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Abstract
Prediction of combustion-related properties of
(oxygenated) hydrocarbons is an important
and challenging task for which quantitative
structure-property relationship (QSPR) mod-
els are frequently employed. Recently, a
machine learning method, graph neural net-
works (GNNs), has shown promising results
for the prediction of structure-property rela-
tionships. GNNs utilize a graph representa-
tion of molecules, where atoms correspond to
nodes and bonds to edges containing infor-
mation about the molecular structure. More
specifically, GNNs learn physico-chemical prop-
erties as a function of the molecular graph in
a supervised learning setup using a backprop-
agation algorithm. This end-to-end learning
approach eliminates the need for selection of
molecular descriptors or structural groups, as
it learns optimal fingerprints through graph
convolutions and maps the fingerprints to the
physico-chemical properties by deep learning.
We develop GNN models for predicting three
fuel ignition quality indicators, i.e., the derived
cetane number (DCN), the research octane
number (RON), and the motor octane num-
ber (MON), of oxygenated and non-oxygenated
hydrocarbons. In light of limited experimen-

tal data in the order of hundreds, we propose
a combination of multi-task learning, transfer
learning, and ensemble learning. The results
show competitive performance of the proposed
GNN approach compared to state-of-the-art
QSPR models making it a promising field for
future research. The prediction tool is available
via a web front-end at www.avt.rwth-aachen.
de/gnn.

1 Introduction
The worldwide increase in CO2 emissions and
the depletion of fossil resources call for the de-
velopment of renewable fuels. A wide range
of non-oxygenated and oxygenated hydrocar-
bons derived from renewable resources such
as biomass has been investigated as pure-
component fuel or blend components for use
in internal combustion engines.1–7 To deter-
mine how suited a molecule is for a fuel ap-
plication, combustion-related properties need
to be evaluated. The cetane number (CN) or
derived cetane number (DCN), the research
octane number (RON), and the motor octane
number (MON) are commonly employed to
characterize the auto-ignition/knocking behav-
ior of a particular fuel. Fuels with a high RON
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(MON) exhibit low knocking tendency and are
therefore suitable for spark-ignition (SI) en-
gines, whereas fuels with a high (D)CN (ap-
prox. above 40) exhibit a short ignition delay
which is required in compression-ignition (CI)
engines.4,8,9 Experimental RON, MON, and
(D)CN values are available for a range of dif-
ferent fuel molecules,10–12 however, for many
interesting molecules such data is not readily
available. For these molecules predictive mod-
els are required that enable rapid estimation of
fuel ignition quality.4,13
In the past decades, several models have

been developed to predict (D)CN12–28 and
RON/MON12,16,29–32 of (oxygenated) hydro-
carbons by utilizing quantitative structure-
property relationship (QSPR) modeling. In
QSPR, the modeling process can be broken
down into two steps: First, QSPR models intro-
duce molecular descriptors D = [d1, d2, ..., dn]

T

that depend on the structure of a molecule m.
Second, a regression model F (D) : D 7→ p̂ is
fitted that predicts a property p̂ as a function
of D.33 The regression model is either linear or
nonlinear, depending on the QSPR. Group con-
tribution methods34–36 are a particular type of
QSPR model where the molecular descriptors
D are structural group counts, i.e., the number
of occurrences of basic functional groups, e.g.,
methyl (−CH3−) or methylene (−CH2−), in a
molecule m.
QSPR models for DCN, RON, and MON

differ in the way they encode the molecu-
lar structure. Various descriptors have been
used including structural group counts (e.g.,
in12–14,21,29–32), the number of aromatic bonds
(e.g., in13,27), and topological indices, such
as the Wiener Index37 or branching indices
(e.g., in20,26,31). Previous models have also
used a variety of techniques for the regres-
sion step, e.g., linear or nonlinear regres-
sion,13,14,21,26,29,30 or artificial neural networks
(ANNs).12,17–19,22,24,27,30–32 Development of
QSPR models, however, highly depends on the
choice of informative descriptors, a selection
process that requires domain knowledge and
intuition.
Deep learning allows to learn representations

of data with multiple abstraction levels. This

has shown remarkable success for end-to-end
learning in various domains surpassing previ-
ously performed manual feature selection.38 In
particular, graph neural networks (GNNs)39,40
have recently shown promising results for the
prediction of structure-property relationships
of molecules.41–46 GNNs utilize graph represen-
tations of molecules, where atoms correspond
to nodes and bonds correspond to edges. For
each atom, its local environment is learned by
graph convolutions. These atom environments
are then combined into a molecular fingerprint
by applying pooling functions.47 Finally, an
ANN maps the fingerprint to the molecular
property of interest. Since the graph convolu-
tions and pooling functions are differentiable,
the full model can be trained with the back-
propagation algorithm. In contrast to QSPRs,
the processes of choosing molecular descriptors
and performing property regression are thus
merged into a simultaneous training step. This
enables supervised end-to-end training from the
molecular graph to the property. In particular,
the molecular fingerprints adapt during train-
ing and learn molecular structure information
that is important for the property of interest.
We propose the first GNN model for the pre-

