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Identification of Potential Binders of the SARS-Cov-2 Spike Protein via 

Molecular Docking, Dynamics Simulation and Binding Free Energy 

Calculation 

ABSTRACT 

The pandemic outbreak of COVID-19 virus (SARS-CoV-2) has become critical global health 

issue. The biophysical and structural evidence shows that SARS-CoV-2 spike protein possesses 

higher binding affinity towards angiotensin-converting enzyme 2 (ACE2) and hemagglutinin-

acetylesterase (HE) glycoprotein receptor. Hence, it was selected as a target to generate the 

potential candidates for the inhibition of HE glycoprotein. The present study focuses on 

extensive computational approaches which contains molecular docking, ADMET prediction 

followed by molecular dynamics simulations and free energy calculations. Furthermore, virtual 

screening of NPACT compounds identified 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-

trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one, Silymarin, Withanolide D, 

Spirosolane and Oridonin were interact with high affinity. The ADMET prediction revealed 

pharmacokinetics and drug-likeness properties of top-ranked compounds. Molecular dynamics 

simulations and binding free energy calculations affirmed that these five NPACT compounds 

were robust HE inhibitor. 

Key words: COVID-19 virus (SARS-CoV-2), angiotensin-converting enzyme 2 (ACE2) and 

hemagglutinin-acetylesterase (HE) glycoprotein, molecular docking, Molecular dynamics 

simulations, NPACT compounds 
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Molecular Docking, Dynamics Simulation and Binding Free Energy 

Calculation 

INTRODUCTION 

Coronaviruses (CoV) is a (+) RNA containing virus which appears as an oval-shaped envelop 

with spike like protrusions [1] (+) strand RNA [2]. The initiation of CoV was first emerged in 

Middle East and it causes respiratory tract disease called as Middle East Respiratory Syndrome 

Coronavirus (MERS‐CoV) which was caused by new form of SARS-CoV (Severe Acute 

Respiratory Syndrome) [3, 4]. Coronavirus disease 2019 (COVID-19) is a pandemic and 

caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). CoV infection 

develops asymptomatically as fever, cough, and severe shortness of breathing, nausea, 

vomiting and diarrhoea symptoms [5]. The envelop of SARS-CoV composed of various types 

of proteins envelop, membrane, nucleocapsid, replicase, spike glycoprotein, and other accuracy 

proteins 3a, 6, 7a and 7b [6-12] .   

Recent reports by Vankadari and Wilce, 2020 and Wrapp et al., 2020 glycosylation process 

occurs between the spike protein of coronaviruses and human host cell [13]. This spike protein 

recruits S1 (N-terminal half) and S2 (C-terminal half) fusion peptides [14] along with 

hemagglutinin-acetylesterase (HE) glycoprotein to interact with angiotensin-converting 

enzyme 2 (ACE2) [2], a surface receptor protein expressed in lungs, heart, kidneys, and 

intestine [15-20] cell adhesion and virulence [21, 22]. Recent studies showed that the 

ectodomain of the SARS-CoV-2 with ~15 nM affinity passes ACE2 receptor [23]. Numerous 

reports suggest that Zhou et al., 2020, Walls et al., 2020, Letko, M., Marzi, A. & Munster, V, 

2020 and Hoffmann, M. et al., 2020 SARS-CoV-2 utilizes ACE2 for the inserting viral 

particles into human target ACE2 cells [24-27]. After establishing connection for sugar 

elements on cell membranes, the hemagglutinin–acetylesterase (HE) of SARS-CoV-2 inserts 

messenger RNA and performs replication process [28] and it causes various diseases leads to 

death. World Health Organization declared (WHO) announced that the COVID-19 has become 

pandemic and due to its infection 38,62,676 confirmed cases, 2,65,961 confirmed deaths in 

more than 215 countries, areas, or territories with cases [29]. 

To combat the first line of infection developed due to CoV2 spike and ACE2 complex 

formation, computational strategies are needed to prevent this complex formation by 

developing small molecules which can target at its complex interface site. In this study, we 



employed molecular docking approach to screen NPACT (Naturally occurring Plant-based 

Anti-cancer Compound activity-Target database) compounds and the best-scoring molecules 

were validated using molecular dynamics simulations analysis to better understand the 

interactions and conformational changes [30, 31].  

