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ABSTRACT: An on-the-fly fragment-based machine learning (ML) approach was developed to construct the machine learning force 

field for large complex systems. In this approach, the energy, forces, and molecular properties of the target system are obtained by 

combining machine learning force fields of various subsystems with the generalized energy-based fragmentation (GEBF) approach. 

Using nonparametric Gaussian process (GP) model, all the force fields of subsystems are automatically generated online without data 

selection and parameter optimization. With the GEBF-ML force field constructed for a normal alkane, C60H122, long-time molecular 

dynamics (MD) simulations are performed on different sizes of alkanes, and the predicted energy, forces, and molecular properties 

(dipole moment) are favorably comparable with full quantum mechanics (QM) calculations. The predicted IR spectra also show 

excellent agreement with the direct ab initio MD results. Our results demonstrate that the GEBF-ML method provides an automatic 

and efficient way to build force fields for a broad range of complex systems such as biomolecules and supramolecular systems. 

1. Introduction 

Molecular dynamics (MD) simulations have achieved great suc-

cess at the classical force field level. However, more accurate 

ab initio MD (AIMD) simulations can be only applied to very 

small systems on a time scale of picosecond mainly because that 

the computational cost of full quantum mechanics (QM) calcu-

lations increases rapidly with the system size. In the last decade, 

energy-based fragmentation approaches have been developed to 

greatly accelerate the QM calculation.1‒10 However, it is still 

very expensive to perform long-time AIMD simulations of large 

systems even using those approaches.  

Recently, the applications of machine learning (ML) to chem-

ical problems have attracted great interests because of their sub-

stantially reduced cost.11‒14 The high-dimensional neural net-

work potentials (HDNNPs) was proposed by Parrinello and 

Behler.15 An alternative ML model, Gaussian approximation 

potential (GAP), was introduced by Csányi and Bartók.16 Both 

the HDNNPs and GAP are several orders of magnitude faster 

than conventional density functional theory (DFT) calculations, 

and have been applied to small molecules,17 molecular clus-

ters,18 metal,19,20 bulk materials,21‒24 surfaces,25 liquid,26‒28 aque-

ous electrolyte solutions,29 and solid-liquid interfaces.30 Alt-

hough the HDNNPs and GAP have shown high accuracy and 

acceleration ratio, it is still expensive to build ML-based force 

fields for large systems, since full QM calculations of large mol-

ecules are required. 

In the recent years, the HDNNPs were combined with energy-

based fragmentation approaches.31‒35 The force fields of metha-

nol clusters31 and water clusters32 have been built by combining 

neural networks (NNs) with the many-body expansion method. 

The energies and forces of polypeptides have been predicted by 

combining the NNs with systematic molecular fragmentation 

(SMF)33 and generalized molecular fractionation with conjugate 

caps (GMFCC)34 methods. The excited states of large systems 

were calculated by combining the multilayer fragmentation  

 

method and NNs.35 Using the fragmentation approaches in the 

NNs, fast QM calculations for some large systems are feasible.  

However, the NN parameters need to be carefully optimized to 

avoid overfitting, and the reference dataset for each type of sub-

systems is iteratively constructed with a large number of trial-

and-error steps.36 

 

Figure 1. Schematic diagram of the GEBF-ML method. MLFF 

was automatically generated during the MD simulations at the 

cost of QM calculations of small subsystems. Force field on the 

target system are obtained from the subsystems using GEBF. In 

this work, as a proof-of concept, the electrostatic embedding is 

not considered. 

 

In this work we combined the generalized energy-based frag-

mentation (GEBF) approach37 and machine learning (ML) 

method to construct the GEBF-ML force fields for large mole-

cules. As schematically shown in Figure 1, our GEBF-ML 

scheme can substantially reduce the costs of QM calculations 

on reference dataset, and accelerate the GEBF-AIMD simula-



 

tions by several orders of magnitude. It is achieved by combin-

ing subsystem force fields to build the ML force field for large 

systems, and thus full QM calculations of large molecules are 

avoided. Different from previous fragment-based NNPs, in this 

work, the nonparametric Gaussian process model is employed 

to construct the ML force fields for various types of subsystems 

without parameter optimization. Moreover, to generate refer-

ence dataset automatically, a robust on-the-fly algorithm,36,38 is 

employed and modified to fit our GEBF-ML scheme. The 

GEBF-ML approach is applied to normal alkanes to verify its 

accuracy, efficiency, and robustness. The approach is expected 

to be applicable to more complex systems, such as molecular 

aggregates, polypeptides, proteins, and supramolecular systems. 

