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Abstract

Background: The COVID-19 pandemic has led to a massive and collective pursuit by the research

community to find effective diagnostics, drugs and vaccines The large and growing body of literature

present in MEDLINE and other online resources including various self-archive sites are invaluable

for these efforts. MEDLINE has more than 30 million abstracts and an additional corpus related

to COVID-19, SARS and MERS has more than 40,000 literature articles, and these numbers are

growing. Automated extraction of useful information from literature and automated generation of

novel insights is crucial for accelerated discovery of drug/vaccine targets and re-purposing drug

candidates.

Methods: We applied text-mining on MEDLINE abstracts and the CORD-19 corpus to extract a

rich set of pair-wise correlations between various biomedical entities. We built a comprehensive pair-

wise entity association network involving 15 different entity types using both text-mined associations

as well as novel associations obtained using link prediction. The resulting network, which we call

CoNetz, also contains a specialized COVID-19 subnetwork that provides a network view of COVID-

19 related literature. Additionally, we developed a set of network exploration utilities and user-

friendly network visualization utilities using NetworkX and PyVis.

Results: CoNetz consisted of pair-wise associations involving ∼174,000 entities covering 15 dif-

ferent entity types. The specialized COVID-19 subnetwork consisted of ∼7.8 million pair-wise as-

sociations involving ∼43,000 entities. The network captured several of the well-known COVID-19

drug re-purposing candidates and also predicted novel candidates including ingavirin, laninamivir,

nevirapine, paritaprevir, pranlukast and peficitinib.

Conclusions: Our automated text and network-mining approach builds an up-to-date and compre-

hensive knowledge network from literature for COVID-19 studies. The wide range of entity types

captured in CoNetz provides a rich neighborhood context around the relations of interest. The ap-

proach avoids multiple drawbacks associated with manual curation including cost and effort involved,

lack of up-to-date information and limited coverage. Amongst the novel repurposing drugs predicted,

laninamivir and paritaprevir are possible COVID-19 anti-viral drugs while pranlukast was postu-

lated to be a candidate for managing severe respiratory symptoms in COVID-19 patients. CoNetz

is available for download and use from https://web.rniapps.net/tcn/tcn.tar.gz

Keywords: COVID-19, SARS-CoV-2, biomedical text-Mining, MEDLINE, TPX, HANRD,

GCAS, Graph Convolution, link-prediction
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1 Background

With over 2.5 million cases worldwide in less than four months, the coronavirus disease 2019 (COVID-

19) pandemic has caught the administration, health experts and the general public by surprise [1].

COVID-19 is caused by a novel betacoronavirus, now named SARS-CoV-2. SARS-CoV-2 shares 79%

sequence identity with SARS-CoV, the virus which caused a major severe acute respiratory syndrome

(SARS) outbreak in 2002-2003 [2]. Yet COVID-19 has proved quite different from SARS and Middle

East respiratory syndrome (MERS), both in disease progression, complications and mortality. This

has led to a massive and collaborative ongoing pursuit by the research community to find drugs

and vaccines for the disease. While efforts to contain the pandemic through non-pharmaceutical

interventions have helped contain the spread of COVID-19, there is a an urgent need for a broad-based

and effective pharmaceutical intervention. These could be through repurposing or repositioning of

existing drugs or vaccines, or by identifying novel ones. The drug repurposing strategy is faster since

it involves the use of drugs that have been approved for use in humans, with their pharmacology and

toxicity aspects already known. Finding drugs that can be repurposed for COVID-19 remains a very

active strategy [3, 4, 5, 6].

Some of the studies used network-based approaches for systematic identification of repurposable drugs

and drug combinations for potential treatment of COVID-19 [3, 7]. The network here represents the

interactome of human protein-protein interaction pairs. The basis for identifying drug repurposable

candidates using such networks is that the proteins that associate with and functionally govern

COVID-19 infection are localized in a subnetwork of the human interactome in the neighborhood of

SARS-CoV-2 [3, 5].