MATERIALS AND METHODS  

Different molecular modeling techniques were employed in this study viz, molecular docking, 

ADMET prediction, molecular dynamics simulations, and binding free energy calculations to 

obtain novel leads from NPACT compounds [30, 32]. NPACT compounds have diverse 

pharmacological effects with natural drug-like characteristics. These compounds possess 

absorption, distribution, metabolism, excretion and toxicity (ADMET) properties which leads 

to determine the potential drug candidates for drug discovery process [33]. 

Molecular data set and its preparation 

The coronavirus belongs to +single-stranded RNA harbouring virus family and possesses 

hemagglutinin–acetylesterase (HE) glycoprotein which is responsible for the connection with 

sugar moieties on cell membranes of receptor [28, 34-36]. This HE acquires flexibility to bind 

with O-acetylated sialic acids which demolishes receptor and its membrane by working as HE 

fusion protein [37]. The x-ray diffracted structure of coronavirus hemagglutinin-esterase in 

complex with 4,9-O-diacetyl sialic acid (PDB ID:3CL5) was chosen as a receptor for the study 

which containing the 4,9-O-diacetyl sialic acid as inbound ligand with single chain and 377 

amino acids length and 1.80 Å resolution [2, 38]. In order to perform, Natural product-based 

drug discovery 1574 natural compounds were retrieved from NPACT database [33, 39]. These 

protein and natural compounds were prepared using yasara parameters like removing 

crystallographic waters, adding polar hydrogens and ions followed by atom typed using the 

Amber03 force field and geometry optimized using the steepest gradient approach (100 

iterations) [40, 41].  

Molecular docking 

Molecular docking was implemented on coronavirus hemagglutinin-esterase and 1574 NPACT 

compounds using YASARA software version 19.12.14 with AutoDock Vina algorithm and 

AMBER03 force field [40-42]. The docking scores were calculated using  the following 

empirical equation: 

ΔG = ΔGvdW + ΔGHbond + ΔGelec + ΔGtor + ΔGdesol 



Where ΔGvdW = van der Waals term for docking energy; ΔGHbond = H bonding term for docking 

energy; ΔGelec = electrostatic term for docking energy; ΔGtor = torsional free energy term for 

compound when the compound transits from unbounded to bounded state; ΔGdesolv = 

desolvation term for docking energy 

Lipinsky’s rule and admet prediction 

SwissADME webserver was used for the absorption, distribution, metabolism, elimination, 

toxicity, prediction of top scoring compounds. From this server, the Lipinski rule of 5 [43], GI 

absorption, BBB permeant, cytochrome inhibition were calculated which enhance the 

probability these compounds are more potent as a drug [44, 45]. 

Assessment of the stability of the identified leads with protein 

Molecular dynamics simulations study  

The physical movements of atoms and molecules of protein–ligand docked complex was 

identified through molecular dynamics simulation. Top scoring 5 compounds were chosen for 

the MD simulation at 10 ns time interval each. Before proceeding the MD simulation the 

docked complexes were prepared using steepest descent minimization, YASARA energy 

minimization module (YASARA Biosciences, GmbH) using AMBER (Assisted model 

building with energy refinement) force field [46, 47]. The pre-defined parameters of MD 

simulation were applied which includes AMBER03 force field, temperature of 298 K, pressure 

at 1 bar, coulomb electrostatics at a cut off of 7.86, 0.9% NaCl, solvent density 0.997, pH 7.0, 

1-fs time steps, periodic boundaries, all atoms mobile [31, 48] .  After the completion of MD 

simulation, structural level integrity and conformational changes which have been occurred in 

the protein–ligand docked complex were identified through interaction profiles and 

superposition study [49, 50].  

