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Abstract

Recent years have witnessed utilization of modern machine learning approaches

for predicting properties of material using available datasets. However, to identify

potential candidates for material discovery, one has to systematically scan through a

large chemical space and subsequently calculate the properties of all such samples. On

the other hand, generative methods are capable of efficiently sampling the chemical

space and can generate molecules/materials with desired properties. In this study, we

report a deep learning based inorganic material generator (DING) framework consisting

of a generator module and a predictor module. The generator module is developed based

upon conditional variational autoencoders (CVAE) and the predictor module consists of

three deep neural networks trained for predicting enthalpy of formation, volume per

atom and energy per atom chosen to demonstrate the proposed method. The predictor

and generator modules have been developed using a one hot key representation of the
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material composition. A series of tests were done to examine the robustness of the

predictor models, to demonstrate the continuity of the latent material space, and its

ability to generate materials exhibiting target property values. The DING architecture

proposed in this paper can be extended to other properties based on which the chemical

space can be efficiently explored for interesting materials/molecules.

Introduction

In the last few years, deep learning methods have had profound success in several applied

areas of computer science such as computer vision, natural language processing and robotics.1

This has led to application of these algorithms to tackle problems across different backgrounds

including in natural sciences.2–6 Recently, there has been a surge in incorporating data driven

approaches in several aspects of molecular/material design. Tremendous progress has been

made in molecular property prediction (for eg. quantum mechanical energies), conceiving of

retrosynthetic pathways, drug design, protein structure prediction, where machine learning has

played a crucial role.7–11 Availability of large datasets in general has increased the relevance

of data driven machine learning based approaches in the area of molecular sciences.12–18

In the past decade, machine learning techniques have been widely used by researchers

to address many challenges in the field of material science and engineering.2,19–35 Ward et

al.27 proposed a set of 145 hand engineered features based on stoichiometric attributes,

elemental property statistics, electronic structure attributes, ionic compound attributes

which can be used for a broad range of datasets. Jha et al. in their work20 introduced a

deep learning framework called ElemNet to predict formation enthalpy of materials directly

from its elemental composition, eliminating the need of domain knowledge to hand engineer

features. Such data driven approaches have been very successful2,26,28,36 and provide a faster

replacement for the time taking density functional theory37 calculations to predict properties

of materials.38 However, these conventional methods that enable accurate predictions of

material properties rely upon efficiently scanning the material space20,22 in a high-throughput

2



manner to identify potential candidates as useful materials (see ’conventional approach’ in

Figure 1). This procedure also biases the way in which generation of materials is done during

the screening protocol. For example, a systematic sampling of the material space might end

up with only materials that belong to a predefined pattern, like a binary compound of type

AB or a ternary compound of type A2B, etc. Due to the vast and discrete nature of the

material space, the success rate of such combinatorial sampling is low.

Figure 1: Schematic representation of the the Deep INorganic materials Generator (DING)
method proposed in this study as compared to conventional approaches of generating potential
candidates for material discovery. In conventional approach, first a predictor model is trained,
then materials are generated combinatorially and the potential candidates are screened using
the predictor network. In DING model, generator and predictor models are trained and then
the generator model is used to identify potential candidates with desired properties, which
are finally evaluated using the predictor network. This results in a small search space and
achieves efficient sampling of the material space.

Generative models based on deep learning and reinforcement learning methods have shown

great promise in the paradigm of de novo design of small organic molecules.8,39–42 Gómez-

Bombarelli et al.39 showed that a model based on variational autoencoders43 can be used to
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describe a molecule in a latent space where they are expressed as real vectors. On this latent

space, because of its continuous and differentiable nature, a gradient based optimization can

be used to optimize properties of molecule and hence identify molecules with desired properties

directly. Guimaraes et al.40 proposed Objective-Reinforced Generative Adversarial Networks

(ORGAN) to generate small organic molecules with target properties whereas Popova et

al.8 and You et al.42 used deep reinforcement learning methods to achieve similar goals.