Curated interactome data suffer from several drawbacks, including time and effort involved, lack of

up-to-date information, limited recall, and limited coverage of entity types. A significant fraction of

these interactions are derived from literature. The large and growing body of literature present in

MEDLINE and other online resources including various self-archive sites are the primary source of

up-to-date interactome data. However, approaches requiring any manual intervention to information

extraction from literature is highly infeasible due their massive size. For example, MEDLINE has

more than 30 million abstracts and an additional corpus related to COVID-19, SARS and MERS

has more than 40,000 literature articles [8]. Hence, automated extraction of useful information from

literature and generation of novel insights is crucial for rapidly identifying of drug/vaccine targets

and re-purposing drug candidates.

We have previously described TPX, a text-mining framework that supports real-time entity assisted

search and navigation of MEDLINE and literature corpora [9]. We have also described our link-

prediction algorithm GCAS (Graph Convolution-based Association Scoring) that is able to predict

novel links between entities [10]. In another study, GCAS was applied on a MEDLINE-derived

association network for rare disease gene prioritization [11].

In this study, we tailored TPX modules for automated text-mining of literature towards constructing
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a comprehensive and up-to-date correlation network for COVID-19 studies. We then applied GCAS-

based network mining on the network to infer novel links, and augment the correlation network with

these inferred links. We illustrated the value of the resulting network by investigating subnetworks

with the aim of identifying potential drugs both for the treatment and management of COVID-19.

2 Methods

Figure 1 gives the overall architecture of our text and network-mining based framework. Broadly,

our system consists of (a) Dictionary Curation module, (b) Named Entity Recognition (NER) module

for corpus annotation (c) Correlation Extraction Module, for identifying correlated entity pairs (d)

Link-prediction module to predict novel links and (e) Network exploration and visualization module.

We discuss each of these modules in this section.

Figure 1: Architecture depicting the precomputation phase where the network is built, and the visualization

phase where the visualization and exploration are carried out.

2.1 Corpus

We included all MEDLINE abstracts in the input corpus (Date of download: April 5th, 2020). Addi-

tionally, we included articles from the COVID-19 Open Research Dataset (CORD-19 dataset, down-

loaded in April, 2020) [8]. This is a freely-available growing corpus of abstracts and full-text articles

about COVID-19 and related coronavirus infections. This set also contained articles from various

self-archive sites.
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2.2 Dictionary Curation

We created a comprehensive set of dictionaries of names and synonyms mapping to 15 different entity

types including human genes, SARS genes, MERS genes, SARS-CoV-2 genes, HPO phenotypes, drugs,

chemicals, diseases, disease symptoms, GO process, GO function, GO localization, cell types, tissues

and anatomy. Such a rich set of dictionaries were used so that (a) the associations identified have a

wide variety, and (b) the network neighborhood of any identified association provides a rich context.

The dictionaries were built from various sources such as MeSH [12], Gene Ontology [13], HGNC [14],

amongst others. Table 1 provides details of the entities and their primary sources.

Entity

ID

Entity Type Entity Source

1 HUMAN GENE https://www.genenames.org/

2 SARS GENE https://www.ncbi.nlm.nih.gov/gene/

3 MERS GENE https://www.ncbi.nlm.nih.gov/gene/

4 SARS-CoV-2 GENE https://www.ncbi.nlm.nih.gov/gene/

5 HPO PHENOTYPES https://hpo.jax.org/

6 DISEASE https://www.nlm.nih.gov/mesh/meshhome.html

7 CHEMICALS https://www.nlm.nih.gov/mesh/meshhome.html

8 DRUGS https://www.nlm.nih.gov/mesh/meshhome.html

9 DISEASE SYMPTOMS https://www.nlm.nih.gov/mesh/meshhome.html

10 GO PROCESS http://amigo.geneontology.org/amigo/landing

11 GO FUNCTION http://amigo.geneontology.org/amigo/landing

12 GO LOCATION http://amigo.geneontology.org/amigo/landing

13 CELLTYPE https://www.nlm.nih.gov/mesh/meshhome.html

14 TISSUE https://www.nlm.nih.gov/mesh/meshhome.html

15 ANATOMY https://www.nlm.nih.gov/mesh/meshhome.html

Table 1: Various biomedical entities and their respective sources

As with most sources of such data for dictionary creation, issues of overlaps within and across dictio-

naries, ambiguity as well as issues of coverage were observed. Table 2 shows some of these conflicts.

