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ABSTRACT  

The recent ongoing pandemic caused by SARS-CoV-2 continues to impose devastating impacts 

and is accountable for the loss of more than 250,000 human lives within a short span of four 

months. This urges immediate therapeutic measures to control the impact of this disease. One of 

the most conserved and potentially druggable sites is the Nsp16 active site that performs the 2’-

O-methyltransferase activity and puts a 5’ cap on the viral RNA molecules. This  allow them to 

mimic endogenous transcripts for the efficient translation of viral proteins and evasion of the 
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immune response. Three libraries of compounds (>5500) with chemical diversity were screened 

to identify hits against Nsp16 active site of SARS-CoV-2. From each library a top hit was 

identified, namely Velpatasvir (∆G = -11.76 kcal/mol; LibDock score = 201.708) from the FDA 

compounds; JFD00244 (∆G = -10.86 kcal/mol; LibDock score = 162.105) from the LOPAC 

library and compound 6 ((∆G = -11.2 kcal/mol; LibDock score = 163.321) from the SAM based 

analog library. Interestingly, all three hits showed higher affinity than the positive controls. 

Velpatasvir is a known anti-viral drug used against Hepatitis C virus, and JFD00244 is a SIRT2 

inhibitor. Molecular simulation studies showed all three molecules to have stable and 

energetically favourable interactions with the active site of Nsp16. In summary, this investigation 

identified three potential drug candidates that are predicted to be potent Nsp16 inhibitors and 

could be pursued further in cell-based studies.  

 

INTRODUCTION 

The SARS-CoV-2 causing the COVID-19 disease is the biggest outbreak of this decade, taking a 

heavy toll on the human population. More than one lakh deaths are reported worldwide, while 

the number of infected cases has reached over 2,800,000.  Initially, reported from the city of 

Wuhan, China, this pandemic has hit almost all corners of the world, including 213 countries. 

The SARS-CoV-2 shares the common lineage with the other two epidemic causing viruses, 

Severe Acute Respiratory Syndrome-related coronavirus (SARS-CoV) and Middle East 

Respiratory Syndrome-related coronavirus (MERS-CoV), all belonging to the group of β-

coronaviruses. SARS-CoV outbreak in 2003-2004 and MERS-CoV outbreak in 2012 have 

together caused more than 10,000 cases across the world till date, but surprisingly, the SARS-

CoV-2 infection cases have extended to a million in a short span. Seeing the present condition, 

WHO has declared it a global pandemic situation, and the whole world urges for an immediate 

solution to combat this disease
1
. 
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The SARS-CoV-2 viral genome consists of 29.9 kb single-stranded positive-sense RNA, 

which contains 15 ORFs region encoding several non-structural, structural, and accessory 

proteins. Other than the important structural proteins like Spike protein, Envelope protein, 

Membrane protein, and Nucleocapsid protein, the essential non-structural proteins required for 

the viral replication and proliferation are coded by the ORF1a and ORF1b
2
. ORF1a and ORF1b 

together make up almost two-third of the total genome at the 5’end, the first coding for Nsp1 to 

11 and the later coding for Nsp12 to 16, respectively
3
. The non-structural proteins particularly 

embrace the virus specific enzymes like RNA dependent RNA polymerase and viral proteases, 

which assist in the viral replication and translation. But the most striking feature of the long 

RNA containing viruses is that they possess the 5’cap structure in their RNA like the eukaryotic 

RNAs. This helps the virus system to evade the host immune system by mimicking the host 5’ 

cap structure of RNA as well as helps in effective viral protein production using the host 

machinery. This tactic of outwitting host defense mechanism is also practiced by other viruses 

belonging to families like Rhabdoviridae, Orthomyxoviridae, Alphaviridae, etc.
4
 Conventionally, 

the eukaryotic RNA cap primarily consists of the N7-methylated guanine nucleotide attached to 

the first transcribed nucleotide (majorly consisting of an adenine) through a 5’-5’ triphosphate 

bond. These steps are coordinated by RNA triphosphatase, guanylyltransferase, and N7 

methyltransferase enzymes. The next step that succeeds this cap-0 structure (
7Me

GpppA..) is the 

2’-O-methylation by 2’-O-methyltransferase enzyme resulting in the cap-1 structure 

(
7Me

GpppA2’-O-Me…), which is required to prevent the decapping or degradation of the RNA
5
. A 

somewhat same strategy is utilized by the coronaviruses and the 2’-O-methylation process is 

executed exclusively by the Nsp16 protein, which is the AdoMet dependent methyltransferase 

enzyme in case of SARS-CoV-2 (Figure 1a). The S-adenosylmethionine (SAM) dependent 2’-O-
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methyltransferase activity of Nsp16 was first reported in the feline coronavirus
6
. The addition of 