diction of DCN, RON, and MON. The model is
trained on literature data and is applicable to a
wide range of oxygenated and non-oxygenated
hydrocarbons. The GNN architecture includes
state-of-the-art higher-order molecular graph
features46 and is provided open-source.48 Fur-
thermore, we provide a web front-end that can
be easily accessed online to make predictions.
The web front-end takes SMILES strings as
input and automatically predicts DCN, RON,
and MON (www.avt.rwth-aachen.de/gnn).
One of the main challenges in GNN training

in the context of fuel ignition quality is the lim-
ited availability of training data. To mitigate
this issue, we propose three model extensions
that reduce data requirements while achiev-
ing competitive prediction accuracy: First, we
propose a multi-task learning approach where
DCN, RON, and MON are trained jointly. This
approach shares the graph convolutions and
the molecular fingerprint among all prediction
tasks and thus takes advantage of correlations
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between DCN, RON, and MON data sets. Sec-
ond, we perform a transfer learning approach
that utilizes a broader data set from differ-
ent (D)CN measurement techniques for pre-
training of our final model. Third, we perform
ensemble learning averaging out random model
variations.
The remainder of this paper is structured

as follows: In Section 2, we provide a gen-
eral background on graph representations of
molecules and GNNs. Then, we briefly describe
the databases of this work in Section 3. After-
wards, we propose the GNN architecture in
Section 4. Furthermore, we briefly describe the
considered learning methods: multi-task learn-
ing, transfer learning, and ensemble learning.
In Section 5, we present the results, discuss the
different learning methods, and compare our
GNN model to state-of-the-art QSPR models.
Finally, we conclude our findings and show
potentials for future research (Section 6).

2 Fundamentals of graph
neural networks

In this section, we present a brief background
on graph representations for molecules and
GNNs. Furthermore, we introduce the concept
of higher-order GNNs that is fundamental to
our modeling approach.

2.1 Molecular graphs

Any molecule can be represented as a molec-
ular graph where nodes w, v ∈ V correspond
to atoms. Edges evw ∈ E correspond to bonds
between two atoms.49,50 Furthermore, a feature
vector is assigned to each node and each edge
that includes information about atom types,
e.g., C atom, and bond types, e.g., double bond.
The node feature vectors fV (v) can contain ad-
ditional atom information such as orbital hy-
bridization. To reduce the size of molecular
graphs, hydrogen atoms can be implicitly in-
cluded in the feature vectors of nodes of heavy
atoms by using a hydrogen count, resulting
in an H-depleted molecular graph.51 Similarly,
bond feature vectors fE(evw) can provide ad-

ditional information, e.g., on ring structures.
GNNs operate on graph structures, i.e., they
take the molecular graph and its feature vec-
tors as inputs.

2.2 Graph neural networks

As illustrated in Figure 1, GNNs have two main
phases: (i) the message passing phase and (ii)
the readout phase.43 In the message-passing
phase, graph convolutional layers are commonly
applied with a large variety of layer structures
existing.41,43,47,52,53

Figure 2 illustrates the basic concept of graph
convolutional layers. The overall goal of the
graph convolutional layer is to combine node in-
formation of a considered node (here #2 in red)
with node information of its neighbors (here
#1,3,4 in yellow) and bond information (green).
To this end, node state vectors and edge state
vectors are combined through message and up-
date functions as explained in more detail in
the following. The result of the graph convolu-
tional layer is an updated node state vector of
the considered node.

Within a graph convolutional layer, infor-
mation about a node’s neighborhood N(v) =
{w | evw ∈ E,w 6= v} is aggregated and passed
to the respective node.43 The message ml

v is
passed along edges to a node by applying a mes-
sage function M l, i.e.,

ml
v =

∑
w∈N(v)

M l

(
hl−1w ,fE(evw)

)
,

where hl−1w denotes the hidden state of a neigh-
bor in layer l − 1. The 0-th hidden state vec-
tor is initialized with the input feature vector
of a node, i.e., h0

v = fV (v). The message
function M l depends on the previous hidden
states of the neighbors hl−1w and the features of
the respective edges fE(evw), with the dimen-
sion of the hidden state vector for layers l > 0
being a hyperparameter. The hidden state of
the considered node hl−1v is then updated to
hlv by an update function U l that combines its
hidden state from the previous layer with the
received message containing information of its
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Figure 1: Overview of a graph neural network model for property prediction.