 

2. Methodology 

2.1. Gaussian approximation potential. 

In this work, the smooth overlap of atomic positions 

(SOAP),39 proposed by Bartók et al. and implemented in the 

QUIP package,40 is used to describe the local atomic environ-

ment in molecular systems. SOAP tries to form a local density 

of atom i from its neighbors within a radius Rcut as, 
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Here, fcut is a cutoff function, in which the cutoff radius Rcut re-

flects the spatial scale of the interactions, r is the position vector 

of atom i, and rij is inter-atomic distance. To avoid discontinuity, 

the δ function is replaced by a normalized Gaussian function, so 

that eq 1 is rewritten as follows, 
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The atomic neighbor density is then expanded in terms of radial 

basis functions and spherical harmonic functions as 
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To keep the rotational invariance and avoid the rotational de-

coupling,33 the element of the descriptor is expressed as: 
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To interpolate the atomic energy in the SOAP space, the non-

parametric Gaussian process regression11 is adopted, where a set 

of NB local reference structures },,1|{ BBi Ni
B


 
are 

chosen and the local energy iU  of atom i  is approximately ob-

tained by fitting a set of coefficients },,1|{
B BBi Ni w : 
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Each vector Xi collects all coefficients 
i

lnnp
21

 (see eq 4) for the 

atomic neighbor density ρi. The kernel function K is used to 

measure the similarity between a local configuration of interest 

ρi(r)
 
and a reference configuration )(r

Bi
 . It approaches 1 or 0 

if two configurations are almost identical or totally different, re-

spectively. In addition, the dot-product kernel is defined as 
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where ζ is a parameter to control the sharpness of the function 

K.  

The energies and forces for a set of reference datasets labeled 

by a superscript α = 1, ∙∙∙, Nst are fitted to determine the coeffi-

cients w
Bi

 and the covariance Σ. The total energy is written as 

a sum of atomic energies and fulfilled in a least square sense as, 
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In eq 7, Uα is the actual QM energy, 

iU  is the local energy of 

atom i in the structure α, and Nα is the number of atoms in a 

structure α. The partial derivative of the total energy leads to the 

forces, 
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Here, ,j kr  and 


kj ,f  are the kth (k = 1, 2, 3) component of the 

Cartesian coordinates and forces of atom j in the structure α, 

respectively.  

 
Figure 2. Flowchart of on-the-fly GEBF-ML force field generation 

scheme. In our scheme, the energy and force of the target molecule 

(C60H122) is obtained from the combination of energies and forces pre-

dicted by the respective individual ML model of different types of sub-

systems (C16H36, (C12H26+C4H10), C16H34, eta). All different types of 

ML force fields are updated individually on-the-fly. 

 

In practice, the total energy and forces in eqs 7 and 8 are 

trained together via a compact matrix-vector form: yα = ϕαw, 

where {yα | α = 1, ∙∙∙, Nst} denotes column vectors containing the 

dimensionless QM potential energy and the forces for α in the 



 

reference structure dataset, with mα = (1 + 3Nα) components for 

Nα atoms. ϕα is a mα × NB matrix, in which the first line is made 

up by ),(
BiiiK XX  and the partial derivatives of the function 

K (with respect to the coordinates in the structure α) in the sub-

sequent rows. 

After fitting, one can obtain both the coefficient w and the 

uncertainty from the GP regression model. In Gaussian process, 

the coefficient w is assumed as a Gaussian distribution, the pos-

terior distribution is express as 
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Here, w is not a constant vector after fitting, but considered as a 

multi-dimensional Gaussian distribution with mean vector w

and covariance matrix Σ. Y is a supervector (with its dimension 

as
α

αmΣM  ) to collect all QM energies and forces in the 

reference structure datasets {yα | α = 1, ∙∙∙, Nst}. The matrix Φ 

with the size of M × NB is a collection of all matrices ϕα on the 

reference datasets, and I is a unit matrix. The symbols 
2

vσ  and 

2

wσ  are optimized iteratively by the evidence approxima-

tion41,42 to balance the accuracy and robustness of the machine 

learning force field.  