These were addressed to a significant extent with the semi-automated dictionary curation process. As

deemed required, manual disambiguation was also done. Further analyses of the tagged output was

used to identify noisy acronyms and high-level terms, which were removed as required. Most other

ambiguities were resolved using the Conflict Resolver module (Section 2.3) during the tagging phase.

We acknowledge that this is an ongoing process, and the results of repeated iterations of tagging will

be used to continuously refine these dictionaries.

2.3 Named Entity Recognition (NER)

We tailored two modules from our TPX text-mining framework - the NER module that annotates the

literature from MEDLINE and the CORD-19 corpus using the curated dictionaries; and the Conflict
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Overlap Type Entity ID1 ID2

HUMAN GENE cox1 HGNC:9604 HGNC:7419

cop1 HGNC:17440 HGNC:33701

GO FUNCTION trehalose synthase activity GO:0102986 GO:0047471

cdk-activating kinase activ-

ity

GO:0019912 GO:0004693

GO PROCESS axon cargo transport GO:0098930 GO:0008088

HUMAN GENE-HPO strabismus HP:0000486 HGNC:15511

PHENOTYPES supravalvular aortic stenosis HP:0004381 HGNC:3327

HUMAN GENE-DISEASE familial hypercholes-

terolemia

HGNC:6547 D006938

gyrate atrophy HGNC:8091 D015799

HPO PHENOTYPES-GO aggressive behavior HP:0000718 GO:0002118

PROCESS skeletal muscle atrophy HP:0003202 GO:0014732

Table 2: Examples of overlaps within and across dictionaries

Resolver (CR) module which carries out entity type disambiguation.

The dictionary-based NER module from TPX was used to tag term mentions in the text using the

curated dictionaries from section 2.2. Specialized NER modules were developed to handle each entity

type differently. For instance, disease terms in the text are tokenized and matched differently compared

to the gene terms. The NER module removes stop words corresponding to each dictionary type using

separate entity specific stop word lists. Conflicts across entity types were resolved by the CR module

during the tagging phase [9, 11].

2.4 Correlation Network Construction

The correlation extraction module used Pearson correlation coefficient to compute pairwise entity

correlations between entities identified by the corpus annotator. The correlation score computation

is detailed in [11]. The pairwise correlations were derived based on co-occurrences of entity pairs

at paragraph level in text. We experimented with computing pair-wise correlations using different

text spans: sentence, paragraph, section and article. We observed that correlations computed at the

paragraph level struck a good balance between precision and recall. The resulting network captured

entity pairs with positive correlations. Here, the correlation values are stored as link weights.

Additionally, we computed the entity correlations by restricting the corpus to only COVID-19 and re-

lated articles. This is to enable users to explore and analyze the pair-wise correlations in the context of

COVID-19 and related literature as a specialized COVID-19 subnetwork. The specialized COVID-19

corpus consisted of the CORD-19 corpus and a filtered set of MEDLINE abstracts. The MEDLINE

abstracts were filtered based on the annotated entities in the abstracts, wherein the included ab-

stracts contained at least one tagged entity corresponding to “coronavirus infection”, SARS, MERS or
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COVID-19 or their synonyms. The pair-wise correlation values derived from this COVID-19 context

are included as additional edge attributes in the network. The pair-wise correlation values are gov-

erned by both the co-occurrence frequencies of the entity pairs as well as their individual background

frequencies in the corpus. Hence, by limiting the corpus to COVID-19 related literature, the entity

pairs could have altered correlation values in the specialized subnetwork. This subnetwork serves as a

network view of COVID-19 related literature.

2.5 Link Prediction

Drug and vaccine research can greatly benefit from automatic prediction of novel links that in turn

helps in improved hypothesis generation. Since the existing literature is an important source for ef-

fective link prediction, we applied the GCAS link prediction algorithm [10] to the entire correlation

network i.e., correlations from the entire corpus, thereby leveraging the available knowledge from liter-

ature to predict novel associations. GCAS identifies novel links by performing information propagation

on the network using spectral graph convolution techniques [10]. The final network obtained after

running GCAS also included the predicted links. We refer to this network as “CoNetz”.

