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ABSTRACT: A mild and practical method has been achieved that allows for the direct C–H trifluoromethylation, perfuoroalkyla-
tion and chlorodifluoromethylation of (hetero)arenes using inexpensive and abundant trifluoroacetic acid and the corresponding 
carboxylic acids. A diverse array of arenes and heteroarenes were successfully transformed into valuable fluoroalkylated com-
pounds. The combination of photoredox catalysis and a diaryl sulfoxide provides a platform for the facile generation of fluoroalkyl 
radicals from the corresponding fluoroalkyl carboxylic acids under mild conditions. 

Fluorine is the most electronegative element, which results 
in two facts just like two sides of the same coin. In general, 
fluorinated drugs have better membrane permeability and in-
creased bioavailability compared with their non-fluorinated 
analogues because of the changes in the physical and chemical 
properties.1 On the other hand, the uniqueness of fluorine ren-
ders the installation of itself a challenging task.2 Trifluorome-
thyl group is one of the privileged moieties in modern drug 
discovery. Among the top 200 small molecule pharmaceuticals 
by retail sales in 2018, there were 15 drugs containing at least 
one trifluoromethyl group, mostly (12 out of 15) on their aryl 
or heteroaryl scaffolds. Therefore, simple methodologies for 
the incorporation of trifluoromethyl and fluoroalkyl groups 
into arenes and heteroarenes are highly desirable.3 While 
cross-coupling approaches from aryl halides,4 boronic acids,5 
silanes,6 and aniline derivatives7 have facilitated the CF3 intro-
duction, the direct aromatic C–H trifluoromethylation repre-
sents a straight manner not requiring pre-functionalization. 
Recently, transition metal-catalyzed C–H activation has 
emerged as an effective strategy for the construction of CF3-
containing (hetero)arenes.8 Very recently, Ritter reported a 
site-selective late-stage trifluoromethylation of arenes via the 
aryl sulfonium salt intermediates.9 Moreover, there is a renais-
sance in aromatic C–H trifluoromethylation by the CF3 radical 
addition mechanism.10 A variety of reagents have been exten-
sively used as CF3 radical precursors, including CF3I,11 
CF3Br,12 CF3SO2Cl,13 (CF3SO2)2O,14 CF3SO2CH(Me)COPh,15 
Togni reagent,16 Umemoto reagent,17 TMSCF3,18 Langlois 
reagent NaSO2CF3,19 and Zn(SO2CF3)2.20 Nevertheless, the 
high cost, environmental impact, and multistep preparation of 
these reagents hamper their further application on large scales. 
In this regard, it is a long-term interest for chemists to develop 
new trifluoromethylation reactions with inexpensive and easy-
to-handle CF3 sources. 

Trifluoroacetic acid (TFA) and trifluoroacetic anhydride 
(TFAA) are among the most attractive trifluoromethylation 
reagents with respect of their low prices, ease of handling, and 
availability in large quantities. The major challenge associated 
with this type of transformations is to produce the trifluoroace-

tate radical under mild conditions, which after prompt CO2 
extrusion affords the desired CF3 radical. Yoshida and subse-
quently Bräse disclosed that bis(trifluoroacetyl)peroxide 
(BTFAP) generated from TFAA and hydrogen peroxide could 
undergo a homolytic cleavage, followed by the release of CO2 
to yield the CF3 radical.21 Remarkably, Stephenson reported 
that the adducts of TFAA and pyridine N-oxide derivatives 
were ready to be reduced via a single-electron transfer path-
way to furnish the CF3 radical effectively.22 Very recently, 
Qing developed a hypervalent iodine reagent C6F5I(OCOCF3)2 
easily accessible from C6F5I and TFA by an oxidation proce-
dure, which could provide the CF3 radical under reductive 
conditions as well.23 TFA and its salts are commercially abun-
dant and low priced. However, because of their exceedingly 
high oxidation potentials, the direct oxidation of TFA and its 
salts to the trifluoroacetate radical requires harsh conditions 
(Figure 1, oxidative pathway), for instance, strong oxidants,24 
electrolysis with forcing potentials,25 high temperatures,26 and 
ultraviolet irradiation.27 In addition, a large excess of TFA or 
its salts was usually necessary in these reactions. For all these 
reasons, mild and efficient protocols for the direct conversion 
of TFA to CF3 radical are still in high demand. 

Herein, we present a new strategy for the use of TFA as a 
trifluoromethylation reagent via visible light photoredox catal-
ysis. The working hypothesis is outlined in Figure 1. We envi-
sioned that TFA would condense with a sulfoxide to form the 
sulfonium intermediate, followed by a single-electron transfer 
event with the photo-excited *Ru(bpy)3

2+ to afford 
Ru(bpy)3

3+,28 a sulfide, and trifluoroacetate radical after frag-
mentation. The resultant radical should rapidly collapse to 
generate the CF3 radical, which would add to the arene to form 
the radical adduct. Finally, the radical adduct could be oxi-
dized by Ru(bpy)3

3+, and then deprotonated to furnish the tri-
fluoromethylated arene, while regenerating the photocatalyst 
Ru(bpy)3

2+. 
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Figure 1. Working hypothesis for the trifluoromethylation. 