Binding free energy calculations 

The single trajectory approach was used for the binding free energy calculation using yasara 

Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA approaches) [51-55] 

YASARA AMBER14 with the “single trajectory approach”. The MM/PBSA calculations, 

contains 10 ns MD simulations of all 15 docked protein-ligand complexes. The free energy 

values were calculated using the following equations: 

ΔGbind = ΔGcomplex(minimized) – [ΔGligand(minimized) + ΔGreceptor(minimized)] 



and 

ΔGbind = ΔGMM + ΔGPB + ΔGSA−TΔS 

Where ΔTDS is the conformation entropic contribution, and ΔGMM is the molecular mechanics 

interaction energy (electrostatic + van der Waals interaction) between protein and ligand. ΔGPB 

and ΔGSA depict the polar solvation energy and the nonpolar solvation energy, respectively 

[56]. 

RESULTS AND DISCUSSION  

Molecular docking and its validation 

The molecular docking analysis was carried out for the identification of potential NPACT 

compounds which can inhibit the HE glycoprotein. The docking procedure was first justified 

by redocking the co-crystal ligand 4,9-O-diacetyl sialic acid into CoV-2 hemagglutinin-

esterase protein and calculate the RMSD between bound and docked conformation of co-

crystal ligand. A RMSD of 1.84 Å was achieved which depicted that the robustness of the 

docking procedure to develop physically related dock poses as close as possible. The redocked 

pose possessed the binding energy of 5.233 kcal/mol with 3 hydrogen bonds and 0.1945 

kcal/mol/Atom efficiency with competitive inhibition. The co-crystal ligand showed 3 

hydrogen bonds with Leu 212, Ser 213 and Asn 214. This co-crystal ligand was bounded beside 

the hydrophobic pocket having Tyr184, Phe211, Leu266, and Leu267 which were maintained 

by Asp220, Ser221, Gln222, Ser263, Glu265, Leu267. This 9-O-acetyl moiety plays an 

essential role to inhibit the HE glycoprotein. With this prerequisite approach, 1574 lead-like 

NPACT compounds were docked within the active site of coronavirus hemagglutinin-esterase 

complex (3cl5). 

Table-1 Binding energy, Hydrogen bonds, Efficiency and contacting receptor residues of 

selected ligands. 

Name 

Binding 

energy 

[kcal/mol] 

Hydrogen 

Bonds 

Dissoc. 

constant 

[pM] 

Efficiency 

[kcal/(mol

*Atom)] 

Contacting receptor 

residues 

4,9-O-diacetyl 

sialic acid 
5.23 3 145935232 0.1945 

Thr 114, Thr 159, Leu 

161, Ala 176, Arg 177, 

Tyr 184, Phe 211, Leu 



212, Ser 213, Asn 214, 

Phe 245, Leu 266, Leu 

267 

3,4,5-

Trihydroxy-

1,8-

bis[(2R,3R)-

3,5,7-

trihydroxy-3,4-

dihydro-2H-

chromen-2-

yl]benzo[7]ann

ulen-6-one 

7.66 1 2427424 0.1868 

Cys 113, Thr 114, Thr 

115, Thr 159, Leu 161, 

Lys 163, Ser 164, Ala 

176, Arg 177, Tyr 184, 

Phe 211, Leu 212, Ser 

213, Asn 214, Leu 267 

Silymarin   7.33 4 4208301 0.2095 

Thr 114, Ser 116, Gly 

117, Thr 159, Leu 161, 

Ala 176, Arg 177, Tyr 

184, Phe 211, Leu 212, 

Thr 242, Thr 243, Phe 

245, Leu 267 

Withanolide D 7.29 1 4502224 0.2145 

Ala 156, Gln 157, Thr 

159, Leu 161, Ala 176, 

Arg 177, Glu 178, Ala 

179, Phe 181, Tyr 184, 

Leu 267 

Spirosolane 7.25 0 4776200 0.2503 

Ser 155, Ala 156, Gln 

157, Thr 159, Leu 161, 

Ala 176, Arg 177, Ala 

179, Tyr 184, Phe 211, 

Ser 213, Leu 266, Leu 

267 

Oridonin 7.22 3 5101171 0.2777 

Thr 114, Ser 116, Phe 

207, Lys 210, Phe 211, 

Leu 212, Thr 242, Thr 

243, Phe 245 



 

Figure-1 Docked poses of 4,9-O-diacetyl sialic acid, 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-

trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one,  Silymarin, Withanolide D, 

Spirosolane and Oridonin. 