neighbors:

hlv = U l

(
hl−1v ,ml

v

)
The message passing and updating is repeated
for a fixed number of iterations which results
in multiple graph convolutional layers l ∈
{1, 2, ..., L}. After L graph convolutions, the
hidden states of nodes hLv contain local informa-
tion of environments with a radius of L nodes.
In the readout phase, the hidden node states

of the last convolutional layer are combined into
a graph representation vector hG, i.e., molec-
ular fingerprint, by using a pooling function
hG = p(hL1 ,h

L
2 , ...,h

L
|v|) where p is commonly

chosen as the mean, sum, or max function.52
Finally, the molecular fingerprint vector hG is
utilized for regression of molecular properties
of interest, e.g., using a multilayer perceptron
(MLP), i.e., p̂ = MLP(hG).
A strong advantage of this method is that

all functions from the molecular graph to the
property are explicit and differentiable allow-
ing for supervised training using backpropa-
gation. This enables end-to-end learning of
GNNs, whereby the graph convolutions and
the molecular fingerprint adapt during training
to extract information of the molecular graph

that is relevant for the property to be pre-
dicted.41,43,54

2.3 Higher-order graph neural
networks

Morris et al. have recently extended the mes-
sage passing to higher-order graph features.46
Here, the message passing step does not only
apply to the initial molecular graph but also to
modified higher-dimensional molecular graphs.
For these higher-dimensional graphs, the nodes
are k-dimensional subsets s of the nodes in
the initial graph, s = {v1, ..., vk} ∈ [V ]k =
{U ⊆ V | |U | = k} for k > 1. Hence,
any combination of k nodes from the original
graph (atoms in the molecular graph) are com-
bined in a separate node.
The neighborhood of a k-dimensional node s

is defined as N(s) = {t ∈ [V ]k | |s∩ t| = k− 1}
for k > 1. This means that two k-dimensional
nodes s and t with k atoms each are adja-
cent to each other if the cut set of the two
nodes consists of k − 1 atoms. This concept
of higher-order neighborhood is illustrated in
Figure 3, where we consider a red node and its
yellow neighbor in the initial molecular graph
(1-GNN) as well as higher-order graphs.
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Figure 3: Illustration of the neighborhood in
k-dimensional graphs. We highlight the yellow
neighbors of a red node.

The message passing phase for the initial
molecular graph is referred to as 1-GNN. The
message passing phase for higher-dimensional
graphs with nodes consisting of k nodes from
the original graphs, the structure is called
k-GNN.46 When considering k-dimensional
nodes, the initializations of the hidden node
states cannot simply be atom types and fea-
tures, but rather must be combinations of the
respective individual atom types and features.
At first, the initialization of the hidden node
state of a k-dimensional node s contains the
isomorphic type f iso(s).46 For example, the

initial H-depleted molecular graph (k = 1) of
oxygenated hydrocarbons, the isomorphic type
of the node v corresponds to the atom type
{{C},{O}} and is included in the initial fea-
ture vector of a node. For the 2-GNN (k = 2)
of such hydrocarbons, the isomorphic type of
the set s = {v1, v2} corresponds to the 2-set of
atom types: {{C,C},{C,O},{O,O}}.
Furthermore, the k-GNN model usually works

in a hierarchical manner such that the outputs
of the (k-1)-th GNN serve as inputs for the k-th
GNN.46 Therefore, in addition to the isomor-
phic type, the respective hidden node states
of the last graph convolutional layer L of the
preceding GNN are combined by a pooling
function, e.g., mean function, and used for ini-
tializing the hidden state of a k-dimensional
node. Note that this does not refer to the pool-
ing of the molecular fingerprints in the readout
phase. Hence for the 2-GNN, the hidden node
states of a subset s = {v1, v2} are initialized
with the concatenation (‖) of the isomorphic
type and the averaged hidden node states of
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the two respective nodes from the 1-GNN, i.e.,
h2,0
s = f iso(s) ‖mean(hLv1 ,h

L
v2
).

3 Data basis for fuel ignition
quality

We collect DCN, RON, and MON data of non-
oxygenated and oxygenated hydrocarbons from
different literature sources. The number of
species per molecular class and fuel ignition
quality indicator is shown in Table 1. Note that
we provide our full data set in the Supporting
Information (SI).
The cetane number (CN), an indicator for