SAM recruits Nsp10 protein in this event, and this Nsp10-Nsp16 complex is quintessential for 

the viral RNA replication and transcription process
7-10

. The zinc finger protein Nsp10 acts as a 

key regulator in the viral replication as it modulates both the 3’-5’ exoribonuclease and 2’-O-

methyltransferase activities by interacting with Nsp14 and Nsp16 proteins, respectively. The 

Nsp10 bears an overlapping, interacting surface for both Nsp14 and Nsp16 enzymes for 

recruiting them into the transcription-replication complex
11

. The Nsp16 comprises the KDKE 

catalytic tetrad and is made up of central β-sheets with seven strands, encompassed by five α-

helices, thereby lacking two of the seven α-helices from the conventional SAM-dependent 2’-O-

methyltransferases making up the canonical fold. Nsp10 compensates this structural glitch 

thereby, stabilizing the Nsp16 protein and leads to the proper alignment of the first lysine (K46 

catalytic residue) of the KDKE tetrad involved in the methylation reaction
12, 13

. Blocking the 

binding of SAM to Nsp16 may result in the formation of inactive 2’-O-methyltransferase 

enzyme in the absence of Nsp10 resulting in the failure of Cap1 structure formation which in 

turn leads to the inefficient viral translation and generation of host immune response against 

SARS-CoV-2 (Figure 1b). This makes SAM binding site of Nsp16 an attractive target to combat 

COVID-19 disease. 

With no licensed drugs or vaccine against deadly COVID-19 disease, the situation gets 

aggravated with time and thereby, demands an urgent therapeutic solution. Drug respuposing 

approaches have suggested Chloroquine and Remdesivir effective against SARS-CoV-2
14-16

. 

Recently, SAM binding site of Nsp16 protein has emerged to be an interesting drug target site 

against this virus. Researchers have reported drugs showing significant inhibitory effect against 

the 2'-O-methyltransferase i.e., the Nsp16 in other viruses including SARS-CoV
17-19

, but this 
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vital protein interface have been left untouched yet in case of SARS-CoV-2. The availability of 

Nsp10-Nsp16 complex crystal structure makes the screening of the drugs easier
20

. In this study, 

we utilized the Nsp10-Nsp16 complex as the potent druggable site for SAR-CoV-2 and screened 

three respective libraries against it. Virtual screening and molecular simulation analysis revealed 

Velpatasvir, an already known anti-viral drug against Hepatitis C virus, JFD00244, a SIRT2 

inhibitor and compound 6, a synthetic adenosyl analog from the FDA library, LOPAC library 

and SAM based analog library respectively as the best hits against the Nsp16 protein. This study 

thereby comes up with potent Nsp16 inhibitors for the treatment of SAR-CoV-2. 

METHODS 

1. Sequence and structural alignment of Nsp16 for SARS-CoV-2, SARS-CoV, and 

MERS-CoV 

The Nsp16 nucleotide and protein sequences of SARS-CoV-2 (NC_045512), SARS-CoV 

(NC_004718) and MERS-CoV (NC_038294) were downloaded from the GenBank database 

available at the National Institute of Biotechnology Information (NCBI). The sequence 

alignment was performed using the MAFFT multiple alignment tool 

(https://mafft.cbrc.jp/alignment/server/) 
21

 and visualized using JalView. 

For structural alignment, crystal structure files of the three viruses, SARS-CoV-2 (PDB: 

6W4H), SARS-CoV (PDB: 3R24), and MERS-CoV (PDB: 5YN6) having S-adenosylmethionine 

(SAM) in the bound form were downloaded from the RCSB protein data bank. All three 

structures were superimposed to each other using Chimera tool, and motif analysis was 

performed. 

2. Construction of ligand libraries 

https://mafft.cbrc.jp/alignment/server/
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The ligands used in this study were compiled from the FDA approved drugs and the 

commercially available Library Of Pharmacologically Active Compounds (LOPAC). The list for 

2400 FDA approved drugs was downloaded from the DrugBank in SDF format and 1280 

bioactive small molecules from the LOPAC library were retrieved from Sigma 

(https://www.sigmaaldrich.com/life-science/cell-biology/bioactive-small molecules/lopac1280 -

navigator.html). The FDA approved drugs library included almost all the major classes of drugs 

targeting kinases, GPCRs, neurotransmission, gene-regulation, cancer, viruses, etc. Another 

library of 2000 molecules was constructed based on SAM by bioisosteric replacement and chain 

elongation methods in the SPARK (Cresset, UK) tool. Molecules in all three libraries were 

converted to 3D conformations and minimized to generate minimum energy conformers by 

applying the MMFF force field using the Discovery Studio 4.0
22

. 