2.6 Network Exploration and Visualization

We built PyVis and NetworkX-based [15] utilities for easy exploration and intuitive visualization of the

network. PyVis is a python-based framework for visualization of network graphs based on the VisJS

library [16]. PyVis provides a rich set of customizable visualization features including node colors,

labels, sizes based on metadata and a wide choice of layout algorithms. User interface operations such

as dragging, hovering, and selection of nodes and edges are well supported in PyVis. Here, the nodes

represent various biomedical entities, while the edges represent the correlations or links between them.

The width of the edge indicates the association score between the nodes. The edges also provide the

evidence of an association as a list of article IDs. The supporting literature for correlation links can

be viewed as part of the edge information. NetworkX supports querying an underlying network-based

on multiple criteria in order to, for example, identify important links or to identify paths that connect

distant entity nodes. We used NetworkX to: (a) perform complex queries to explore connecting nodes,

kth-neighborhood links between query node(s), and (b) query with a wide range of filters viz., query by

term, show only defined entity types, display top-K entities across or within each entity type, amongst

others. Thus, an underlying network can be effectively explored using NetworkX-based filtering of the

relevant sub-networks and its visualization using PyVis.

3 Results

Our final network, CoNetz, consisted of ∼174,000 unique entities and ∼100 million pair-wise associa-

tions. Break-up of the entity counts across the different entity types is provided in the Supplementary

Table 1. The specialized COVID-19 subnetwork (corresponding to the COVID-19 related literature)

consisted of ∼7.8 million pair-wise associations involving ∼43,000 entities.
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3.1 Drugs Associated with COVID-19 from Literature

Well-known drug re-purposing candidates for COVID-19 in CoNetz include remdesivir, hydroxychloro-

quine and lopinavir-ritonavir combination, as well as convalescent plasma therapy to were seen to be

strongly associated with COVID-19 disease node. Lesser known drug leads such as ciclesonide, baric-

itinib, fedratinib, tocilizumab and arbidol are also connected to the COVID-19 node. Alternative

medicines mentioned in literature in the context of COVID-19 include astragali radix, shufeng jiedu

and lianhuaqingwen. The top-15 chemicals and drugs directly associated with COVID-19 disease are

shown in Figure 2. This shows the presence of high quality association neighbors in the network within

the top-K neighborhood.

Figure 2: Top-15 chemicals and drugs directly associated with COVID-19 disease

3.2 Analysis of Novel Drug Predictions for COVID-19

The top-40 link-predicted drugs for COVID-19 in the network are shown in Figure 3. The list of these

drugs along with additional details is provided in Supplementary Table 2.
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We investigate these drugs as potential drug re-purposing candidates for COVID-19. Towards this, we

perform network exploration around some of these link-predicted drugs to understand their possible

mechanisms. We also identify and describe literature evidence that could support these predictions.

While we provide analysis for a few of the 40 drugs, a similar analysis can be done for all 40 or any

top-K drugs of ones choice. Our goal here is to illustrate the potential of the network and also enable

domain experts to explore the network to generate their own hypotheses.

Figure 3: Top-40 chemicals and drugs predicted to be linked to COVID-19 disease. It is to be noted that these

are not directly associated to COVID-19, but have been predicted to do so

1. Ingavirin: Ingavirin is a drug licensed in Russia for influenza and other acute respiratory viral

infections [17, 18, 19]. It is a non-toxic broad spectrum antiviral with complex mechanism of

action. In influenza, it is known to inhibit viral replication process by targeting the influenza nu-

cleoprotein. In addition, experimental results suggest that it also interferes with the virus assembly

process as well as budding leading to reduction of viral load. Experiments showed that increased

viral clearance could be possibly due to the ability of the drug to overcome virus-induced immuno-

suppression [20].
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As seen in Figure 4, ingavirin is strongly associated to the nucleoprotein (N Gene), which in

turn is directly associated with the COVID-19 disease node and via the replicase polyprotein

1A node. The general physical properties of N proteins are markedly similar, and interestingly

most of the characteristics of coronavirus N proteins are also shared by the nucleocapsid (NP)

proteins of influenza viruses. Despite general similarities in the coronavirus N proteins, there exists

only a low degree of sequence homology among them [21]. Based on this, ingavirin could be a

potential COVID-19 drug, acting possibly against the SARS-CoV-2 nucleoprotein and inhibiting

viral replication. There are reports in the general press that clinical trials are underway for testing

the efficacy of ingavirin as a drug against general coronavirus infections [22].