While reasonable progress has been made in the use of generative ML methods for inverse

design of drug–like molecules, efforts towards inverse material design are comparatively fewer.

Noh et al.44 proposed iMatGen, an image-based materials generator using a combination of

autoencoders and variational autoencoders forVxOy system. Hoffmann et al45 utilized the

3-D positions of atoms in a molecule in an encoder-decoder framework to generate materials.

Recently, Nouira et al.46 utilized Generative adversarial networks in their work CrystalGAN

to produce stable ternary structures. Such applications of generative models to directly

design inorganic materials with target properties are expected to contribute further to the

general field of material design.

Attempts towards de novo molecular generation have primarily used four different ap-

proaches, namely, genetic algorithms, variational autoencoders (VAE), reinforcement learning

(RL) and generative adversarial networks (GAN).40,47–51 Generative models such as VAE

attempts to learn a distribution that is close to the unknown probability distribution of

the given data. With rapid advances in deep learning, neural networks have emerged as

powerful approximators for these probability distribution functions. Deep neural network

based generative models take latent vector as input, which is randomly sampled from a known

distribution and produces data similar to the training data. There are many variants of deep

generative models and in this work we have used an extension of VAE, namely the conditional

variational autoencoder (CVAE).52,53

CVAE has shown remarkable performance as a generative model in the field of computer

vision54,55 and natural language processing.56,57 Lim et al.58 recently used a CVAE based
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model for de novo organic molecular design. Models based on CVAEs provide a continuous

latent space along with control over properties which can be manipulated as desired during

decoding process to generate molecules with target properties (for example, Lim et al. used

logP values, molecular weight, number of hydrogen bond donors/acceptors and topological

polar surface area as different properties). In this study, we report a deep learning model

based on CVAE to generate inorganic material compositions that will show desired properties

of energy per atom, volume per atom and formation enthalpy. Open quantum materials

database (OQMD) database developed by Wolverton and coworkers12,13 was used to train

and develop the ML method. This method named Deep INorganic material Generator

(DING) allows generation of inorganic material candidates by optimizing the property space

as mentioned above (see Figure 1). For estimating the properties of the generated material

candidates, we use separately trained prediction models, that given a material composition, is

able to predict properties of interest with reasonable accuracy. We also design an appropriate

feature vector which is more suitable for this task. Further, we perform various experiments

to show the continuity of the generated latent space, ability of the model to generate materials

and the robustness of DING.

Theory and Methods

The framework proposed in this study, DING, (see figure 1) consists of a generator module

based on CVAE52 and a predictor module. Candidate materials are proposed by the generator

module and the candidates are then filtered using the predictor module. This section gives

the details of the dataset, feature vector used, methods used and the training procedure

used. The code for this work along with examples is available at: https://www.github.com/

devalab/DING
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Dataset

The open quantum materials database (OQMD) is used to train and test the generator and

predictor modules proposed in the DING framework.12 OQMD is a high-throughput database,

which currently consists of nearly 637,644 density functional theory (DFT) calculations of

compounds from the Inorganic Crystal Structure Database (ICSD).59 In this study, only unique

composition of materials were taken and three properties, namely formation enthalpy, volume

per atom and energy per atom were used to test the method. Formation enthalpy is defined

as the energy of forming a compound from its constituent elements. For materials with more

than one structure for a given composition, the one with the lowest formation enthalpy was

used. This is essential since the feature vector used for this method encodes the composition

not the three dimensional structure (see later). Additionally, only those composition for

which the values for the three properties are available were retained. Compounds that had

atomicity of more than 10 for a single element were also removed from the dataset. This

eliminated very few entries in the dataset, and was done to limit the input dimensions. After

these prepossessing steps, 272,064 data points was obtained. Figure 2 shows the distribution

of formation enthalpy, energy per atom and volume per atom. From this dataset, randomly

chosen 10% was used as the test set and the rest 90% was used for training and validation by

doing a 80:20 random split.