3. Preparation of protein receptor 

The available crystal structure of 1.8 Angstrom resolution of the Nsp10-Nsp16 complex of 

SARS-CoV-2 was fetched from the RCSB protein data bank (PDB: 6W4H)
20

.  The attached 

ligands and ions were removed, missing loops were inserted and polar hydrogens were added 

using the Discovery Studio 4.0. Further, the protein refinement was done by using loop 

definition based on CHARMM force field at pH 7.4 parameter, keeping other parameters as 

default. 

4. Virtual screening and molecular docking of the ligand libraries against the Nsp16 

protein of SARS-CoV-2 

Molecular docking of the three ligand libraries were performed against the SAM binding site of 

the Nsp16 viral protein that was executed on two platforms, namely, LibDock program available 

https://www.sigmaaldrich.com/life-science/cell-biology/bioactive-small%20molecules/lopac1280%20-navigator.html
https://www.sigmaaldrich.com/life-science/cell-biology/bioactive-small%20molecules/lopac1280%20-navigator.html
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in the Discovery Studio v4.0 (Accelrys, USA)
23

 and AutoDock (http://autodock.scripps.edu/)
24

. 

The Discovery Studio docking module, LibDock consists of a high throughput docking 

algorithm that places the ligands into the active site of the protein based on the polarity of the 

interaction sites, while AutoDock performs the docking of the ligands inside a set of pre-

calculated grids representing the target site of the protein.  

LibDock performs flexible docking and uses polar and non-polar sites on the receptor 

termed hotspots. For LibDock docking, the residues of Nsp16 involved in the interaction with 

SAM were manually selected to define the active site sphere and docked using the FAST 

conformation method. Maximum 100 conformers of a ligand were allowed and filtered with a 

minimum LibDock score of 100. The resultant ligands were arranged in descending order of the 

LibDock score, and the top 20 hits were considered for further analysis. 

For AutoDock analysis, initially, PDB file of the receptor protein was refined, Gasteir charges 

and polar hydrogen atoms were added, and non-polar hydrogens were merged using the 

AutoDockTools version (1.5.6) followed by converting the PDB files into PDBQT. The same 

tool was explored to prepare the ligand library into PDBQT format and Kollman charges were 

added to it. 3D grid box with the grid center size X=83.779, Y=15.102 and Z=26.856 and 

spacing of 0.425 encompassing the SAM binding sites of the protein and the essential residues 

situated in the binding pocket was constructed by the AutoGrid4. Docking was performed using 

the Lamarckian Genetic algorithm, and 10 conformers for each ligand were constructed using the 

AutoDock4. The resultant docked log file (.dlg) were analyzed, and conformations were ranked 

based on the binding energy (kcal/mol) of the protein-ligand complex.  

5. Analog generation 

http://autodock.scripps.edu/
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For SAM based analogs generation, bioisosteric fragment replacement and ligand growing were 

performed using the SPARK tool. Various databases including ChEMBL_23 having very 

common, common, rare and very rare fragments observed in available approved drugs and ring 

systems from the VEHICLe databases, were considered for Bioisosteric replacement and chain 

growing of the ligand. The resultant 2000 conformers were analyzed for their binding affinity to 

Nsp16 using LibDock and AutoDock tools.  

6. ADMET and drug-likeness prediction of the predicted analogs 

ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties including 

the molecular weight, toxicity, total polar surface area, H-bond acceptors, H-bond donors, LD50, 

etc. were determined using the Discovery Studio v4.0. Lipinski rule of five was evaluated using 

DruLiTo tool. Aggregation probability was calculated using ChemAGG webserver 

(http://admet.scbdd.com/ChemAGG/index/).  

7. Molecular dynamic (MD) simulation 

The molecular dynamic simulation was performed to obtain the refined modeled structure of the 

ligand with the target to estimate the stability of interaction in the real environment. The 

simulation was carried on in a water sphere with the help of NAMD (Nanoscale Molecular 

Dynamics) standard molecular dynamics tool (https://www.ks.uiuc.edu/Research/namd/). The 

Visual Molecular Dynamics (VMD) tool v.1.9.3 was used to generate the required structure files 

(.psf) by exploiting the CHARMM force fields for proteins. The topology and parameter files for 

the ligands were generated using the CHARMM-GUI server.  The protein-ligand system was 

first minimized for 10,000 steps by using the conjugate gradient algorithm and then subsequently 

heated from 0 K to 310 K. Later, 100 ns standard molecular dynamics was setup, and the 

http://admet.scbdd.com/ChemAGG/index/
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trajectory DCD file was generated that was further utilized to evaluate RMSD value of the 

docked complex.  