CI fuel quality, is determined in a coopera-
tive fuel research (CFR) reference engine.55 In
comparison to the CFR engine, testing meth-
ods in a variety of constant-volume combustion
chambers (CVCCs) require lower fuel quanti-
ties and shorter measurement times, but yield
so-called derived cetane numbers (DCNs)11 in-
stead of true CFR CN. Our objective is to pre-
dict DCN values determined by a particular
CVCC-based experimental setup, i.e., the ig-
nition quality tester (IQT) which is standard-
ized by the ASTM D698056 and widely used
to assess diesel fuel ignition quality.13,57 To this
end, we consider IQT-DCN data from the Com-
pendium of Experimental Cetane Numbers pro-
vided by Yanowitz et al.11 for 236 different
species.
Although (D)CN values from non-IQT exper-

iments cannot be expected to closely match
IQT-DCN,13 we utilize such data for a trans-
fer learning approach. Specifically, we con-
sider (D)CN values for 479 species from various
measurement setups from the Compendium of
Experimental Cetane Numbers.11 We exclude
the test set compounds, use the remaining 447
molecules for pre-training, and subsequently re-
fine the resulting model based on IQT-only
data. We provide the different data sets cre-
ated for model development online.48
RON and MON are used to quantify the

knocking tendency of a fuel and are suitable
ignition quality indicators for SI engines. They
are measured according to the ASTM D269958

and ASTM D270059 standards, respectively.

As a database for our model, we take RON
(MON) values for 335 (318) species from liter-
ature.2,10,12,32,60–67 For all reported data (RON,
MON, DCN), we take average values whenever
multiple values have been reported for a single
species.

4 Modeling approach
In this section, the GNN model development is
described (cf. Figure 4). First, the workflow
of the molecular representation is explained in
Section 4.1. Then, the basic architecture of the
GNN model is outlined in Section 4.2. Finally,
the model extensions for multi-task learning
(Section 4.3), transfer learning (Section 4.4),
and ensemble learning (Section 4.5) are de-
scribed.
We use PyTorch Geometric,68 an open-source

library for deep learning on graphs in Python.
The implementation is adapted from our previ-
ous work on k-GNNs.46 Our open-source code
for training as well as the trained models can
be retrieved on.48 Additionally, for more con-
venient use, the model can be accessed freely
via a web front-end (www.avt.rwth-aachen.
de/gnn) to make predictions.

4.1 Molecular representation

For generating the representation of molecules
that serve as an input to the GNN, SMILES
strings69 are transformed into molecular
graphs. Each node and each edge is assigned
a feature vector. The features are selected ac-
cording to previous literature41,43,44 and are
shown in Table 2 and 3 for nodes and edges,
respectively. Each feature is represented as a
one-hot encoder with the size of the number of
possible values for this feature and a single en-
try with value one at the index corresponding to
the value of the feature. Furthermore, RDKit70
is used for SMILES strings transformation and
calculation of features.
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Table 1: Data basis assembled for this work: Number of species per molecular class and fuel ignition
quality indicator.

IQT-DCN (D)CN RON MON

n-alkanes 9 18 7 7
iso-alkanes 17 39 43 42
cycloalkanes 20 34 74 65
alkenes 15 33 87 84
cycloalkenes 10 12 22 22
alkynes 1 1 8 4
aromatics 13 63 41 43
alcohols 22 39 14 13
cyclic alcohols 2 2 – –
aldehydes 7 7 – –
ketones 9 9 8 7
cyclic ketones 5 5 2 2
ethers 17 27 5 5
hydrofurans 7 7 3 3
other cyclic ethers 4 4 2 2
esters 39 133 12 12
lactones 4 4 1 1
furans 5 5 3 3
acetals 2 2 1 1
carboxylic acids – 5 – –
more than one type of oxygen functionality 28 30 2 2

Total 236 479 335 318

Table 2: Atomic features used as initial node states, similar to.41,43,44 All features are implemented
as one-hot encoders.

Feature Description Dimension

atom type type of atom (C, O) 2
is in ring whether the atom is part of a ring 1
is aromatic whether the atom is part of an aromatic system 1
hybridization sp, sp2, sp3, sp3d, or sp3d2 5
# bonds number of bonds the atom is involved in 6
# Hs number of bonded hydrogen atoms 5

Table 3: Bond features used as edge features, similar to.41,43,44 All features are implemented as
one-hot encoders.

Feature Description Dimension

bond type single, double, triple, or aromatic 4
conjugated whether the bond is conjugated 1
is in ring whether the bond is part of a ring 1
stereo none, any, E/Z, or cis/trans 6
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2-GNN part, are concatenated and represent the molecular fingerprint. This serves as the input for
the three MLP channels predicting the target properties.

4.2 Model architecture

The proposed GNN model combines our higher-
dimensional GNNs46 with recurrent neural
network architectures.43,71,72 By using higher-
dimensional GNNs, higher-order characteristics
of a molecular graph can be extracted. The
recurrent neural networks allow us to share pa-
rameters within the message passing phase of
a GNN. We use gated recurrent units (GRUs)
as recurrent neural networks, because GRUs
avoid the vanishing gradient problem while
having fewer parameters than long short-term
memories (LSTMs) and thus have the poten-
tial to generalize faster on small data sets.71
As illustrated in Figure 4, we apply two GNN
structures in the message passing phase: (i)
1-GNN and (ii) 2-GNN. Thereby, atom en-
vironments in a molecule are first examined
locally and then interactions between different
atom environments are studied.
First, in the 1-GNN, an edge feature network

and a GRU explore local atomic environments
within the molecular graph. In particular, the
updated hidden state in layer l, i.e., hlv, is
computed as

hlv = GRU
(
hl−1v , σ

(
θv · hl−1v +ml

v

))
,

where the message ml
v is given by

ml
v =

∑
w∈N(v)

hl−1w · ANNθe

(
fE(evw)

)
.