Based on the binding energy of co-crystal ligand, the threshold was set to 6. The top ranged 

compounds were chosen which ranges from 7.22 to 7.66 kcal/mol. In addition, binding energy, 

hydrogen bonds, efficiency and interactions with receptor residues depicted that the top ranked 

molecules were more potent than the co-crystal ligand binding (Figure-1). The result in Table-

1 demonstrated that compound 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-

dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one showed highest binding energy 7.66 

kcal/mol, followed by Silymarin, Withanolide D, Spirosolane and Oridonin. Thr 114, Thr 159, 

Leu 161, Ala 176, Arg 177, Tyr 184, Phe 211, Leu 212, Ser 213, Asn 214, Leu 267 were found 

as most shared key residues in all compounds accounting hydrogen bonding and high efficiency 

which may aid the competitive inhibition with low molecular weight. These results represented 

that these candidates can be potential drug candidate which can inhibit the coronavirus 



hemagglutinin–acetylesterase (HE) glycoprotein progression. Furthermore, conformational 

changes, stability and MM/PBSA assessment were carried out for all these protein-ligand 

complexes. 

Lipinsky’s rule and ADMET prediction 

SwissADME server was used for the ADMET prediction of top-most ranked compounds which 

calculates pharmacokinetic properties, druglike nature and medicinal chemistry friendliness 

also. Table-2 shows drug-likeness properties of Lipinski’s rule-of-five, in which Oridonin, 

Spirosolane and Withanolide D were fulfilled all the properties within the range. 3,4,5-

Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2yl]benzo[7]annulen-

6-one and Silymarin exceeded the molecular weight and TPSA ranges.  However, all the 

compounds passed the remaining ADMET prediction (ESOL Solubility (mg/ml, GI absorption, 

BBB permeant, Pgp substrate, CYP1A2 inhibitor, CYP2C19 inhibitor, CYP2C9 inhibitor, 

CYP2D6 inhibitor, CYP3A4 inhibitor, log Kp (cm/s)) shown in Table-3. 

Table-2 Molecular pharmacokinetic properties calculated for the top-ranked compounds 

with SwissADME webserver. 

Molecule 

3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-

trihydroxy-3,4-dihydro-2H-chromen-2-

yl]benzo[7]annulen-6-one 

Oridonin Silymarin Spirosolane 
Withanolide 

D 

MW 566.51 364.43 482.44 400.66 470.6 

Fraction Csp3 0.28 0.85 0.24 1 0.79 

Rotatable 

bonds 
2 0 4 0 2 

HBA 12 6 10 1 6 

HBD 9 4 5 1 2 

TPSA 217.6 107.22 155.14 25.84 96.36 

XLOGP3 0.8 0.08 1.9 7.92 3.12 

ESOL Log S -4.05 -2.15 -4.14 -7.31 -4.59 

 

 



Table-3 Predicted ADMET properties of top-ranked compounds. 

Molecule 

3,4,5-Trihydroxy-1,8-

bis[(2R,3R)-3,5,7-

trihydroxy-3,4-dihydro-

2H-chromen-2-

yl]benzo[7]annulen-6-

one 

Oridonin Silymarin Spirosolane 
Withanolide 

D 

ESOL Solubility 

(mg/ml) 
5.06E-02 2.58E+00 3.46E-02 1.95E-05 1.21E-02 

GI absorption Low High Low High High 

BBB permeant No High Low Yes No 

Pgp substrate No No No No Yes 

CYP1A2 inhibitor No Yes No No No 

CYP2C19 inhibitor No No No No No 

CYP2C9 inhibitor No No No No No 

CYP2D6 inhibitor No No No No No 

CYP3A4 inhibitor No No Yes No No 

log Kp (cm/s) -9.19 -8.47 -7.89 -3.12 -6.96 

Molecular dynamics simulations 

To investigate the dynamic properties of the HE glycoprotein with top-ranked NPACT 

compounds necessary for structural changes related to inhibition mechanism. MD simulations 

of this protein and top-ranked 5 compounds were carried out for the 10 ns simulation time, 

respectively. During this time interval the total energy of all 5 protein-ligand complexes were 

remained from -1340000 to -1380000 kcal/mol (Figure-2) while RMSD values lied under 2.3 

Å which depicted less fluctuations. While pocket residues against pocket RMSD and pocket 

RMSF plots (Figure-3) suggested fewer fluctuations in Silymarin compound. 