RESULTS and DISCUSSION 

Sequence and structural similarities revealed conserved active site of the Nsp16 (2'-O-

methyltransferase) in SARS-CoV family 

S-adenosylmethionine dependent 2´-O-methyltransferase enzyme of coronaviruses is involved in 

mRNA capping that facilitates the viral RNA to mimic the cellular RNA, thereby assisting the 

viruses to hide from the immune system cells and helps in the efficient viral protein translation. 

This enzyme is also involved in metabolism, chromatin remodeling, detoxification, and signal 

transduction
17

, and thus crucial for the virus survival, representing an interesting target. To check 

the conservation at the sequence level, nucleotide and amino acid sequence of Nsp16 of SARS-

CoV-2, SARS-CoV, and MERS-CoV were retrieved and aligned. Nucleotide analysis of SARS-

CoV-2 revealed 89.45 % similarity with SARS-CoV and 67.24 % identity with MERS-CoV 

(Supplementary Information, Figure S1). While the protein alignment depicted 93.29 % and 

66.11 % identity with SARS-CoV and MERS-CoV, respectively (Supplementary Information, 

Figure S2).  

Nsp16 has a binding motif for S-adenosylmethionine and Nsp10 (Figure 2a-b). 

Coronavirus Nsp16 cannot function alone and requires the binding of Nsp10 to form a functional 

protein complex, and the recruitment of Nsp10 is facilitated by the binding of SAM to the Nsp16 

protein
10

. This association differentiates coronavirus methyltransferase from other classical 

methyltransferase members of the viruses (Figure 2a-b)
25

. The structural analysis of SARS-CoV-

2 revealed the presence of SAM binding site that comprises of ASN6841, TYR6845, LEU6855, 
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GLY6869, GLY6871, PRO6878, GLY6879, ASP6897, LEU6898, ASN6899, ASP6912, 

CYS6913, ASP6928, MET6929, and TYR6930 (Figure 2b). Structural alignment of SARS-CoV-

2 Nsp16 with that of SARS-CoV shows high conservation with an RMSD of 0.201, while 

RMSD of 0.412 was observed for MERS-CoV depicting the closure identity between the SARS-

CoV Nsp16 as compared to the MERS-CoV (Figure 2c-d). Structural alignment depicted the 

conserved SAM binding motif in all the three viruses depicting the critical role of these residues 

in the methyltransferase domain and other functional activities (Figure 2e). 

Virtual screening of FDA approved and LOPAC libraries against SARS-CoV-2 Nsp16 

Initially, FDA approved drugs library and LOPAC library were screened against Nsp16 using 

LibDock program in Discovery Studio v4.0, and the results were filtered based on the LibDock 

score, which depends upon the combined score of van der Waals forces, hydrogen bonds (H-

bonds), and pi-pi interactions. Higher LibDock score indicates higher chances of receptor-ligand 

binding. SAM acts as an essential co-factor for Nsp16. If a drug can replace SAM from its 

binding site with higher affinity, the function of Nsp16 can be abolished. With this hypothesis, 

the SAM binding site was used as the ligand binding site in the LibDock program, and docking 

analysis was performed. Earlier, Sinefungin, a SAM analog, has shown an inhibitory effect on 

MERS-CoV methyltransferase 
10

. As SAM binding sites of MERS-CoV and SARS-CoV are 

found to be conserved, SAM and Sinefungin both were taken as positive controls. Docking of 

SAM on Nsp16 by LibDock module showed the RMSD of 0.793 as compared to the co-

crystalized ligand depicting the high efficiency of the LibDock (Supplementary Information, 

Figure S3). SAM provided a LibDock score of 136, while Sinefungin gave 146 (Supplementary 

Information, Figure S4 and Table S1). Therefore, to screen the FDA approved and LOPAC 

compounds libraries were having a higher affinity than that of SAM and Sinefungin, the docking 
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results were filtered on the basis of LibDock score > 146. In FDA approved drug library, a total 

of 156 drug molecules were received that showed the LibDock score >146 (Supplementary 

Information, Table S2). Similarly, 39 hits were observed in the LOPAC library that had a higher 

binding affinity to Nsp16 as compared to Sinefungin and SAM (Supplementary Information, 

Table S3). The top 20 hits of both FDA and LOPAC compound libraries were considered for 

further analysis (Supplementary Information, Figures 5a-b & 6a-b and Supplementary 