Material Descriptor

Ward et al.27 introduced a general set of 145 features derived from a material’s stoichiometric

attributes, elemental property statistics, electronic structure attributes and ionic compound

attributes that can be used for multiple property prediction. This way, information related

to materials were explicitly given in the feature representation. Jha et al.20 in their work

ElemNet used a feature vector made up only from elemental composition. This contained a

bin corresponding to each element in the dataset and the fractional value of that element

in the material was put in each of the bins. This descriptor gives the model complete
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Figure 2: Distribution of formation enthalpy, energy per atom and volume per atom in the
final dataset.

independence to self learn the desired chemistry whereas in the former one, domain knowledge

is supplied to the model explicitly. In this study, a feature vector constructed only from the
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elemental composition of the material is used. Each element is represented by a constant

length vector (11 dimensions) and the total number of elements considered for the feature

vector representation is 89. The one hot vectors corresponding to each element are then

concatenated together to form a 979 dimensional vector representing each material in the

dataset. Figure 3 represents the feature vector used here by taking Al2O3 as an example.

Figure 3: Feature vector used to represent the composition of the inorganic materials.
Concatenation of all the one hot vectors (different rows) of elements in the dataset to
represent the complete material. Al2O3 is used as an example to define the feature vector.

Predictor Module

In the DING framework, the predictor module is used to filter the candidates proposed using

the generator model. The predictor module consists of three separate models, one each for
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formation enthalpy, energy per atom and volume per atom trained on the OQMD dataset.

The feature vector introduced in the above section is used as the input. Each predictor model

is an 8–layered deep neural network with dropout60 layers at three layers (see Table 1). ReLU

was used as the activation function for the hidden layers.

Figure 4: Schematic representation of the predictor module that consists of three deep neural
networks predicting each of them predicting formation enthalpy, energy per atom and volume
per atom. The architecture of these networks are given in Table 1.

Generator Module

Variational Autoencoders (VAE)

In an autoencoder (AE), we have a pair of deep neural networks, namely an encoder and

a decoder. The encoder network converts the input feature vector to a fixed-dimensional

vector, and the decoder network converts this fixed-dimensional vector back to the original
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Table 1: Architecture of the deep neural networks in the predictor module.

Layer types No of Units Activation Layer Positions

Dense 1024 ReLU 1st to 2nd

Dropout(0.7) 1024 - After 2nd

Dense 1024 ReLU 3rd

Dropout(0.7) 1024 - After 3rd

Dense 512 ReLU 4th

Dropout(0.5) 1024 - After 4th

Dense 128 ReLU 5th

Dense 64 ReLU 6th

Dense 32 ReLU 7th

Dense 1 Linear 8th

input feature vector. The goal of an autoencoder is to learn an identity function. The

fixed-dimensional vector is generally referred as the latent vector z. The latent vector z acts

as an information bottleneck in an AE, i.e. it is designed to learn the most statistically

salient information in the data.39 Autoencoders are designed as a dimensionality reduction

framework, where the objective is to minimize the error in reconstructing the original input

vector. There are no constraints on the latent vector z which may enable an autoencoder to

act as a generative model. This constraint is incorporated in a VAE.

VAEs are one of the most popular and effective generative models. In VAEs, the latent

vectors z are sampled from a normal distribution N (0, I), where I is the identity matrix.

The objective function that needs to be optimized for VAEs, with input data X and latent

vector z can be formulated as:

E (logPΘ(X | z))−DKL(QΘ′(z | X) ‖ N(z)) (1)

where E is the expectation value, P and Q are probability distributions and DKL is the

Kullback-Leibler divergence, which measures how different one distribution is from the other.

The probability distributions PΘ(X | z) and QΘ′(z | X) are learned by deep neural networks

called the decoder and encoder respectively with learnable parameters Θ,Θ′. The first term
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is simply the reconstruction error for the datapoint X, while the second term measures the

similarity between the probability distribution of the latent space encoded from the input

data and the target probability distribution, N(z), which is N (0, I).