Figure 4: Network neighborhood for ingavirin, COVID-19 pair. The left side subnetwork shows the immediate

neighborhood and the right side subnetwork shows the next level neighborhood. Ingavirin is associated with

the COVID-19 disease node via the replicase polyprotein 1A node

2. R 125489 (Laninamivir): Laninamivir is a neuraminidase inhibitor licensed for treatment of in-

fluenza A and B infections in different parts of the world [23]. Laninamivir has been prescribed as a

single inhaled dose through its octanoate prodrug (CS-8958) against the viral neuraminidase [24, 25].

The neuraminidase enzyme seen in influenza A and B viruses cleaves the terminal sialic acid residues

from carbohydrate moieties on the surfaces of host cells and virus envelope, resulting in the release

of progeny viruses from infected cells [26, 27]. It is thought that laninamivir blocks the active site

of the neuraminidase enzyme, leaving uncleaved sialic acid residues on the surfaces of host cells

and influenza viral envelopes. This results in viral aggregation at the host cell surface when viral

hemagglutinin binds to the uncleaved sialic acid residues, thus reducing the amount of virus that

could be released to infect other cells [28].

As seen in Figure 5, laninamivir is associated with sialic acid and signaling receptor binding function

nodes, which in turn are associated with the COVID-19 disease node. It has been shown that the

domain A of coronavirus S-proteins mediates attachment to oligosaccharide receptors such as 9-

O-Ac-Sia depending on the coronavirus type [29]. The structural basis for human coronavirus

attachment to sialic acid receptors at the surface of host cells has been established [30]. We

conjecture that laninamivir can potentially affect the binding of SARS-CoV-2 to human host cells.
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Figure 5: Network neighborhood for the laninamivir-COVID-19 pair. The left side subnetwork shows the

immediate neighborhood and the right side subnetwork shows the next level neighborhood. Laninamivir is

associated with sialic acid binding and signaling receptor binding function nodes, which in turn are associated

with the COVID-19 node.

3. Nevirapine: Nevirapine is a non-nucleoside reverse transcriptase inhibitor used in the treatment

of HIV [31]. Molecular docking studies have been carried out in order to search for potent SARS-

CoV protease inhibitors [32]. This study showed nevirapine, glycovir, virazole and calanolide A

to fit well at the substrate binding cleft of the 3D structure of the SARS-CoV protease, and that

nevirapine with an estimated binding free energy of -9.47kcal/mol was a very good candidate [32].

This raises the possibility of nevirapine being a potential SARS-CoV-2 drug acting as SARS-CoV-

2 main protease inhibitor. In fact, while this manuscript was under preparation, nevirapine has

been proposed as a possible COVID-19 drug, based on it’s potential action as a SARS-CoV-2 main

protease inhibitor [6]. Though our corpus did not contain this article, CoNetz predicted a highly

ranked link between nevirapine and COVID-19, thereby exhibiting the utility of our network-based

approach. Figure 6 shows the network neighborhood between them.

Figure 6: Immediate and next level network neighborhood for nevirapine-COVID-19 pair. Nevirapine could

potential act as a SARS-CoV-2 main protease inhibitor.
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4. Paritaprevir: Paritaprevir is an anti-hepatitis C direct-acting antiviral agent (DAA) that are viral

NS3/NS4/NS4A protease inhibitors [33, 34, 35]. These non-structural proteins are vital for viral

replication [34]. Treatment with DAA’s such as Paritaprevir not only inhibits viral replication but

may alter host adaptive and innate immune responses [34].

As seen in Figure 7, paritaprevir is associated with nsp4 and viral genome replication. It has been

shown that nsp4 is very crucial for general coronavirus-induced host membrane rearrangement and

the replication complex function [36]. Furthermore, it was observed that the crucial amino acids

residues (H120 and F121) in nsp4 are well conserved among betacoronaviruses, including MERS-

CoV [36]. In fact, a very recent article not present in the corpus mentions Paritaprevir as a potential

drug COVID-19 acting on the SARS-CoV-2 3C-like proteinase(3CLpro) [37], further showing the

promise of link-prediction and network analysis.