Information, Tables S4 & S5). The lead molecules of FDA approved drugs library consist of 

various anti-viral, anti-cancer, metabolic disorders, and neurotransmission drugs. The highest 

LibDock score of 233.11 was observed for Goserelin which is an anti-cancer drug used for the 

treatment of breast and prostate cancer while the second-ranked Tenapanor is used as therapeutic 

against irritable bowel syndrome. Anti-viral drugs included Velpatasvir, Ritonavir, Ledipasvir, 

Atazanavir, and Indinavir. Velpatasvir and Ledipadvir act as a substrate for NS5A and are used 

against chronic Hepatitis C Virus (HCV) infection. While Ritonavir, Atazanavir, and Indinavir 

work by inhibiting HIV protease and regulate the developmental cycle of HIV. The strong 

interaction of these anti-viral drugs, suggests the usage of Nsp16 as an alternate target for these 

anti-viral drugs. Another hit molecule, Cobicistat with a LibDock score of 203.37, is a known 

pharmaco-enhancer used in combination with Darunavir for the treatment of HIV. Flavin 

adenine dinucleotide, a supplement used in Vitamin B2 deficiency and peptide drugs, 

Glutathione disulfide, and Octreotide, were also among the lead molecules. 

In the LOPAC compound library, the top rank with a LibDock score of 188.917 was 

observed for D-151, a di-adenosyl polyphosphate used for inhibiting ADP-induced platelet 

aggregations. Second-ranked Nelfinavir is known for its multi-target mechanism and reported to 

exhibit anti-cancer and anti-viral activity. It is also reported for reducing the inflammation by 
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blocking the MAPK signaling pathway in macrophages. In COVID-19, inflammation acts as one 

of the most critical factors in deciding the efficacy of the recovery in the patient, and thus 

Nelfinavir might act as an efficient therapeutic option by targeting Nsp16 and thereby reducing 

the inflammation. Other anti-cancer drugs in the top lead molecules included Fulvestrant, 

JFD00244, Lometrexol hydrate, and Dequalinium chloride. Antibiotic Paromomycin sulfate and 

anti-fungal agent Ketoconazole also showed an efficient binding with Nsp16. 

Docking analysis revealed the interaction of top hits with the conserved residues of the 

active site of Nsp16 

To analyze the interaction of top hits of FDA approved drugs library and LOPAC library and get 

a glimpse of the binding energy of the ligand-protein interaction, docking analysis using 

AutoDock program was performed and 20 different conformers based on the orientation of the 

ligand in the active site of Nsp16 were generated for each ligand. The interaction between ligand 

and Nsp16 was a result of H-bonds, van der Waals interaction, and pi-pi interaction that directly 

influence the binding energy of the complex. 

At first, the grid was prepared by selecting the co-crystalized ligand, and then the docking 

analysis was performed for SAM and Sinefungin. Upon analysis, SAM interacted with various 

active site residues with the binding energy of -7.85 kcal/mol, while Sinefungin interaction 

resulted in the binding energy of -7.92 kcal/mol (Supplementary Information, Figure S4 and 

Supplementary Information, Table S1). The AutoDock result of the top 20 hits of FDA and 

LOPAC libraries were filtered by keeping the binding energy threshold of -7.92 kcal/mol. The 

molecules giving the higher binding energy than the threshold were considered as better ligands 

for Nsp16 in comparison to SAM and Sinefungin. 



 13 

Upon analyzing the docked log files of the complexes, out of 20 FDA approved drugs and 

LOPAC library, 09 and 11 compounds respectively showed higher affinity towards Nsp16 as 

compared to the controls (Figure 3 and 4).  

Velpatasvir (DB11613) from the FDA approved drugs scored the best binding energy of -11.76 

kcal/mol (Figure 5a-d) while JFD00244 with a binding energy of -10.86 kcal/mol topped the 

LOPAC library (Figure 6a-d). Velpatasvir, in the combination with Sofosbuvir inhibits NS5A 

and NS5B proteins that are involved in the Hepatitis C virus replication, assembly, and host 

immune response modulation
26

. The close similarity of the replication mechanism in the 

Hepatitis C virus and SARS-CoV-2 makes it an interesting therapeutic option for drug 

development. Recently, it was reported to interact with 3C like protease (3CLpro) of COVID-19 

27
. The higher binding energy and LibDock score with Nsp16 protein of SARS-CoV-2 support a 

new protein target of Velpatasvir in the virus, and if supported by in vitro mode, it can be a 

potential drug by binding to multiple protein targets in the same pathogen which can tackle the 

multi-drug resistance in the virus. Cobicistat depicted the second lowest binding energy of -11.59 

kcal/mol making it a promising drug candidate for Nsp16. Ritonavir, Ledipasvir, Indinavir, and 

Flavin adenine dinucleotide also depicted to have binding energy to be higher than the threshold 

(Figure 3 and Supplementary Information, Table S4).  