For a new structure, the energy, forces, and uncertainty can 

be obtained by 

y w                                          (14) 
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Here, Xi is the descriptor of atom i, and ϕ comprises 

),(i BiiK XX  in the first row and the partial derivatives of 

the function K (with respect to the coordinates) in the subse-

quent rows. The uncertainty is express as Bayes error δ, which 

is used to decide whether the QM calculations are needed or not 

during the on-the-fly force field generation.36,38 

 

2.2. GEBF-ML. 

In the GEBF approach,37,43 the ground-state energy of a target 

system can be obtained from a series of small “electrostatically 

embedded” subsystems as,  
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Here, mE
~

and Cm are the energy (including self-energy of point 

charges) and coefficient of the mth subsystems, M is the number 

of subsystems, and rA and QA are the coordinates of atom A and 

the net point charge located on atom A, respectively. The details 

of the fragmentation scheme are described in the Supporting In-

formation (SI). For alkanes under study, there are no polar 

groups so that the net point charge on each atom can be approx-

imately taken as zero. Thus, the total energy in eq 16 can be 

simplified as  
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To verify whether eq 17 is a good approximation for normal al-

kanes, 10 randomly chosen conformers of C60H122 are calculated 

with eq17 at the ωB97X-D/6-31G(d,p) level. Our calculations 

show that the mean absolute errors (MAEs) of energies and 

forces are only 0.0025 kcal/(mol·atom) and 0.01 kcal/(mol·Å), 

respectively, relative to their corresponding conventional results. 

Thus, eq 17 works well for alkanes under study. 

In the GEBF-ML scheme, different types of subsystems are 

predicted by their own Gaussian processes. Then, the energy of 

the whole system can be expressed as: 
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where Ms is the number of different types of subsystems and Sm 

is the number of subsystems for the mth type.
m

jC  and 
m

jE  

are the coefficient and energy of the jth subsystem in the mth 

type. The forces of the target system can also be obtained from 

all subsystems as, 
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where rA is the coordinates of atom A. In addition, the molecular 

properties, such as dipole moments, can be evaluated as 
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where the symbol Ω denotes the molecular properties. 

 

Figure 3. Flowchart of subsystem force field generation by taking 

C12H26 as an example. 

 

2.3. Outline of the on-the-fly Force Field Generation. 

To avoid a large amount of machine learning operations on 

subsystems generated by the GEBF approach, a nonparametric 

Gaussian process and a robust on-the-fly data generation 

scheme is chosen to efficiently generate the force field on the 



 

fly.36,38 Take a normal alkane C60H122 as an example. The 

flowchart of our GEBF-ML scheme is shown in Figure 2, in 

which data sets are automatically generated from subsystems 

rather than the entire molecule. Details of subsystems force field 

generation are displayed in Figure 3 by taking C12H26 as an ex-

ample. The key steps in the scheme are outlined as below:  

(1) The subsystems are reconstructed (or constructed at the 

very beginning) by the GEBF approach when 1000 MD steps 

passed after the last construction. The differences between the 

GEBF and full QM results are expected to be small if the sub-

system types are fixed in such a short time, which makes the 

criterion for Bayesian on each subsystem being robust enough. 

(2) The GEBF subsystems of C60H122 are classified into 7 

types, C16H36 (C12H26+C4H10), C16H34, C12H28 (C8H18+C4H10), 

C12H26, C8H20 (C4H10+C4H10), C8H18, and C4H10, according to 

their bonded connection. The (re)construction of the fragmenta-

tions is described in the Supporting Information (SI 4). Subsys-

tems are constructed with different fragments, so we can easily 

classify the subsystem with the prior knowledge of fragments. 

In each type of subsystems, the energy, forces, and uncertainties 

are predicted by its own Gaussian process model. 

(3) For the Gaussian process model of each set, if a criterion 

based on the uncertainties, the history of previous sampling, and 

the history of previous subsystem construction is met, QM cal-

culations at the ωB97X-D/6-31G(d,p) level will be performed 

on the subsystems individually, otherwise, skip to step 5. 

(4) For any type of Gaussian process model, if the number of 

the newly collected subsystems reaches a certain threshold, or 

if the uncertainties becomes too large, the set of reference struc-

ture datasets and local reference configurations belonging to this 

machine learning model are updated and the machine learning 

model is retrained. 

(5) Predict the energies and forces of subsystems by the ma-

chine learning model. 

(6) Combine the energies and forces predicted by subsystems 

Gaussian process model to obtain the total energy and forces of 

C60H122 by the GEBF formulas in eqs 18 and 19.  

(7) Update the atomic positions and velocities by solving 

equation of motion, and then return to step 1 until the finaliza-

tion of MD simulation (I = NMD in Figure 2). 

The details of the decision on whether to do QM calculation 

or not at the I-th MD step are shown in Figure 4. Taking the 

C12H26 set as an example, the Gaussian process model gives the 

energies, forces, and uncertainties of all the C12H26 subsystems. 

