the JE-SMD method does provide

an alternative approach to computing FE profiles, issues
remain in its interpretation, and further work is required
to correctly account for significant bias of the region. Re-
cently, alternative modifications using adaptive stochastic
perturbation protocols (ASPP)38 or multistep trajectory
combination (MSTC)39 have been suggested for improve-
ments onto the JE. In the case of ASPP method, the
method improves the computed FE profile by widening
the work distribution, whilst in the case of the MSTC
method, small numbers of trajectories are combined in
steps. Application of these methods to computing mem-
brane transport properties requires further investigation,
and will be explored in future work.
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