Conditional Variational Autoencoders (CVAE)

In case of VAEs, it is not possible to control the properties of the data generated. The

generation could be a random instance from the training distribution, the properties of

which may vary widely. The objective is to generate materials with specific properties. Also,

since the latent vector is sampled from a Gaussian, the distribution is unimodal. In such

problems, simple machine learning models like regressors can generate data that is an average

of all possibilities. CVAEs are VAEs that can learn multimodal probability distributions by

adding a condition vector as an additional input during the generation process. The objective

function of the CVAE with condition vector, c, (given as an input to both the encoder and

the decoder) is given by,

E (logPΘ(X | z, c))−DKL(QΘ′(z | X, c) ‖ N(z))) (2)

Gómez-Bombarelli et al.39 proposed a VAE molecule generator jointly trained with another

network that predicts the properties of molecules. Then, gradient descent optimization was

performed in the latent space to find the materials with desired properties. In the DING

framework, the properties of the material that is to be generated are represented as the

condition vector which is directly passed as an input to the CVAE. Thus, after the model

is trained, it can generate new materials with properties close to the desired ones. A key

difference between this and the approach taken by Gómez-Bombarelli et al. is that here, we

do not need to perform optimization for every vector of properties after the generation.

The generator model in this study is a deep CVAE consisting of 7 hidden layers and as

mentioned earlier, it can be described by three different pieces: the encoder, latent space and
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Figure 5: CVAE model used for generation of materials. The 979-dimensional one hot feature
vector is concatenated with the respective properties of the material and is fed as input to
the encoder network. The encoder networks encodes this information into a vector in the
latent space (z). The decoder networks takes the property of the material along with its
latent vector and regenerates the material.

the decoder (Figure 5). As mentioned above, the material compositions are represented by

a 979-dimensional vector. During training, along with the feature vector X describing the

compound, the three properties Y are also appended and hence, the dimension of the first

layer becomes 982. The encoder has 3 hidden layers and its architecture is given in Table

2. The latent space Z has a dimension of 32. During decoding,the three properties Y of

the material are appended again so that the decoder can be controlled later to manipulate

these properties and reach the desired target material. The architecture of decoder is given

in Table 2. Each layer in the model, except the last layer of decoder has a ReLU activation

unit, whereas the last layer of decoder has a softmax activation function.

Table 2: The architecture of the encoder, latent space and the decoder network of DING
model.

Network Dimensions
Encoder 982:512:256:128:32

Latent Space 32
Decoder 35:128:256:512:982
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Generation of materials

After the CVAE is trained, the decoder part of the model is used for generating materials. A

random z is sampled out from N(0, I), and is concatenated with the desired property values,

which is then given as an input to the decoder model. The decoder model then outputs the

composition of the material with the desired properties (See Figure 6). The predictor models

then are used to predict the values of the three properties for further filtering/validation.

Figure 6: Schematic representation of the protocol for generation of materials using the
decoder part of the trained CVAE model.

Training

Keras61 deep learning framework with Tensorflow62 back-end was used for all the training

and validation purposes. Mean absolute error was used as the objective function to train the

the predictor networks. For training the generative model, categorical cross entropy was used

as the objective function, and Kullback-Leibler (KL) divergence loss was used to ensure that

encoded samples in the latent space followed a normal distribution. ADAM optimizer63 with

the parameters as suggested by the authors was used for both the networks. The learning

rate64 was reduced on plateau with a patience of 5 epochs from 0.1 to 10−5 during the training

process of both the networks.
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Figure 7: Plots of the correlation between the predicted and ground truth values of the
three properties calculated for the materials in the test set. Linear fit and the coefficient of
determination are also depicted.
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Results and Discussion

The framework proposed in this study consists of two parts: one is the generator network and

second is the predictor networks. The generator network, which is based on CVAE,52 is used

to propose material candidates with desired target properties. The predictor networks are

used to assess the proposed candidates and filter/validate the generated candidates. For this

method to be accurate, it is ideal that the generator network proposes more candidates in the

region of desired target, and the predictor networks are able to accurately assess the property

values of candidates in this region. In this section, the accuracy of the predictor models

followed by the ability of the DING model to generate materials with desired properties are

presented.