The criterion setting is shown in the first dotted box, where the  

threshold (εBayes) for the Bayes error (δBayes) is automatically de-

termined on the fly. Here, the threshold is set to zero at the be-

ginning. To measure the lowest currently attainable Bayesian 

error, at the MD step I just after the refinement of the force field, 

the maximum value of the Bayes errors of the forces predicted 

for all the C12H26 is stored as 
max,

B

I

ayes . The threshold is updated 

to be the average of the last ten 
max

Bayes if their relative standard 

deviation is < 0.2. The decision of whether to do QM calculation 

or not is shown in the second dotted square. First, if the maxi-

mum Bayesian error in all subsystems is larger than twice of the 

threshold, the QM calculations will be performed. It avoids in-

stabilities in the MD simulation caused by less accurate forces. 

Next, our program examines the previous subsystem construc-

tion step. If the current step is within 20 MD steps from the pre-

vious subsystem construction step and new subsystems are gen-

erated, the maximum Bayes error is examined directly. If the 

maximum Bayes error is larger than the threshold, QM calcula-

tions is performed. This operation avoids the new structure, 

which are significantly different from the structures in the train-

ing set, to be predicted by the machine learning model. Next, 

the program checks the previous data sampling step. The QM 

calculations will always be skipped if the current step is within 

10 MD steps from the previous sampling step. Otherwise, if the 

maximum Bayes error is larger than the threshold, the QM cal-

culation is performed, this operator avoids too dense sampling 

during the MD simulation. 

 

Figure 4. Flowchart of the decision step whether to perform subsystem 

QM calculation or not by taking C12H26 as an example. The symbols 
k

ayesB


 denotes the Bayesian forces error of kth subsystem in C12H26 set.   

|||| x


denotes the infinity norm, εBayes donates the criterion for the 

Bayesian error, σ(x) refer to the variance of the data x. At the beginning 

of training, the criterion εBayes is set to zero. 

 

For each type of subsystem force field generation, dataset and 

the ML force field is updated if five newly QM calculations are 

performed or when the estimated errors are twice larger than the 



 

determined criteria. The local configuration choice and refer-

ence dataset sparsification are performed individually, which 

are the same as the previous operation on periodic systems.36,38 

Here, the main purpose is to reduce the computational costs and 

the memory requirement. 

 

2.4. Machine learning dipole moments and IR spectra. 

Since the GEBF method is also applicable for calculating the 

molecular properties, we also try to predict the dipole moments 

with the GEBF and machine learning model in this work. More-

over, IR spectra depending on the molecular dipole moments 

are obtained to check the accuracy of the GEBF-ML model. 

In AIMD, vibrational spectra are computed via the Fourier 

transformation of time autocorrelation functions.44 IR spectra 

depend on the molecular dipole moments as: 
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where   is the time derivative of the molecular dipole moment, 

ω is the vibrational frequency, τ is a time lag, and t is the time.   

Here we also use the Gaussian process to predict the dipole 

moments, similar to the approach used in neural network.45‒47 

The molecular dipole moments are expressed as:. 
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Here, },....1|{ BB

q

i Ni
B

w are the coefficients in dipole mo-

ment machine learning model after fitting, ri is the distance vec-

tor of the atom i from the molecular center of mass, and K is the 

kernel function used to measure the similarity between a local 

configuration of interest ρi(r) and the reference configurations  

)(r
Bi

 . In the GEBF-ML scheme, we first construct dipole 

machine learning models for all types of subsystems, and obtain 

the dipole moment of the target system by eq 20. 

 

Table 1. The Root Mean Squared Errors (RMSEs) of the Energies 

[in kcal/(mol·atom)], Forces [in kcal/(mol·Å)], and Dipole Moments 

(in Debye) (with respect to the Conventional DFT Results) for the 

Test Set of Subsystems Obtained with the GEBF-ML Force Field.  

Subsystem 

Type 

 

Energy 

 

Force 

Dipole 

Moment 

C4H10 0.076 1.38 0.023 

C8H18 0.039 1.76 0.027 

(C4H10)2 0.045 1.70 0.038 

C12H26 0.040 1.95 0.044 

C8H18+C4H10 0.033 1.46 0.078 

C16H34 0.043 1.69 0.070 

C12H26+C4H10 0.036 1.84 0.076 

 

To construct the force field for normal alkanes, on-the-fly 

machine learning MD simulations were performed on C60H122 

to generate different types of subsystems and their respective 

machine learning force fields are obtained automatically. The 

energies, forces and molecular properties of any other alkanes 

can also be obtained from the force fields of various subsystems 

using the GEBF method.   