Herein, the edge feature network is a feedfor-
ward ANN, i.e., ANNθe , that maps edge fea-
tures fE to a parameter matrix θe. Then,
the parameter matrix θe is multiplied with the
hidden states of a node’s v neighbors, hl−1w

with w ∈ N(v), to calculate the message m.
The message is added to the hidden state of
the considered node hl−1v multiplied with a pa-
rameter matrix θv. This result is transformed
with an activation function σ, here rectified lin-
ear unit (ReLU). By applying a GRU, the up-
dated hidden state in layer l, i.e., hlv, is finally
computed. Note that the initial hidden states
h0
v = fV (v) are mapped to the dimension of

the following hidden states by a shallow ANN
with ReLU activation.
Secondly, a higher-dimensional message pass-

ing process is applied to enable interactions be-
tween atom environments (cf. Section 2.3). By
combining the final atom representations of the
1-GNN into higher-dimensional nodes on which
another message passing phase is applied, long-
range effects of atom groups within a molecule
can be captured. In this work, we found a 2-
GNN architecture to have superior model per-
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formance compared to that of a 3-GNN or a
simple 1-GNN, thus the 2-GNN architecture
is used to learn higher-dimensional graph fea-
tures. Accordingly, we call the hierarchical
combination of the 1-GNN and 2-GNN struc-
ture 1,2-GNN in the remainder of this work. We
update the hidden states in the 2-GNN message
passing similarly to the previously described 1-
GNN, except that the edge feature network is
replaced by a simple parameter matrix θk2 as
there are no features for edges of the higher-
order graph.46
After the message passing process, the model

employs sum pooling for aggregating the hidden
node states of the 1-GNN and 2-GNN resulting
in two graph representation vectors. Sum pool-
ing is applied, since the nature of DCN, RON,
and MON is expected to be extensive at a mi-
croscopic level, similar to group additivity mod-
els.12,13 After pooling, the two graph represen-
tation vectors are concatenated to the molecu-
lar fingerprint, i.e., hG = [hTG1−GNN

,hTG2−GNN
]T .

Finally, the molecular fingerprint is fed into a
deep MLP for the prediction of DCN, RON, and
MON, p̂ = MLP(hG).

4.3 Single- and multi-task learn-
ing

Having several prediction tasks, machine learn-
ing models can be trained in single- or multi-
task manner.73–75 In single-task learning, in-
dividual models are trained for each task.
In multi-task learning, some representation is
shared among the different tasks. For ANNs,
this means that weights and bias parameters
of hidden layers are shared between multiple
tasks, i.e., they have equal values. Besides the
shared layers, further individual hidden layers
are employed for each task. The shared repre-
sentation captures general information that is
relevant to all tasks.74 In the individual lay-
ers, task-specific information is extracted. In
this way, the model learns more general input
representations in the first layers compared to
single-task models and overfitting can be re-
duced.74 This is particularly relevant when the
data sets are considerably small. Furthermore,
multi-task learning can enable knowledge trans-

fer between different prediction tasks.75 In pre-
vious literature, this has been shown to yield
superior results to single-task models in multi-
ple molecular applications.41,76,77
In our model, we utilize multi-task learning by

sharing the graph convolutional layers to create
a general molecular fingerprint on which three
individual MLPs (also called channels) are used
for predicting DCN, RON, and MON. As cetane
and octane numbers are known to correlate neg-
atively,4,8,12,13,78,79 multi-task learning is partic-
ularly promising in this context.

4.4 Transfer learning

Another technique enabling knowledge transfer
in machine learning is transfer learning.80,81 In
transfer learning, knowledge learned in one do-
main is transferred to another domain, i.e., to
the target task.81 One way to perform trans-
fer learning concerns pre-training of ANNs on a
(source) task related to the target task. After-
ward, the parameters of the pre-trained model
are used to initialize parameters of a model
trained on the target task data. Thus, trans-
fer learning is particularly relevant for problems
where the target data basis is small.
Transfer learning has recently been applied

in the context of molecular property predic-
tion with GNNs. For example, Grambow et al.
pre-trained GNNs for thermophysical property
predictions on large data sets from quantum-
mechanical calculations and retrained parts of
the GNN on a smaller experimental data set.82
We aim to improve our IQT-DCN predic-

tion by transferring information from additional
(D)CN data, i.e., from measurement techniques
other than IQT (cf. Section 3). Thus, we pro-
pose a transfer learning approach, where CN
and DCN data from various measurement se-
tups are utilized for pre-training and then mod-
els are retrained on IQT-only DCN data.