In the LOPAC compound library, JFD00244 ranked first with the lowest binding energy 

of -10.86 kcal/mol (Figure 6a-d). JFD00244 is a sirtuin 2 (SIRT2) inhibitor and is reported to 

have an anti-cancer activity 
28

. S-(p-Azidophenacyl) glutathione stood second, followed by 

Nelfinavir mesylate hydrate with a binding energy of -10.22 kcal/mol and -9.35 kcal/mol 

respectively. Lometrexol hydrate, Paromomycin sulfate, Astaxanthin, Fulvestrant, Ketoconazole, 

Calmidazolium chloride, Suramin, and Dequalinium chloride from the LOPAC library also 
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showed higher binding affinity than SAM and Sinefungin and had higher binding energies than 

the two controls (Figure 4 and Supplementary Information, Table S5).  

Simulation analysis revealed a stable and energetically favored interaction of Velpatasvir 

and JFD00244 with Nsp16. 

To analyze the stability and further refinement of the Nsp16 and lead molecule complexes, 

Velpatasvir from the FDA approved drugs library with an AutoDock binding energy of -11.76 

kcal/mol and LibDock score 201.708 and JFD00244 from the LOPAC library with binding 

energy -10.86 kcal/mol and LibDock score of 162.105 were selected for molecular dynamics 

simulation analysis. 10,000 steps of conjugate gradient energy minimization of Velpatasvir 

resulted into the change in potential energy of the docked complex from -61.23 kcal/mol to –

101.775 kcal/mol (Supplementary Information, Figure S7). Thereafter the potential energy, 

kinetic energy and total energy of the system remained constant throughout the simulation 

process at constant temperature and pressure (Supplementary Information, Figure S7). Root 

mean square deviation (RMSD) analysis of alpha carbon (Cα) of the backbone of Nsp16 

revealed an initial fluctuation from 0 Å to 1.18 Å w.r.t. the reference initial state of the complex 

in the first 50 ps. Thereafter, it remained constant till 100 ns throughout the simulation process 

depicting the stability of the docked complex (Figure 5e).  

Energy minimization of JFD00244 showed the decrease in the system energy from -159.3 

kcal/mol to -186.83 kcal/mol leading to a generation of a more stabled docked complex 

(Supplementary Information, Figure S8). Trajectory analysis of the Nsp16-JFD00244 revealed 

the fluctuations in the initial 17 ns, and thereafter the system was equilibrated till the end (Figure 

6e).  
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Analog generation resulted into more efficient Nsp16 binders 

Majority of top FDA approved drugs and LOPAC library hits shared a complex 9-12 membered 

ring structures like Goserelin, Tenapanor, Leuprolide, Nelfinavir mesylate, JFD00211, 

Velpatasvir, Indinavir, Lometrexol hydrate, Dequalinium chloride hydrate and Methotrexate etc. 

(Supplementary Information, Figure S9). Also, many top hits, for example, Flavin adenine 

dinucleotide, alpha beta-Methyleneadenosine, D-151, Thio-NADP sodium, NADPH tetrasodium, 

shared adenosyl moiety similar to that of SAM and Sinefungin. On analyzing the docked 

complexes of all these ligands, it was observed that the heterocyclic rings of these ligands fit into 

the groove similar to that of the adenosyl group of SAM and Sinefungin making the site an 

attractive option to build the analog library by fixing the heterocyclic ring at one hand (Figures 3 

& 4, Supplementary Information, Figure S9). The heterocyclic ring structure of both the top 

leads, Velpatasvir and JFD00244 also interacted with the heterocyclic ring pocket similar to that 

of SAM while the side chains interacted with the rest of the cavity (Figures 5a and 6a).In all the 

ligands, the change in binding affinity was majorly based on the side chain attached. Also, the 

binding of SAM to the Nsp16 leads to the recruitment of Nsp10, an essential protein required for 

the proper functioning of 2’-O-methyltransferase making it a potential site for lead drug 

development and optimization. Therefore, the adenosyl (Adenine + ribose sugar) group was used 

as a starting point to generate 2000 number of analogs first by selecting the Sulphur atom and 

then by selecting the terminal carbon by fragment replacement and chain extension algorithms. 