During the on-the-fly force field generation, more than 99% 

of the QM calculations are skipped, which reduces the compu-

tational time by a factor > 200. The details of the skipping ratio 

and the acceleration on each subsystem are summarized in Ta-

ble S1.  

On-the-fly force field generation has shown efficient sam-

pling on the liquids, solids, and interfaces in previous stud-

ies.36,38 In the GEBF-ML method, the number of structures in 

the reference structure dataset of each type of subsystem is typ-

ically < 1000, and the number of local reference configurations 

is < 1500 as shown in Table S2. Both also show the high effi-

ciency sampling, and our method can be easily extended to more 

advanced electronic structure methods due to the computational 

linear scaling of these fragmentation methods.48‒50 

In addition to the significant acceleration of the computations, 

the accuracy of the generated force field should also be evalu-

ated. A total of 300 C60H122 structures were randomly chosen 

from the trajectory at 500 K, different types of GEBF subsys-

tems were generated with the LSQC program.43 The electronic 

structure calculations of those subsystems were carried out at 

the ωB97X-D/6-31G(d,p) level with the Gaussian 16 package.51 

Parameters of SOAP for different subsystems are listed in Table 

S3. In Table 1, the root mean squared errors (RMSEs) of energy, 

forces and dipole moment obtained with the GEBF-ML method, 

relative to the conventional ωB97X-D/6-31G(d,p) results,  on 

each type of subsystem are shown. One can see that our force 

field can accurately predict the potential energy surface with the 

RMSEs of energies and forces < 0.04 kcal/(mol·atom) and 2.0 

kcal/(mol·Å), respectively. Here for each type of subsystem, the 

dipole moment is also predicted based on the reference structure 

dataset and local configurations. The RMSEs of dipole mo-

ments are typically < 0.07 Debye (over a range of 1.436 Debye), 

which is small enough for predicting the IR spectra. 

 

3. Results and Discussion 

3.1. Molecular Dynamics Simulation and Infrared Spectra 

of C60H122. 

To evaluate the performance of our force field on the target 

molecule (C60H122), we have randomly chosen 300 structures 

from the GEBF-ML MD trajectory at 500 K. Table S4 shows 

that the RMSEs of the energies and forces for C60H122 are 0.033 

kcal/(mol·atom) and 2.37 kcal/(mol·Å), respectively. The dis-

tributions of the energy and force errors between the ML force 

field and the conventional ωB97X-D reference data are dis-

played in Figure S1. It can be seen that almost all the force errors 

are < 10 kcal/(mol·Å). Although the RMSE of forces on the tar-

get molecule is slightly larger than those of subsystems, it is still 

small enough to perform the MD simulations. 

With the GEBF-ML force field, MD simulations using a 

Langevin thermostat52 have been performed directly at 500 K 

with a timestep of 0.5 fs. To quantitatively describe the confor-

mational changes, the RMSDs with respect to the initial struc-

ture of the C60H122 during the simulation are shown in Figure 5a. 

The RMSD increases rapidly in the first 5 ps and reaches the 

maximum value (10 Å) at 40 ps. It is consistent with the evolu-

tion of the structure in Figure 5b, which shows that the structure 

of the alkane is gradually changed from the straight chain to the 

folded one. Figure S2b depicts total energy fluctuations ob-

tained from microcanonical (NVE) simulations whose initial 



 

velocities are consistent with T = 300 K. In our GEBF-ML 

method, atomic energy of added Hydrogen for valence satura-

tion of subsystem (subsystem construction is described in SI) is 

ignored as their net number in target system is zero. During the 

NVE simulation, the energy drift was found to be 0.03 

meV/atom/ps, which may be caused by the discontinuities dur-

ing the subsystem construction. In the AIMD simulations of so-

dium-ion batteries53 and molten salt,54 an energy drift of less 

than 1 meV/atom/ps is promised to ensure the NVT simulations. 

During the eReaxFF (a reactive force field) based MD simula-

tions, the energy drift of about 0.4 meV/atom/ps is considered 

to be small.55 Because the forces are analytically predicted by 

the machine learning force field during the simulations, our en-

ergy drift is much lower than that of direct GEBF-AIMD simu-

lations, 1.2 meV/atom/ps.56
 Thus, our GEBF-ML method could 

be used to perform the NVT MD simulations of large alkanes to 

investigate their conformational changes. 