4.5 Ensemble learning

Ensemble learning is a technique in machine
learning where multiple models are trained and
utilized for a single prediction task.83–85 In
most applications, several individual models are
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trained independently on a randomly drawn
subset of the training data. Then, the predic-
tions of the individual models are averaged to
receive a more accurate prediction. This way,
prediction can be improved as random model
errors are averaged out. Averaging single model
predictions is also known as bootstrap aggre-
gating or bagging.83 This is particularly rele-
vant for models with low bias and high variance
which is the case for complex GNNs. Further-
more, small data sets can lead to high variance.
We train independent GNN models with ran-

domly selected training and validation sets. To
ensure an unbiased model comparison, all mod-
els share the same independent test set. While
some advanced ensembling techniques apply
weights to models, e.g., boosting,86 we use a
standard bagging technique that applies the
same weight to all models.

5 Results and discussion
In this section, we first briefly summarize the
general training settings (Section 5.1) and hy-
perparameter selection (Section 5.2). Then, we
analyze the prediction accuracy of the proposed
model developments: multi-task learning (Sec-
tion 5.3), transfer learning (Section 5.4), and
ensemble learning (Section 5.5). Finally, we
compare the proposed model to state-of-the-art
QSPR models (Section 5.6).

5.1 General training settings

As described in Section 3, the data set of DCN
values extracted from the Compendium of Ex-
perimental Cetane Numbers11 includes DCN
measurements of 236 different components mea-
sured with the IQT method. We use this high-
quality DCN data set and the RON and MON
data sets for the training of the single and multi-
task models (cf. Section 5.3). As typically done
in machine learning, the data sets are standard-
ized to zero mean and standard deviation of one
for each target property, i.e., DCN, RON, and
MON. Then, the data sets are randomly split
into a training (85%) and test (15%) set. The
test set is separated from the rest of the data

and not used until the final testing of the model.
For training the model, an internal validation
set (15% of the original data set) is separated
randomly from the training data and used for
early stopping.
For each data point, the molecular graphs are

generated as described in Section 4.1. Then,
the model is trained based on the training set.
Here, the mean squared error is used as the loss
function. During training, the model perfor-
mance regarding the internal validation set is
measured in each epoch. The learning rate is
decreased by a factor of 0.8 after every 3 con-
secutive epochs in which the error on the in-
ternal validation set did not decrease. Train-
ing is stopped either after a maximum num-
ber of 300 epochs was reached or if the in-
ternal validation error did not decrease in the
50 preceding epochs, according to early stop-
ping. The error on the internal validation set is
also used for comparison of the different model
structures and the selection of hyperparame-
ters. The training and random selection of the
internal validation set are repeated 40 times for
all models.

5.2 Hyperparameter selection

The proposed GNN model exhibits sev-
eral hyperparameters that need to be cho-
sen. To identify a suitable model archi-
tecture, relevant hyperparameters are varied
within the given ranges: initial learning rate
∈ {0.0005, 0.001, 0.005}, hidden states size
∈ {32, 64, 128}, number of graph convolutional
layers ∈ {1, 2, 3, 4, 5} for the 1-GNN part and
number of graph convolutional layers ∈ {1, 2, 3}
for the 2-GNN part, and message passing func-
tion ∈ {without GRU, with GRU}. We per-
formed an a priori extensive hyperparameter
analysis on a preliminary data set. Based on
the results of the parameter study, we use mes-
sage passing with GRU, two graph convolu-
tional layers in the 1-GNN part, two graph
convolutional layers in the 2-GNN part, the
size of the hidden node states is set to 64, and
the initial learning rate is set to 0.001.
The remaining hyperparameters are described

in the following and selected based on literature
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and expert knowledge. Trial and error attempts
to change these other hyperparameters did not
lead to improved results. We use atom and
bond features as described in Section 4.1. We
apply an edge feature network with three layers
and the following number of neurons: #1: 12
(i.e., number of edge features), #2: 128, #3:
4096 (i.e., number of hidden state squared).
The MLPs constitute five layers with #1: 128,
#2: 64, #3: 32, #4: 16, #5: 1 neurons.

5.3 Single- and multi-task learn-
ing

The aforementioned model settings were used
for single-task and multi-task learning. The
mean absolute errors (MAEs) of the two ap-
proaches on their validation and test set are
displayed in Figure 5. The respective box plots
illustrate the distribution of MAEs over the 40
individual training runs for each model.
Figure 5 shows that the model performance

exhibits a high variance. This is mainly caused
by the small data size for training, validation,
and testing. As the validation sets of the 40 in-
dependent model runs are selected randomly,
they show a larger variance of the MAE. In
contrast, all 40 independent models share the
same test set. Thus, the MAE distribution on
the test set is more narrow. One methodology
against high model variance is bootstrap aggre-
gation which is performed in Section 5.5.