Figure 7: Immediate and next level network neighborhood for paritaprevir, COVID-19 pair. Paritaprevir is

associated with nsp4 and viral genome replication.

We now investigate some of the non anti-viral drugs from Figure 3.

1. Pranlukast: Mannose-binding lectin (MBL) is an innate immune system protein that acts against

a wide range of pathogenic microbes via complement activation [38, 39]. Clinical studies have shown

that MBL deficiency might predispose one to severe respiratory tract infection [38]. The binding of

MBL to pathogenic surfaces leads to the activation of associated MBL-associated serine proteases,

production or cleavage of complement factors, amongst a host of downstream effects [38, 40]. This

could potentially lead to potent bronchoconstriction and development of allergic inflammation.

It has been previously reported that MBL contributes to the first-line host defense against SARS-

CoV wherein deposition of complement C4 on SARS-CoV was enhanced by MBL [41]. More-

over, MBL deficiency has also been seen to be a susceptibility factor for acquisition of SARS [41].

Pranlukast is a leukotriene receptor antagonist and has an anti-inflammatory effect on bronchial

eosinophilic infiltration [42]. In the context of coronaviruses, it has been proposed that a leukotriene

C4 receptor antagonist such as pranlukast can be administered when a patient is diagnosed with

SARS, thereby avoiding severe respiratory symptoms [43]. As seen in Figure 8, pranlukast is asso-

ciated with COVID-19 disease via mannan binding and leukotriene C4, thus raising the possibility

of pranlukast being used to manage the severe respiratory symptoms of COVID-19.
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Figure 8: Immediate and next level network neighborhood for pranlukast, COVID-19 pair. Pranlukast is

associated with COVID-19 disease via mannan binding and leukotriene C4.

2. Peficitinib: Peficitinib is an oral Janus kinase (JAK)1, JAK2, JAK3 and tyrosine kinase (Tyk)2

(pan-JAK) inhibitor approved in Japan for the treatment of rheumatoid arthritis [44]. Inhibition

of JAK suppresses the activation of cytokine signaling pathways involved in inflammation and joint

destruction in rheumatoid arthritis. Peficitinib suppresses the JAK-STAT pathway and the mono-

cyte chemotaxis and proliferation of fibroblast-like synoviocytes through inhibition of inflammatory

cytokines [45].

As seen in Figure 9, peficitinib is linked to COVID-19 via baricitinib, and also via AAK1. Baricitinib

is a numb-associated kinases (NAK) inhibitor that has a high affinity for AAK1, an important

regulator of clathrin-mediated endocytosis [46]. The high affinity of baricitinib for NAKs, its anti-

inflammatory properties, its ability to reduce associated chronic inflammation in interferonopathies

and its advantageous pharmacokinetic properties appear to make it a special case among the drugs

against COVID-19 [46]. Possibly, peficitinib might share some of these properties and hence might

be effective in COVID-19 management. On the flip side, it is known that JAK inhibitors such as

peficitnib can increase the risk of viral infections [47]. Hence, further investigation is needed to see

if peficitinib could safely be used as a drug in COVID-19 treatment and management.

Figure 9: Immediate and next level network neighborhood for peficitinib, COVID-19 pair. Peficitinib is linked

to COVID-19 via Baricitinib
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4 Discussion

In this study, we tailored the TPX text-mining framework to extract pair-wise correlations from liter-

ature and built comprehensive correlation networks covering a set of 15 biomedical entity types. The

entity types include human gene, SARS-CoV-2 gene, SARS gene, MERS gene, HPO phenotype, drug,

disease symptom, chemical, disease, GO process, GO function, GO localization, cell type, tissue and

anatomy. We also capture enriched pair-wise correlations in the context of COVID-19 and related

articles and represent them as additional edge attributes in the network. Since the existing literature

is an important source for effective link prediction, we applied GCAS link prediction algorithm on

the network to predict novel associations. We illustrated the potential of the network by applying

it to the problem of drug re-purposing for COVID-19 treatment and management. Nevirapine and

paritaprevir, which were predicted in CoNetz to be linked to COVID-19, appeared in some very recent

literature articles as potential COVID-19 drugs. However, these articles were not part of our corpus,

which illustrates the utility of our network and approach.