 

Figure-2 Molecular Dynamics Simulation analysis: Time vs. Total energy and Time vs. RMSD 

graph.  Color denotation: Magenta-3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-

dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one; Purple-Silymarin; Green-Withanolide D; 

Brown-Spirosolane; Yellow-Oridonin. 

 

Figure-3 Stability analysis: Pocket residue vs. Pocket RMSD and Pocket residues vs. Pocket 

RMSF. 

Figure-S1 to Figure-S5 represents the conformational changes captured during the 10 ns time 

interval of all 5 docked complexes. Figure-S1 depicts the changes were observed after the 2.5 

ns in CoV-2 HE with 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-

chromen-2 yl]benzo[7]annulen-6-one which remained stable with minor changes during the 

whole event. The CoV-2 HE and Silymarin complex possessed the variation at 2.5 ns 

simulation time which followed by 5 ns as well as 7 ns and 10 ns time interval with 

conformation changes (Figure-S2). However, major change was identified in CoV-2 HE with 

Withanolide D after 2.5 ns to 7 ns time intervals followed by stabilized complex till 10 ns 

(Figure-S3). CoV-2 HE with Spirosolane and Oridonin complexes persisted no changes during 

the MD simulation event (Figure-S4 and Figure-S5).  



 

Figure-S1 Graphical representation of the interactions between Coronavirus Hemagglutinin-

Esterase with 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-

yl]benzo[7]annulen-6-one simulated molecule by Discovery studio visualiser ((A) 0 nanoseconds, 

(B) 2.5 nanoseconds, (C) 5 nanoseconds, (D) 7.5 nanoseconds, (E) 10 nanoseconds). 

 

Figure-S2 Graphical representation of the interactions between Coronavirus Hemagglutinin-

Esterase with Silymarin simulated molecule by Discovery studio visualiser ((A) 0 nanoseconds, 

(B) 2.5 nanoseconds, (C) 5 nanoseconds, (D) 7.5 nanoseconds, (E) 10 nanoseconds). 



 

Figure-S3 Graphical representation of the interactions between Coronavirus Hemagglutinin-

Esterase with Withanolide D simulated molecule by Discovery studio visualiser ((A) 0 

nanoseconds, (B) 2.5 nanoseconds, (C) 5 nanoseconds, (D) 7.5 nanoseconds, (E) 10 nanoseconds). 

 

Figure-S4 Graphical representation of the interactions between Coronavirus Hemagglutinin-

Esterase with Spirosolane simulated molecule by Discovery studio visualiser ((A) 0 nanoseconds, 

(B) 2.5 nanoseconds, (C) 5 nanoseconds, (D) 7.5 nanoseconds, (E) 10 nanoseconds). 



 

Figure-S5 Graphical representation of the interactions between Coronavirus Hemagglutinin-

Esterase with Oridonin simulated molecule by Discovery studio visualiser ((A) 0 nanoseconds, 

(B) 2.5 nanoseconds, (C) 5 nanoseconds, (D) 7.5 nanoseconds, (E) 10 nanoseconds). 

During the whole MD simulation events for all docked complexes some stable contacts were 

identified using 2D interaction diagrams from Discovery studio visualiser. For 3,4,5-

Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2yl]benzo[7]annulen-

6-one Thr 114 and Thr 115 possessed hydrogen bonding while Leu 161 bounded with Pi-Alkyl 

interactions. However, Silymarin showed Arg 177, Leu 212 Thr242 and Thr 243 amino acids 

having hydrogen bonding and Pi-Alkyl with Leu 267 amino acid. With respect to Withanolide, 

three amino acids were interacted through Alkyl (Ala 176 and Ala 179) and hydrogen bonding 

(Arg 177). Spirosolane owned the same number of the stable interactions as Withanolide with 

Ala 160, Tyr 184 (hydrogen bond) and Tyr 218 (Alkyl). Oridonin represented more influence 

about stable interactions with 6 stable contacts which were identified as five hydrogen bonds 

(Ser 116, Phe 211, Leu 212, Thr 242 and Thr 243) and one Pi-Alkyl bond interaction with Phe 

245. 