Table 4 summarizes the MAEs on the train-
ing, internal validation, and independent test
set averaged over the 40 training runs for com-
parison. The averaged results show that the
multi-task training approach improves the pre-
diction accuracy on all test sets and for all pre-
dicted properties. For instance, the MAE of the
DCN on the test set is reduced by about 17%
from 6.6 to 5.5.
The results indicate that the simultaneous

learning of DCN, RON, and MON leads to
a better generalization of the graph convolu-
tional layers and thus molecular fingerprint.
One reason for the synergies are believed to
be the correlations between DCN, RON, and
MON.4,8,12,13,78,79

5.4 Transfer learning

For the transfer learning approach, we pre-train
the single-task DCN model on data from all dif-
ferent (D)CN measurement methods, i.e., we
use (D)CN data of 447 components collected
by Yanowitz et al.11 (cf. Section 3). Then,
the learned parameters are used to initialize
the parameters in the graph convolutions and
the MLP of the single-task DCN and also the
multi-task model. For the latter, only the pa-
rameters of the MLP for predicting the DCN
are transferred from the pre-training since RON
and MON values are not subject to transfer
learning. Finally, we retrain the models by only
considering IQT-DCN data.
The results of the transfer learning approach

are summarized in Table 4. Transfer learn-
ing improves the MAE of the single-task model
for predicting the DCN from 6.6 to 6.1. For
the multi-task model, however, transfer learn-
ing does not improve prediction accuracy: Test
MAEs for RON and MON are almost the same
with and without transfer learning. Further-
more, test MAE for DCN even increases from
5.5 to 6.0 with transfer learning. One possi-
ble reason for the poor performance of trans-
fer learning in the multi-task learning is that
the pre-training is essentially a single-task prob-
lem because we use only (D)CN data for pre-
training. Thus, the pre-trained model could be
biased towards (D)CN which then could lead
to poor generalization of the multi-task model.
As a consequence, we do not use the transfer
learning approach for our final model.

5.5 Ensemble learning

After developing a suitable model architecture,
model ensembling is applied to address the ob-
served high variation (cf. discussion in Sec-
tion 5.3). As described in Section 4.5, en-
semble learning averages the response of mul-
tiple models and mitigates random model vari-
ations. Herein, we utilize the previously trained
40 model instances. We perform the ensemble
learning on the multi-task architecture without
transfer learning.
The results are summarized in Table 4. They
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Figure 5: Comparison of the MAE of the single-task learning and the multi-task learning approach
on the validation and test sets. The box-plots indicate the lowest and largest MAE (excluding
outliers), the lower and upper quartile, and the median of the MAE over 40 independent model
instances. Note that points that are more than 1.5 times the interquartile range away from the top
or bottom of the box are marked as outliers.

Table 4: Mean absolute error (MAE) of training, validation, and test set averaged over 40 training
runs. The table includes single-task learning (STL), multi-task learning (MTL), transfer learning
(TL), and ensemble learning (EL). Lowest test set errors are highlighted in bold.

DCN RON MON
Train. Val. Test Train. Val. Test Train. Val. Test

STL 2.7 5.5 6.6 3.7 7.0 5.2 3.1 6.0 5.4
MTL 1.8 5.1 5.5 2.8 6.7 5.0 2.3 6.1 5.0
STL & TL 2.2 4.6 6.1 – – – – – –
MTL & TL 1.8 5.2 6.0 3.2 6.6 5.1 2.6 6.0 4.9
MTL & EL 1.8 4.4 2.9 4.5 2.3 4.4

show the averaged MAE on the test set and the
combined training and validation set. The er-
ror on a validation set is shown as part of the
training set because the averaged 40 model in-
stances have individual randomly selected val-
idation sets. Ensemble learning reduces the
MAE of the DCN, RON, and MON significantly
from 5.5 to 4.4, from 5.0 to 4.5, and from 5.0
to 4.4, respectively. The bootstrap aggregation
compensates for the previously identified large
model variations.
Figure 6 illustrates the parity plots for the

independent test set of the proposed ensemble
model. Herein, every point represents the av-
eraged prediction of 40 multi-task models for

a data point in the test set. The plots show
high coefficients of determination for all three
properties, i.e., R2

DCN = 0.94, R2
RON = 0.94,

and R2
MON = 0.89. For the MON, the higher

number of outliers causes a slightly weaker co-
efficient of determination. Note that the parity
plots show an uneven distribution of the data in
the test set. For instance, there exist few data
points with DCN numbers above 100 or RON
numbers below 50.
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Figure 6: Multi-task GNN model ensembling: Parity plots for (a) RON, (b) MON, and (c) DCN
test sets.