Three independent neural networks each for the predictions of formation enthalpy, volume

per atom and energy per atom that were trained on the OQMD dataset12 with a similar

architecture comprise the predictor module (Figure 4 and Table 1). Figure 7 depicts the

correlation between the three predicted properties considered in this study and the DFT

calculated values corresponding to the test set of the dataset. The mean absolute errors

for the prediction of formation enthalpy, volume per atom and energy per atom are 0.051

eV/atom, 0.398 Å3/atom and 0.072 eV/atom respectively. The coefficient of determination

corresponding to these plots are also given in the plots. These two measures indicate that

the predictor module is able to predict all the three properties considered here reasonably

accurately.

Though the predictor module is very accurate in predicting the three material properties,

it is clear from Figure 7 that predictions in certain regions are less accurate. Hence the

predictor module is not applicable in those ranges. For example, when the DFT calculated

energy per atom value is more than –0.5 eV, the performance of the predictor model is not

adequate. This is possibly because of the availability of less samples for satisfactory training.

This problem is less pronounced in the other two predictors which model the formation

enthalpy and the volume per atom. A qualitative analysis of the errors in the predictions
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Figure 8: The absolute errors of the predictor models in the range of material property values
where the applicability of the model is adequate.

was done and the range of values that are reliably predicted by the model was identified

(see Table 3). The absolute error of the values as a function of the ground truth values of

the three properties are given in Figure 8. The mean absolute errors corresponding to these

ranges are also given in Table 3. Notably, these MAEs are close to those given above, which

emphasizes that this exercise is done to identify the range of target values where the model

is applicable.
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Table 3: The ranges of the property values within which the predictor module is applicable
and accurate. The MAE in the given range is also given.

Property Minimum Maximum Mean Absolute Error
Formation Enthalpy –3.90 eV/atom 3.06 eV/atom 0.048 eV/atom
Energy per atom –12.78 eV/atom –0.77 eV/atom 0.069 eV/atom
Volume per atom 7.06 Å3/atom 75.83 Å3/atom 0.397 Å3/atom

The generator module was built using CVAE, which is responsible for the generation of

candidate material compositions with target property values. One of the primary aspects

of the CVAE model is its ability to reconstruct the input features with high accuracy.52

After training the network using categorical cross entropy along with KL divergence as the

objective function, the model was able to reconstruct 94.30± 0.36% materials from the test

set averaged across 5 independent runs. In other words, after training, the input and the

output feature vectors were identical for 94.30± 0.36% of the materials in the test set. This

indicates that the 32-dimensional latent space (bottleneck) is able to capture most of the

material features originally represented in 979-dimensions.

The second important aspect of the CVAE model relevant to material generation is

the continuity of the latent space. Such a continuous latent space is differentiable making

gradient based optimization for searching the material space possible.65,66 It is also possible

to interpolate between two points on the continuous representations/materials48 and also

allows for decoding random vectors in the latent space to material compositions. In the

trained DING model, a walk between latent vectors of two generated materials with the same

properties was undertaken to examine the continuous nature of the latent space (Figure 9).

This is done by comparing the material compositions of the initial and final with that of the

intermediate points along the walk. Once the initial and final points corresponding to the

two generated materials on the latent space are chosen, the following equation is used to

generate the intermediate latent vectors.

zintermediate = zinitial + (zfinal − zinitial) ∗ ε (3)
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Here zinitial and zfinal corresponds to the latent vector of the two generated materials and

zintermediate corresponds to the latent vector of the intermediate materials while taking the

walk. The initial value of ε is 0 and was incremented by 0.01 at each step until the material

corresponding to zfinal is generated.

Figure 9: Schematic representation of the initial and final points on the latent space and the
path taken from zinitial and zfinal (top). Two examples of the initial, final and intermediate
points corresponding to generated materials are also given (bottom).