Dynamic cross correlation matrix to study residue motions of cross-terms  

Dynamic cross correlation matrix depicted the correlative motions of various pocket residues. 

Figure-4 shows the residual correlative motion of all simulated protein-ligand complexes. This 

correlated motions among pocket residues were represented in the form of heatmaps with deep 

color intensity. The red color exhibited the positive correlation in the residue motions whereas 

blue color indicated the negative or anti-correlated movements of pocket residues. Among all 



DCCM plots the common positive correlated residues were Phe 111, Lys 112, Cys 113, Thr 

114, Thr 115, Ser 116, Gly 117, Leu 128, Phe 129, Tyr 130, Thr 131, Gln 132, Val 133, Phe 

145, Val 146, Asn 147, Val 148, Pro 149, Tyr 150, Ser 155, Ala 156, Gln 157, Ser 158, Thr 

159, Ala 160, Leu 161, Cys 162, Lys 163, Leu 167, Val 168, Tyr 174, Ile 175, Ala 176, Arg 

177, Glu 178, Ala 179, Gly 182, Asp 183, Tyr 184, Tyr 185, Tyr 186, Val 188, Ile 206, Phe 

207, Asn 208, Gly 209, Lys 210, Phe 211, Leu 212, Ser 213, Asn 214, Thr 215, Lys 216, Tyr 

217, Tyr 218, Ile 241, Thr 242, Thr 243, Gly 244, Phe 245, Ser 263, Glu 265, Leu 266, Leu 

267, Leu 268, Thr 269 and they were very essential for the generation of positive correlation. 

 

Figure-4 Dynamic cross correlation map analysis of (A) 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-

trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one; (B) Silymarin; (C) 

Withanolide D; (D) Spirosolane and (E) Oridonin. 

Binding free energy evaluation 

MM/PBSA calculation of each complexes were performed using MD simulation in YASARA 

software which pertained 10 ns time interval with 100 snapshots. Figure-5 and Table-5 depicts 

the results of MM-/PBSA calculation of all complexes. CoV-2 HE protein and Spirosolane 

complex obtained highest average positive binding energy of 4.386 kcal/mol, while CoV-2 HE 

protein and Silymarin showed the less binding energy of -132.237 kcal/mol. According to the 



MM/ PBSA binding energy more positive binding energy indicates strong binding. However, 

the energy ranges from -250 kcal/mol to 70 kcal/mol with the indication of fluctuation between 

0 to 80 ps and stabilized after it. This decomposition of different binding free energies 

deciphered partial contribution towards the inhibitory activity of top-ranked compounds. 

 

Figure-5 Binding free energy calculations of coronavirus hemagglutinin-esterase and top 

ranked compounds. Color denotation: Magenta-32,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-

trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one; Purple-Silymarin; Green-

Withanolide D; Brown-Spirosolane; Yellow-Oridonin. 

Table-4 The Binding free energy of binding for a series of prioritized hits using MM-

/PBSA approach. 

No. Prioritized molecules 

Binding free energy (MM/PBSA) 

(kcal/mol) 

Initial Final Average 

1 
3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-

3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one 
-226.896 -60.142 -74.136 

2 Silymarin -200.094 -131.884 -132.237 

3 Withanolide D -100.228 12.539 -33.177 

4 Spirosolane -22.802 -10.833 4.386 

5 Oridonin -129.055 -118.204 -105.539 

CONCLUSION 

The absence of effective therapeutic drug or vaccine for COVID-19 virus (SARS-CoV-2) 

which became pandemic outbreak, the spike protein of SARS-CoV-2 was targeted. The 



prominent interaction between Human ACE2 and CoV2 HE proteins, which formed the 

primary event of viral invasion and infection, is the key focus of this research. The present 

computational study proposed the identification of robust natural candidates for the inhibition 

of coronavirus hemagglutinin-esterase complex. The combined computational molecular 

interaction approach was employed on natural repositories and 3,4,5-Trihydroxy-1,8-bis 