5.6 Comparison to state-of-the-
art models

We compare our GNN model with three previ-
ous literature models. Our own previous model
follows a group contribution approach for pre-
dicting IQT-DCN.13 The model by Kubic et al.
(2016)12 combines group contributions with a
multi-task ANN for the regression of CN, RON,
and MON values. The model by vom Lehn et
al. (2019)31 also combines group contributions
with ANNs for predicting the RON and the
octane sensitivity, i.e., the difference between
RON and MON, of alkanes, alkenes, cyclic alka-
nes, and alcohols
We summarize the reported literature results

and the performance of our final model, i.e.,

the model resulting from multi-task and ensem-
ble learning, in Table 5. We emphasize that
a fair comparison of the GNN model to previ-
ous DCN, RON, and MON models is difficult
for multiple reasons. First, the different mod-
els have been developed from different train-
ing data sets, leading to different applicability
domains and potentially poor performance if
models are evaluated outside their applicabil-
ity domain. Second, previous literature does
not always provide full test, training, and vali-
dation data sets and results. Different metrics
(e.g., MAE and R2) cannot be converted with-
out the actual predictions of all data points.
Third, different validation techniques have been
applied in literature to quantify model perfor-
mance, e.g., cross-validation or validation with
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an unbiased test set.
Table 5 reports MAE and R2 for the test

sets of the respective models and indicates that
the proposed GNN model achieves competitive
prediction accuracy compared to the previous
models for all three properties. Importantly,
we provide our model, the training scripts and
all data sets open-source. In comparison to our
previous DCN group contribution model,13 the
GNN model is trained on a substantially larger
data set and thus has a potentially larger ap-
plicability domain.
The development of QSPR and GNN models

differs significantly from each other. Most no-
tably, QSPR modeling requires to choose a set
of descriptors, e.g., structural group counts, as
potential explanatory variables. This step may
facilitate understanding of the prediction prob-
lem (the human learns through model develop-
ment) and can encode physical understanding
into a tailored model structure. However, this
also means that QSPR models inherently rely
on assumptions about the underlying phenom-
ena, i.e., the descriptors or structural groups
of potential value. In contrast, the presented
GNN method is trained in an end-to-end learn-
ing approach, as it relies on only few atomic
and bond features (cf. Tables 2 and 3), and
thus provides a flexible model structure that
can possibly learn a broad variety of properties.
End-to-end learning with graph convolutions,
however, comes at the cost of higher computa-
tional effort for training.

6 Conclusion
Predictive models for fuel ignition quality play
a crucial role in the development of novel fu-
els. We propose a data-driven graph neural
network (GNN) model for the prediction of
three important fuel auto-ignition indicators,
i.e., the derived cetane number (DCN), the re-
search octane number (RON), and the motor
octane number (MON). Our model is applicable
to a wide spectrum of non-oxygenated and oxy-
genated hydrocarbons, shows competitive per-
formance to state-of-the-art models, and can be
easily accessed via a web interface.

From the methodological point of view, our
GNN-based model offers the advantage that,
in contrast to previous works based on QSPR
modeling, no molecular descriptors or struc-
tural groups, have to be selected, because GNNs
achieve end-to-end learning from the molecular
structure to the properties of interest. While
such a data-driven approach is often believed
to require extensively large data sets, this work
demonstrates that good model accuracies can
indeed be achieved for small data sets (order
of hundreds) by using multi-task and ensemble
learning. Given the expected future increase
in measurement data available for training, we
expect further potential for GNNs in fuel ig-
nition quality prediction. We provide the cor-
responding training code and the final model
open-source making it a viable tool for further
development. Finally, this work may constitute
a prototype for rapid, versatile property predic-
tion beyond DCN, RON and MON and thus for
property prediction in various disciplines.

Acknowledgement We thank Sophia Rup-
precht for collecting and preparing RON and
MON data from literature and Florian vom
Lehn for sharing his knowledge on converting
RON and MON data for values above 100.
Furthermore, we thank Lukas Breuer, Ibrahim
Kasem, Jonas Völl, and Fabio Zuraszek for im-
plementing the web interface for online model
evaluation. This work was supported by the
Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s
Excellence Strategy - Cluster of Excellence 2186
“The Fuel Science Center”. Simulations were
performed with computing resources granted
by RWTH Aachen University under project
“thes0682”.

Supporting Information Avail-
able
The following files are available free of charge.

• RON, MON and (D)CN data (XLSX)

14



Table 5: Performance comparison of the proposed model to other published models. Errors are
reported for the respective test sets.

GNN model Dahmen & Marquardt13 Kubic et al.12 vom Lehn et al.31
MAE R2 MAE R2 MAE R2 MAE R2

DCN 4.4 0.94 5.8 0.84 – 0.90 – –
RON 4.5 0.94 – – – 0.93 4.0 0.92
MON 4.4 0.89 – – – 0.91 – –
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