Figure 9 depicts the schematic representation of the initial and final points on the latent

space corresponding to two materials (zinitial and zfinal). The path connecting the two points

via intermediate material compositions is given by a red arrow. If the latent space obtained in

the DING model is truly continuous, it should in someway reflect in the material compositions.

Two examples were chosen to demonstrate this phenomenon: (i) F7Zn and Nd2PdRb as

initial and final material compositions, and (ii) LiSb2Se4 and HgSnZn as the initial and

18



final material compositions. The intermediates going from these two initial states to their

corresponding final states exhibit a smooth transition. Any two adjacent materials in the

path involves only a single element being added or removed when going from one to the other

in either direction substantiating the continuous nature of the latent space.

Figure 10: Probability distributions of the properties of the materials generated with two
sets of target values using the trained CVAE (DING) and VAE models. The target values of
each properties are given in purple spikes along with the corresponding distributions.

The above sections demonstrated that the CVAE based DING model is able to accurately

reconstruct the input vectors and the significantly lower dimensional latent space is continuous.

The third aspect of the DING model that needs examination is its ability to generate material

19



compositions that exhibit certain target values of material properties. The decoder network

of the trained CVAE model was used for the generation of new material candidates.

A random z sampled from N(0, I) along with the desired target property is used as the

input for the decoder network. The output of the decoder network is the feature vector

corresponding to the generated new material candidate, which can further be examined using

the predictor networks discussed above. As a baseline, a variational autoencoder (VAE)48,66

model was trained on the same training set. The reconstruction accuracy of this trained

VAE model is 93.72± 0.60% for the test set averaged across 5 independent runs. The target

property is selected from the acceptable range defined earlier for the predictor models (Figure

8 and Table 3). Comparison of the properties of material candidates generated by the the

trained CVAE model with this VAE model is expected to reveal the capability of DING

framework to generate material compositions with desired properties.

The DING decoder and the trained VAE model were used to generated 1000 unique

material compositions each based on different sets of target property values. Two select set

of values of the three properties (–2 ev/atom, –2.5 ev/atom & –6.5 ev/atom, –3 ev/atom

& 12 Å3/atom, 30 Å3/atom for formation enthalpy, energy per atom and volume per atom

respectively) are chosen here to demonstrate the generation capability of the DING method.

The predictor module was used to calculate the three properties for all the 4000 material

compositions whose probability distributions are depicted in Figure 10. As expected, the

probability distributions of the properties of the materials generated using the VAE model

roughly resembles the distribution of the dataset chosen for the training. However, the

distributions of the material properties obtained based on the DING model shift towards the

target values (indicated by a purple colored spike) in every instance. This clearly demonstrates

that it is possible to manipulate the continuous latent space obtained in the DING model to

generate materials with desired properties. In other words, DING model allows for focused

searching of materials in an otherwise large chemical space.
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Conclusion

In this study, a deep learning model, namely DING, developed using CVAE capable of gener-

ating candidate materials with desired properties is reported. Such a method is significantly

more efficient than the conventional combinatorial search approach both in terms of time and

in terms of comprehensive searching of the chemical space. A novel feature vector, which effec-

tively encodes the composition of the materials is used here based on which both the predictor

and generator modules were trained. The predictor models part of the DING framework,

which are deep neural networks, exhibit high accuracy demonstrating the robustness of the

trained network and the adequacy of the feature vector. The generator module consists of a

latent space that is crucial for the generation of new materials. Examination of the continuous

nature of the latent space indicates that the model has learnt the underlying chemistry in

terms of the material composition. The predictor module was used to examine the materials

generated with desired set of properties, and it clearly indicates that the generator is able

to positively bias the material search in the chemical space. This method is successful in

accurately predicting material properties and is able to generate new material candidates;

however, it is desirable that model is able to learn and generate three-dimensional structures

of the materials than just the material compositions. Future work in this direction is in

progress.
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