[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2yl]benzo[7]annulen-6-one, Silymarin, 

Withanolide D, Spirosolane and Oridonin were revealed promising binding affinity. The 

molecular dynamics simulations study of the docked complexes offered binding stability while 

correlative motions of all simulated protein-ligand complexes were obtained from Dynamic 

cross correlation matrix. Furthermore, the MM/PBSA calculations were applied to calculate 

the binding free energy which revealed the major contribution of hydrogen bonds with selected 

target. These computational results provide an insight into the coronavirus hemagglutinin-

esterase complex inhibition. Although, they were at preliminary level which requires the 

experimental confirmation through in vitro and in vivo studies towards the effective computer-

guided drug discovery. 
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Figure Legends 

Figure-1 Docked poses of 4,9-O-diacetyl sialic acid, 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-

trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one,  Silymarin, Withanolide D, 

Spirosolane and Oridonin. 

Figure-2 Molecular Dynamics Simulation analysis: Time vs. Total energy and Time vs. RMSD 

graph.  Color denotation: Magenta-3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-

dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one; Purple-Silymarin; Green-Withanolide D; 

Brown-Spirosolane; Yellow-Oridonin. 



Figure-3 Stability analysis: Pocket residue vs. Pocket RMSD and Pocket residues vs. Pocket 

RMSF. 

Figure-4 Dynamic cross correlation map analysis of (A) 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-

3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one; (B) Silymarin; (C) 

Withanolide D; (D) Spirosolane and (E) Oridonin. 

Figure-S1 Graphical representation of the interactions between Coronavirus Hemagglutinin-

Esterase with 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-

yl]benzo[7]annulen-6-one simulated molecule by Discovery studio visualiser ((A) 0 

nanoseconds, (B) 2.5 nanoseconds, (C) 5 nanoseconds, (D) 7.5 nanoseconds, (E) 10 

nanoseconds). 

Figure-S2 Graphical representation of the interactions between Coronavirus Hemagglutinin-

Esterase with Silymarin simulated molecule by Discovery studio visualiser ((A) 0 

nanoseconds, (B) 2.5 nanoseconds, (C) 5 nanoseconds, (D) 7.5 nanoseconds, (E) 10 

nanoseconds). 

Figure-S3 Graphical representation of the interactions between Coronavirus Hemagglutinin-

Esterase with Withanolide D simulated molecule by Discovery studio visualiser ((A) 0 

nanoseconds, (B) 2.5 nanoseconds, (C) 5 nanoseconds, (D) 7.5 nanoseconds, (E) 10 

nanoseconds). 

Figure-S4 Graphical representation of the interactions between Coronavirus Hemagglutinin-

Esterase with Spirosolane simulated molecule by Discovery studio visualiser ((A) 0 

nanoseconds, (B) 2.5 nanoseconds, (C) 5 nanoseconds, (D) 7.5 nanoseconds, (E) 10 

nanoseconds). 

Figure-S5 Graphical representation of the interactions between Coronavirus Hemagglutinin-

Esterase with Oridonin simulated molecule by Discovery studio visualiser ((A) 0 nanoseconds, 

(B) 2.5 nanoseconds, (C) 5 nanoseconds, (D) 7.5 nanoseconds, (E) 10 nanoseconds). 

Figure-5 Binding free energy calculations of coronavirus hemagglutinin-esterase and top 

ranked compounds. Color denotation: Magenta-32,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-

trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one; Purple-Silymarin; Green-

Withanolide D; Brown-Spirosolane; Yellow-Oridonin. 

Table Legends 



Table-1 Binding energy, Hydrogen bonds, Efficiency and contacting receptor residues of 

selected ligands. 

Table-2 Molecular pharmacokinetic properties calculated for the top-ranked compounds with 

SwissADME webserver. 

Table-3 Predicted ADMET properties of top-ranked compounds. 

Table-4 The Binding free energy of binding for a series of prioritized hits using MM-/PBSA 

approach. 

 

 