To the best of our knowledge, CoNetz is the only network derived from literature that covers a wide

range of 15 entity types. Existing publicly available networks are specific to a limited set of enti-

ties such as genes, proteins and diseases. Moreover, these networks lack up-to-date information. In

contrast, CoNetz provides a rich neighborhood context for any subnetwork of interest by including a

wide variety of entities. Furthermore, the network links have associated strength values that can be

used to identify top-K strongly correlated neighbors of entities. We note that lack of comprehensive

and curated high quality validation datasets makes quality evaluation of our approach difficult. We

have previously performed quality evaluation for similar networks that were created in the context of

rare-disease studies [11]. Analogous experiments involving validation datasets covering a wide range

of entities would help in quality evaluation of the networks created in this study. It is to be noted

that manual inspection of several top-K neighbors of COVID-19 related entities in the network showed

significant fraction of highly relevant neighbors. CoNetz could be a valuable resource for COVID-19

studies carried out by the research community and the structured network data allows easy integration

of the literature data to automated downstream analysis. In future, additional entities such as other

related pathogen genes, as well as associations from high quality and heterogeneous curated data such

as IntAct [48] with sufficient coverage can be explored for augmenting it.

CoNetz is compatible with the NetworkX and PyVis utilities. We provide several network exploration

and visualization functionalities based on NetworkX and PyVis. We performed network exploration

on the network to identify information related to COVID-19 disease. For exploration, a network node

can be identified either by its “term name” or the entity ID in its source DB. The ID here is its public

ID as present in the public data source from which its source dictionary was built. For instance, the

Human Gene dictionary was built using HGNC. Hence, in order to query for “ACE2”, one could either

search using its symbol “ACE2” or its HGNC ID “HGNC:13557”.

With the sudden and quick spread of the COVID-19 across the world, there is a great need to under-

stand the pathobiology of the SARS-CoV-2 virus and develop drugs to treat and manage COVID-19
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disease. While development of new drugs would take time, repurposing of already available drugs could

be an faster alternative. Automated extraction of useful information from literature in an up-to-date

manner and automated generation of novel insights is crucial for accelerated discovery of drug/vaccine

targets and re-purposing drug candidates. Our literature driven text and network mining based ap-

proach constructs an up-to-date knowledge base from literature that we update periodically. CoNetz

provides a promising collection of COVID-19 drug re-purposing candidates. While we provide sup-

porting arguments for these predicted drugs, these have to be further investigated using other methods

such as expression studies and also experimental studies to identify high confidence drug candidates.

5 Conclusions

Our automated text and network-mining approach builds an up-to-date and comprehensive knowledge

network CoNetz from literature for COVID-19 studies. Furthermore, the wide range of entity types

captured in CoNetz provides a rich neighborhood context for any subnetwork of interest. Our approach

avoids multiple drawbacks associated with manual or semi-manual curation including cost and effort

involved, lack of up-to-date information and limited coverage. CoNetz can be a valuable resource for

COVID-19 studies carried out by the research community. Furthermore, the structured network data

allows easy integration of the literature data to automated downstream analysis. As an example, the

network predicted several promising and novel repurposing candidates for COVID-19 drugs, including

ingavirin, laninamivir, nevirapine, paritaprevir, pranlukast and peficitinib. Literature investigation

of these candidates reveal that they can target different mechanisms and may merit investigation for

COVID-19 treatment.

List Of Abbreviations

Abbreviation Full Form

COVID-19 coronavirus disease 2019

SARS severe acute respiratory syndrome

MERS Middle East respiratory syndrome

SARS-CoV severe acute respiratory syndrome coronavirus

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2

HANRD Heterogeneous Association Network for Rare Diseases

GCAS Graph Convolution-based Association Scoring

NER Named Entity Recognition

TPX TCS Pubmed eXplorer

PPI Protein-Protein Interactions

CR Conflict Resolver
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