 
Figure 5. Time evolution of the total energy, potential energy (a) and 

RMSD with respect to the initial structure (b) in the machine learning 

molecular dynamics simulation of C60H122. (c) Conformational changes 

for C60H122 during the 50 ps machine learning molecular dynamic sim-

ulations. 

 

After the force field has been trained, IR spectra of C60H122 

were obtained with MD simulations in the gas phase employing 

a timestep 0.5 fs. After a short initial equilibration period (5 ps), 

constant temperature MD simulations were run for 50 ps.  As 

shown in Figure 6a, the IR spectrum of C60H122 exhibits all of 

the spectroscopic features typical for simple hydrocarbons: the 

C-H scissoring (1505 cm‒1), methyl rock (1383 cm‒1), long-

chain methyl rock (732 cm‒1), and the strong band in the 3100-

3000 cm‒1 region due to the C-H symmetric and asymmetric 

stretching. In comparison with the experimental frequencies, 

some peak positions predicted by the machine learning force 

field deviate from the experimental values to some extent. There 

is a blue shift from the typical experimental value of 2950 cm‒1 

to 3050 cm‒1 for the C-H stretching vibrations. For C60H122, di-

rect AIMD simulation are not available for comparison, due to 

very expensive ab initio calculations.  

Instead, we performed direct AIMD simulations for C12H26 

and compared the corresponding IR spectra of this system with 

the GEBF-ML MD results in Figure 6b. Figure 6b shows that 

the two IR spectra are almost coincident and have similar blue 

shifts for the C-H stretching vibrations. It indicates that the 

GEBF-ML MD could reproduce the IR spectra of the direct 

AIMD, and the blue shift may be caused by the underlying elec-

tronic structure method or the classical description of the nu-

clear dynamics.57 Therefore, our machine learning force field 

can well reproduce the direct AIMD trajectory by skipping more 

than 99% of the QM calculations. 

 

3.2. Force Field Application to Different Sizes of Alkanes. 

Although the ML force fields of various subsystems are only 

trained from C60H122, other alkanes with different sizes may also 

be well predicted by the current force field, because the energies, 

forces and properties of any long-chain normal alkanes can be 

obtained with the GEBF method. Here, C40H82 and C80H162 are 

employed as two examples to test the accuracy of our force field 

on those alkanes which are not used during the on-the-fly force 

field generation. The initial (0 ps), middle (25 ps), and final (50 

ps) snapshots for C40H82 and C80H162 during the GEBF-ML MD 

simulations are displayed in Figure S3. Both the C40H82 and 

C80H162 have large conformational changes from the straight 

structure to the folded one. 

The RMSDs of C40H82 and C80H162 with respect to their initial 

structures are plotted in Figure S4a and b to quantitatively de-

scribe their conformational changes. For C40H80, the RMSDs in-

crease to the maximum value at 25 ps and then decrease, which 

is consistent with the conformational changes in Figure S3. 

While for C80H162, the RMSDs exhibit a continuous increase. 

For C40H82, energy drift is not observed in the NVE simulations, 

as shown in Figure S2a. Figure S2c shows that the energy drift 

for C80H162 is only about 0.03 meV/atom/ps, which is also small 

enough.  

 
Figure 6. Infrared spectra of (a) C60H122 predicted by the ML model, 

and (b) C12H26 predicted by direct AIMD simulations (red) and GEBF-

ML MD simulations (blue) 

 

To evaluate the accuracy of the GEBF-ML force field on 

C40H82 and C80H162, 300 configurations for each alkane were 

randomly sampled from the GEBF-ML MD trajectories at 500 

K. Table S4 shows that the RMSEs in energies and forces are 

only < 0.04 kcal/(mol·atom) and 2.9 kcal/(mol·Å), respectively. 

The distributions of the energy and forces errors between the 

GEBF-ML force field and the ωB97X-D reference data are 

shown in Figure S1, which suggests that almost all the force er-

rors are < 10 kcal/(mol·Å). The force errors of C40H82 and 

C80H162 are slightly larger than that of C60H122, but are still small 

enough for describing their potential energy surfaces. The en-

ergy errors per atom for these two alkanes are similar to that in 

C60H122, indicating that the GEBF-ML force field is applicable 

even for larger systems. Based on the GEBF-ML MD trajectory 

at 300 K, the IR spectra of C40H82 and C80H162 are also shown in 

Figure S5. The IR spectra also exhibit all of the typical spectro-

scopic features for simple hydrocarbons: the C-H scissoring 

(1505 cm‒1), methyl rock (1383 cm‒1), long-chain methyl rock 



 

(732 cm‒1), and the strong band in the 3100-3000 cm‒1 region 

due to the C-H symmetric and asymmetric stretching. 