To explore the proposed aromatic C–H trifluoromethylation 
with TFA, mesitylene was chosen as the model substrate (Ta-
ble 1). Our initial experimental results showed that DMSO 
was not a capable activator as compared to diaryl sulfoxides. 
After careful investigation of various reaction parameters, the 
trifluoromethylation products 1-mono and 1-bis were obtained 
in a total yield of 76% (mono:bis = 6:1) with bis(4-
chlorophenyl) sulfoxide as the activator (entry 1). This sulfox-
ide is commercially available and inexpensive, and could be 
recycled quantitatively in the forms of sulfoxide and thioether. 
Besides, other sulfoxides were also evaluated for this reaction. 
While bis(4-bromophenyl) sulfoxide exhibited a comparable 
efficiency, the electron-richer sulfoxides were less reactive 
(entries 2–4). Moreover, replacement of the solvent with 
CH2Cl2 resulted in a decreased total yield (62%, entry 5). To 
our delight, the switch of irradiation wavelength from 427 nm 
to 390 nm rendered an improved outcome (80%, entry 6). 
When both TFA and sulfoxide were reduced to 1 equivalent 
each, it still afforded the products in 59% combined yield (en-
try 7). Control experiments indicated that the sulfoxide, photo-
catalyst and light were all essential to this transformation (en-
tries 8–10). Finally, by the addition of free radical scavengers, 
the aromatic C–H trifluoromethylation was severely inhibited 
with BHT (entry 11) and even shut down (entry 12) in the 
presence of TEMPO along with the formation of BHT-CF3 
and TEMPO-CF3 adducts, respectively, supporting a radical 
mechanism in these transformations. 

Table 1. Optimization for the Trifluoromethylationa 
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aYields determined by 19F NMR spectroscopy using trifluoro-
methylbenzene as an internal standard. BHT = 3,5-di-tert-butyl-4-
hydroxytoluene. TEMPO = 2,2,6,6-tetramethylpiperidine-1-oxyl.  

With the established optimal conditions, we began to exam-
ine the substrate scope of the decarboxylative trifluoromethyl-
ation protocol by employing structurally diverse arenes and 
heteroarenes. As shown in Scheme 1, a variety of aromatic 
compounds could be transformed into the valuable trifluoro-
methylated products in moderate to excellent isolated yields. 
Electron-enrichment favors the electrophilic trifluoromethyla-
tion. Benzene derivatives bearing electron-donating alkyl or 
alkoxy substituents were amenable to the protocol (1–12). It is 
of note that the liable boronate group was tolerated under the 
reaction conditions, and could be utilized for further transfor-
mations (2). To our delight, the trifluoromethylation of naph-
thalene proceeded well with a preference at theposition (13). 
The introduction of methoxy groups also rendered quinone 
and pyridine good substrates for the protocol (14 and 15). A 
series of pyridinones and coumarins reacted selectively at the 
 positions (16–22). Moreover, five-membered heteroarenes 
proved suitable substrates for the radical trifluoromethylation, 
including pyrroles, indoles, furans, benzofurans, thiophens, 
and benzothiophens (23–51). For this type of heteroarenes, the 
2-positions if available were preferentially trifluoromethylated. 
Gratifyingly, the acid-sensitive Boc protecting group survived 
from the reaction (24 and 32). Notably, the compatibility with 
boronate and bromide groups illustrated an orthogonal reactiv-
ity to the transition metal-catalyzed C–X trifluoromethylation 
(2, 17, 31 and 46). Then, the more complex, biologically ac-
tive heteroarenes, caffeine and pentoxifylline, were also func-
tionalized (52 and 53), as well as the electron-deficient oxa-
zole substrate (54). 



 

Scheme 1. Scope of the arenes and heteroarenes for trifluoromethylationa 
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aIsolated yields. b390 nm LED used. cYields determined by 19F NMR spectroscopy using trifluoromethylbenzene as an internal standard. 



 

While a great deal of efforts has been devoted to the CF3 in-
troduction, synthetic procedures for incorporating other 
fluoroalkyl (Rf) groups are relatively limited. To this end, we 
decided to investigate the scope of fluoroalkyl carboxylic ac-
ids, which resulted in the extension of the current protocol to 
efficient C–H perfuoroalkyaltion and chlorodifluoromethyla-
tion29 (Scheme 2). We were pleased to find with the corre-
sponding perfluoroalkyl carboxylic acids, the C2F5, C3F7, C4F9 
and C5H11 groups were successfully installed onto the arene 
ring without loss of reactivity as the chain goes longer (55–58). 
Until the case of C6F13, a diminished yield was observed per-
haps because of the poor solubility of C6F13CO2H (59). Fur-
thermore, the chlorodifluoromethylation proceeded smoothly 
with a broad range of arenes and heteroarenes (60–67). 

Scheme 2. Scope of the fluoroalkyl carboxylic acids 

 
aIsolated yields. b390 nm LED used. cYields determined by 19F 
NMR spectroscopy using trifluoromethylbenzene as an internal 
standard. 

In summary, we have developed a mild and practical meth-
od that allows for the decarboxylative radical trifluorometh-
ylation, perfuoroalkylation and chlorodifluoromethylation of 
(hetero)arenes using inexpensive and abundant trifluoracetic 
acid and the related carboxylic acids. A diverse array of arenes 
and heteroarenes were successfully transformed into valued 

fluoroalkylated compounds. The combination of photoredox 
catalysis and a diarylsulfoxide provides a platform for the 
facile generation of fluoroalkyl radicals from the correspond-
ing fluoroalkyl carboxylic acids under mild conditions. Further 
development of our described protocol in terms of easy re-
moval the sulfide byproduct as well as possible use of the sul-
foxide activator in a catalytic amount is under active investiga-
tion in our lab. 
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