This SAM based analog library was then screened using the LibDock tool and finally by 

AutoDock tool. The top 20 molecules with the LibDock score greater than that of Sinefungin 

were analyzed by AutoDock tool. 14 compounds out of 20 showed higher binding energy as 

compared to SAM (Figure 7 and Supplementary Information, Table S6). The highest ranked 
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analog, Compound 6 formed four hydrogen bonds in the SAM binding pocket of Nsp16 with a 

binding affinity of -11.2 kcal/mol, which was significantly higher than that of SAM (-7.85 

kcal/mol) depicting ~1.5 folds higher binding affinity of the analog with the Nsp16. The second 

(Compound 15) and third (Compound 2) ranked molecules had a binding energy of -10.33 

kcal/mol and -10.29 kcal/mol with the Nsp16, respectively (Supplementary Information, Table 

S6). Interestingly, on analyzing the binding poses of the analogs on Nsp16, it was observed that 

the adenosyl group of almost all the analogs was restricted to the same binding cavity as 

observed in SAM and Sinefungin complex depicting the importance of the pocket (Figure 7b). 

The pocket may provide the stability to the protein-ligand complex by providing stacking 

stabilization through pi-pi interactions. Furthermore, the total binding energy of the analogs was 

depended on the hydrogen and van der Waals interaction made by the varying side chains of 

each molecule. In our analysis, it was observed that replacement of the linear chain at the termini 

results into a better binding pose, eventually leading to a lower binding energy. SAM and 

Sinefungin differ from each other just by a Sulphur atom resulting into a better binding affinity 

of the later with Nsp16 protein. Similarly, we also observed that replacing the Sulphur (S) with 

either Nitrogen (N) or Carbon (C) results into a better ligand binding than SAM (Figure 7). 

To analyze the stability of the predicted analog and Nsp16, the Nsp16-lead analog complex with 

the lowest binding energy, i.e., Compound 6 was analyzed in a water sphere having 0.15 M KCl 

ions using molecular dynamic simulation. The RMSD of the complex as predicted by analyzing 

the trajectory analysis of the system for 100 ns depicted the initial fluctuation from 0 to 1.5 Å till 

700 ps, which thereafter remained constant throughout the simulation. The RMSD analysis 

revealed the formation of a stable Nsp16-Compound 6 complex. (Figure 8e and Supplementary 

Information, Figure S10). 
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Physiochemical properties analysis of the analogs affirms their drug-likeness  

The generation of a safe and effective drug, depends upon various parameters, which mainly can 

be summarized into its ADMET (Absorption, Distribution, metabolism, Excretion, and Toxicity) 

analysis. Also, there are various parameter ranges like molecular weight, number of hydrogen 

bond acceptors and donors, lipophilicity etc. that can help in a better generation of a successful 

drug. Lipinski rule of five is one of the classical filters that can be applied for filtering out the 

best lead candidates from synthetic constructs (Supplementary Information, Table S7). As per 

the rule, a molecule with a molecular weight < 500 Dalton, maximum 5 hydrogen bond donors, 

and 10 hydrogen bond acceptors with logP value < 5 have a better drug-likeness in comparison 

to others that fail these parameters. The top 20 lead analogs were analyzed by using Discovery 

Studio v4.0 to check whether they follow the Lipinski rule of five. Out of 20 analogs, all the 

analogs have the molecular weight and LogP value within the threshold range, but only 12 

molecules have less than 10 hydrogen bond donor and/or 5 hydrogen bond acceptors making 

them more likeable to act as lead molecules. Compound 6has a molecular weight of 417.2 

Dalton, LogP -1.724, and 9 hydrogen bond acceptors and 4 hydrogen bond donors, making it a 

preferable lead molecule against Nsp16. Mutagenic analysis and Ames test analysis of the 

analogs revealed the non-mutagenic nature of all the analogs except compound 5. Log S that 

depicts the solubility of the drugs was in the range of -0.7 – 3.0 supporting the solubility of the 

analogs except Compound 1 that was moderately soluble with the value of -4.02. Drug 

aggregation inside the cells/blood stream is one of the major setbacks of high throughput 

screened drugs; therefore we analyzed the aggregation probability of the analogs that depicted 

the non-aggregating nature of these analogs supporting their usage as lead molecules against 

Nsp16 (Supplementary Information, Tables S7 & S8). 
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CONCLUSION 