Finally, based on the existing machine learning force field 

trained by C60H122, the acceleration factors x2 (the ratio between 

the number of machine learning predictions and the number of 

QM calculations) on C40H82 and C80H162 are much larger than 

that on C40H82 during the on-the-fly force field generation. Alt-

hough the initial C40H82 and C80H162 are very different from the 

C60H122, the QM calculations are rarely performed during the 

MD simulations. The acceleration factor x2 for C40H82 and 

C80H162 are about 2700 and 1400, respectively, while that for 

C60H122 is about 200 during the on-the-fly force field generation. 

With the scheme, the machine learning force field will be con-

tinuously improved during the MD simulations, so that no QM 

calculation is required in the final. 

 

4. Conclusion 

In summary, we have developed a GEBF-ML method via a 

Gaussian process to construct machine learning force fields for 

complex systems without data selection and parameter optimi-

zation. Only small subsystems of the target system generated 

from the GEBF method are used to automatically and efficiently 

construct the ML force fields of various types of subsystems and 

the ML force field of the target system. With this approach, 

long-time GEBF-ML MD simulations were performed on al-

kanes with different sizes. Our results show that the accuracies 

of energies, forces, and dipole moments of systems under study 

predicted with the GEBF-ML method are comparable with 

those from full QM calculations. Furthermore, infrared spectra 

of those alkanes could be accurately obtained from the GEBF-

ML MD simulations, which are consistent with those from the 

corresponding direct AIMD or experimental results. Our 

GEBF-ML scheme provides an automatic and efficient way of 

building machine learning force fields for a broad range of com-

plex systems such as biomolecules and supramolecular systems. 
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S1 Computational efficiency  

The data showing the computational efficiency of the on-the-fly force field generation is summarized in 

Table S1. The numbers of structures providing the reference structure datasets and the numbers of the 

local reference configurations are listed in Table S2. 

Table S1. Fraction x1 (％) of the MD steps, where QM calculations were bypassed, and acceleration factor 

x2 of the 50-ps MD simulation by the on-the-fly scheme on each type of subsystem. 

subsystem x1 x2 

C4H10 98.2 57 

C8H18 99.6 240 

(C4H10)2 97.8 45 

C12H26 99.6 250 

C8H18+C4H10 98.9 92 

C16H34 99.3 148 

C12H26+C4H10 99.3 138 

 

Table S2. The numbers of structures providing the reference structure datasets (Nst) and the numbers of 

local reference configurations (NB).  

subsystem Nst NB 

C4H10 278 461 

C8H18 1351 1599 

(C4H10)2 299 996 

C12H26 1179 1578 

C8H18+C4H10 406 2197 

C16H34 412 1413 

C12H26+C4H10 429 1497 

  

 

 

 

 

 



 

 

S2 Additional ML Results 

The ML force fields are accurate for different size of alkanes. Parameters in descriptor are collected in 

Table S3. Table S4 collects root mean squared errors (RMSEs) of the energies and forces of C40H82, 

C60H122, and C80H162 (relative to the ωB97X-D reference data). The distributions of errors between the 

ML force field and the ωB97X-D reference method are displayed in Figure S1.  

Table S3. Parameters in descriptor  

subsystem 
cR  atom    l

RN  maxL  

C4H10 2.5 0.4 2.0 6 4 

C8H18 3.0 0.4 2.0 6 5 

(C4H10)2 2.5 0.4 2.0 6 5 

C12H26 3.0 0.4 3.0 6 5 

C8H18+C4H10 3.0 0.35 2.5 6 6 

C16H34 2.7 0.4 2.5 6 5 

C12H26+C4H10 3.0 0.4 3.0 6 6 

 

Table S4. The RMSEs of the energies (E) [in kcal/(mol·atom)] and forces (F) [in kcal/(mol·Å)] (relative 

to the conventional DFT results) on the test set. 

system RMSE E RMSE F 

C40H82 0.040 2.84 

C60H122 0.033 2.37 

C80H162 0.031 2.61 

 



 

 

Figure S1. Distributions of the energy and force errors between the ML force field and the ωB97X-D 

reference using three test data sets: C40H82, C60H122, and C80H162 (from top to bottom). Left and right 

panels show the distributions of the errors of energies and forces, respectively.   

 

 

S3 Additional MD Results 

The time evolutions of the energies of C40H82, C60H122, and C80H162 at the microcanonical (NVE) ensemble 

are shown in Figure S2. The conformational changes and RMSDs (with respect to their initial structures) 

of C40H82 and C80H162 at the NVT ensemble are shown in Figures S3 and S4, respectively. The IR spectra 

of C40H82 and C80H162 are displayed in Figure S5. 