The uncontrolled outbreak of SARS-CoV-2 in more than 200 countries worldwide have put a 

major challenge to the healthcare sector for the identification and generation of novel drug 

molecules that can be used against the viral infection. Nsp16 of SARS-CoV-2 plays a critically 

essential role in viral replication and host immune response invasion by capping the viral 

genomic RNA similar to that of the host, thereby making it a novel and a potential target to be 

explored against the virus. Extensive virtual screening and docking analysis identified an anti-

viral drug, Velpatasvir and an anti-cancer SIRT2 inhibitor agent, JFD00244 as lead molecules in 

the FDA approved drug library and LOPAC library, respectively. Molecular dynamics 

simulation analysis revealed the stability of the Nsp16-ligand complex. Furthermore, a synthetic 

library was constructed based on S-adenosylmethionine by fixing the adenosyl group and 

replacing its aliphatic side chain. The analog generation resulted into various lead molecules that 

showed a higher binding affinity towards Nsp16 than SAM and already known inhibitor, 

Sinefungin. The lead analog, 6 showed the highest binding affinity with the lowest binding 

energy. ADMET and physiochemical property analysis supported drug-likeness, non-mutagenic, 

non-toxic and non-aggregating nature of the lead analog, 6. In summary, the work leads to the 

conclusion that Velpatasvir, an already known anti-viral drug, and SIRT2 inhibitor JFD00244, 

could be repurposed for SARS-CoV-2 virus targeting Nsp16. Hence, Velpatasvir could be tested 

for in-vitro and in-vivo inhibitory effects on SARS-CoV-2 virus proliferation. The conserved 

nature of the binding pocket residues of Nsp16 in coronavirus family may lead to the 

development of effective therapeutics against the previously evolved strains like MERS-CoV 

and SARS-CoV and as well as against the newly emerging endemic causing viruses of the same 

family in the future. 
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Figure Legends. 

Figure 1. Schematic representation of the function and hypothesis of the work. a. Normal 

function of Nsp16 in complex with SAM and Nsp10 that leads to efficient viral translation and 

helps the virus to hide from the host immune system. b. Proposed hypothesis of targeting the 

SAM binding site leading to failure of attachment of SAM and recruitment of Nsp10 leading to 

the inactivation of Nsp16 thereby leading to the inefficient viral translation and generation of 

host immune response. 

Figure 2. Nsp16 domains and conservation analysis. a. Surface representation of SARS-CoV-

2 Nsp16 (green) in complex with Nsp10 (cyan) along with SAM (yellow). b. SAM binding site 

of SARS-CoV-2 Nsp16 along with the ligand-interacting residues c & d. Structural alignment of 

Nsp16 of SARS-CoV-2 (red), SARS-CoV (green), and MERS-CoV (blue) in cartoon and ribbon 

form, respectively. e. Aligned SAM along with the conserved residues of the Nsp16 binding site 

in the SARS-CoV-2 (red), SARS-CoV (green), and MERS-CoV (blue) depicting the conserved 

binding site in the coronavirus family. 

Figure 3. Nsp16-FDA approved lead molecule complex structures. Receptor Nsp16 (wheatish 

grey) in complex with the lead FDA approved molecules (blue, stick representation) that showed 

higher affinity in comparison to SAM and Sinefungin in both LibDock and AutoDock analysis. 

Figure 4. Nsp16-LOPAC library lead molecule complex structures. Receptor Nsp16 

(wheatish grey) in complex with the lead LOPAC library compounds that showed higher affinity 

in comparison to SAM and Sinefungin in both LibDock and AutoDock analysis. 

Figure 5. Nsp16-Velpatasvir interaction. a. Docking site of Velpatasvir (red) on the Nsp16 

(wheatish grey) protein. b. Binding pose of Velpatasvir on the SAM binding site of Nsp16. c& d. 

Interaction of Velpatasvir with the Nsp16 residues in ribbon and graphical form. e. 100 ns 

RMSD graph obtained by the trajectory analysis of Nsp16–Velpatasvir. 

Figure 6. Nsp16–JFD00244 interaction. a. Docking site of JFD00244 (green) on the Nsp16 

(wheatish grey) protein. b. Binding pose of JFD00244 on the SAM binding site of Nsp16. c & d. 

Interaction of JFD00244 with the Nsp16 residues in ribbon and graphical form. e. 100 ns RMSD 

graph obtained by the trajectory analysis of Nsp16–JFD00244. 

Figure 7. SAM based analog library generation and their interaction analysis with Nsp16. a. 

Structure of SAM depicting the sites (i and ii) where replacement and/or chain extension, were 
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performed resulting in the generation of 2000 ligands. b. Top 14 lead analogs with their LibDock 

score and AutoDock binding energy (in kcal/mol). 

Figure 8. Nsp16–Compound 6 interaction. a. 2D structure of Compound 6 analog. b. Binding 

cavity of Compound 6 on Nsp16. c & d. Interaction of Compound 6 with the Nsp16 residues in 

ribbon and graphical form e. 100 ns RMSD graph obtained by the trajectory analysis of Nsp16–

Compound 6. 
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