 

 

Figure S2. The total energy changes as functions of time in GEBF-ML MD simulations of (a) C40H82, (b) 

C60H122, and (c) C80H162 at the NVE ensemble with a time step of 0.5 fs. Black line denotes the average 

of total energy per 50 fs. The zero energy is chosen to be the average energy of total energy. The GEBF-

ML MD simulations were performed using the force field without any retraining. 

 

 

Figure S3. The conformational changes for C40H82 and C80H162 during the 50-ps GEBF-ML MD simula-

tions.  

 



 

 

Figure S4. The RMSDs with respect to the initial structures of (a) C40H82 and (b) C80H162 in the GEBF-

ML MD simulations. 

 

Figure S5. IR spectra of (a) C40H82 and (b) C80H162 predicted by the ML model. 
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S4 Fragmentation scheme and the construction of GEBF subsystems  

The main procedures in a GEBF calculation in this work are summarized as follows. (1) Divide total 

system into various fragments. (2) For each fragment, construct a primitive subsystem by adding its neigh-

boring environmental fragments within a distance threshold ζ and limit the maximum number of environ-

mental fragments as η. Hydrogen atoms are added to subsystems for valence saturation to avoid dangling 

bonds. (3) Once all primitive subsystems are obtained, derivative subsystems with their coefficients are 

constructed with the inclusion-exclusion principle, to cancel the overlapping of primitive subsystems. The 

GEBF calculation is denoted as GEBF(ζ, η). Here, C20H42 was used as an example to illustrate our frag-

mentation scheme and the construction of GEBF subsystems.  

(1) As shown in Figure S6(a), the C20H42 was first divided into five fragments, the box model of the 

fragmentation scheme is shown in Figure S6(b).  

 

Figure S6. Fragmentation scheme of C20H42: (a) molecular structure of C20H42 and four C-C bonds (de-

noted in solid line) are cut to generate five fragments; (b) box model of five fragments. The solid lines 

represent covalent single bonds. 

(2) For each fragment (denoted as central fragment), several neighboring (environmental) fragments 

were added to construct its primitive subsystem with   and   being 3.0 Å and 4, respectively. Hydrogen 

atoms are added for valence saturation. All the primitive subsystems are listed in Figure S7. 
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Figure S7. Primitive subsystems of the C20H42, each of which contains a central fragment (inside the 

circle) and its environmental fragments. The fragment indices in each subsystem are listed in parentheses.  

(3) Delete the redundant small primitive subsystems, which are included in larger ones. For the 

C20H42, subsystem (123) is deleted as it is included in subsystem (1235). The retained primitive subsys-

tems and their coefficients are shown in Figure S8. 

 

Figure S8. The retained primitive subsystems. Fragment indices in each subsystem are listed in parenthe-

ses, and the coefficients are denoted after the parentheses.   

(4) Build a series of derivative subsystems with the inclusion-exclusion principle to cancel the over-

lapping of primitive subsystems. All derivative subsystems and their coefficients are shown in Figure S9. 
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Figure S9. The derivative subsystems generated with the inclusion-exclusion principle. Fragment indices 

in each subsystem are listed in parentheses, and the coefficients are denoted after the parentheses. 

 

In this work, ten C60H122 conformers are calculated with GEBF(3,4)-ωB97X-D, with their errors respec-

tive to the conventional ωB97X-D results collected in Table S5. The mean absolute error (MAE) is only 

0.0025 kcal/(mol·atom) and 0.01 kcal/(mol·Å) for energy and forces, respectively. Thus, the parameters 

  and   in GEBF-ML method are chosen to be 3.0 Å and 4, respectively.   
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Table S5. Deviation of the energies (E) [in kcal/(mol·atom)] and mean absolute error (MAE) of the forces 

(F) [in kcal/(mol·Å)] from GEBF(3,4)-ωB97X-D computations for ten C60H122 conformers at the 6-31G** 

basis set level, compared to those obtained from conventional QM methods. 

conformer E F 

1 -0.0013 0.0093 

2 -0.0006 0.0148 

3 -0.0011 0.0074 

4 -0.0020 0.0101 

5 -0.0026 0.0103 

6 -0.0035 0.0105 

7 -0.0034 0.0080 

8 -0.0016 0.0070 

9 -0.0040 0.0100 

10 -0.0044 0.0117 

MAE 0.0025 0.0100 
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