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Abstract

We propose here that the intermediate nucleation phase identified in a certain case
of protein crystal growth actually consists of two distinct parts; a low density and
higher density phase. A theory for crystal growth is utilized to study the formation
and growth of each phase. Within the framework of this theory the low density phase
is shown to obey a forth order kinetic law while the high density phase is zeroth order.
The combination of these two phases is shown to be a good match for X-ray diffrac-
tion data which is indicative of its presence. The crystal growth rate is then given
in terms of the kinetic behavior of the intermediate nucleation phase. From this, the
crystal radius is estimated and shown to compare favorably with reported size data.
A method is proposed for determining the conditions that lead to protein crystals of
largest possible size.
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1 Introduction

For over 20 years now groups have been reporting that for protein crystal growth from
solution there can develop in certain cases an intermediate nucleation phase which perhaps
acts as a pre-catalytic for the eventual growth of crystals [1–5]. The process has been
identified in certain inorganic growth systems as well [6,7]. In a recent report on the kinetics
of protein crystal nucleation Barlow and Gregus proposed that in one particular case the
solute rich associates of the intermediate phase seemed to form around seed nuclei that are
already present at or near the instant in time when the supersaturated solution is prepared [8].
Nanev and co-workers had previously suggested that initial seed particles, of biological origin,
must be present in all supersaturated protein solutions [9]. It was further hypothesized in
Ref. [8] that these early stage associates do not go on to form crystals themselves but are
consumed by crystals growing in the solution formed upon homogeneous nuclei. There is
significant experimental evidence for solute rich associates of an intermediate phase, during
lysozyme crystal growth, being consumed by nearby growing crystals [3, 10,11]

Reported X-ray diffraction data [2], for a case of isothermal β-lactoglobulin (BLG) crystal
growth, indicating the presence of the intermediate phase, leads us to propose here that
the intermediate phase is actually composed of two distinct parts, a low density and high
density phase. This hypothesis is consistent with a recent experimental report for lysozyme
nucleation and crystal growth where two distinct types of amorphous protein particles were
seen to facilitate nucleation [12]. In this report a standard theory for crystal nucleation and
growth is employed to study the kinetics of the solute rich intermediate associates. The
nucleation rate of the intermediate nuclei is taken to be given by an expression determined
in an earlier report. Using this model for the intermediate phase nucleation rate, along
with equations of continuity and mass balance, expressions for the associate linear growth
rate and distribution of associate sizes are derived. Each of these phases appears to have a
distinct kinetic behavior, or reaction order. Using the derived kinetic expressions the time
dependent concentration of each associate type can be computed. The sum of these two
concentrations is shown to be a good match for reported X-ray diffraction data indicative of
its presence.

To further verify the model used for the concentration of intermediate phase we utilize it
as part of an expression for the crystal growth rate where the crystal growth rate is taken to be
directly proportional to the supersaturation not involved in the transient intermediate phase.
The resulting expression for the crystal radius as a function of time compares favorably with
size data reported for the BLG growth run mentioned above. Further, this result points
to there being a maximum crystal size in the equilibrium distribution which is directly
proportional to the cube root of the initial supersaturation.

It is important to note that in this report the intermediate nucleation phase should not
be confused with the intermediate stage of crystal growth, both of which will be referred
to. In the next two sections we develop the theoretical models required for our description
of the intermediate phase and crystal size data reported for the BLG crystallization case
mentioned above.
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2 Zeroth Order Theory

Consider a size distribution function for spherical associates f which is a function of the
associate radius r and time t. Assuming there is no growth rate dispersion in the distribution
we let the linear growth rate of the associate be G = dr/dt. We employ the well-known
method of population balance and mass conservation, variants of which have often been
used to study intermediate stage crystal growth and ripening [13–17]. Population balance
leads to

∂f

∂t
+
∂(Gf)

∂r
= 0 . (1)

The associate propagation mechanism suggested in Ref. [8] is used again here. There is an
initial seed density of n1 upon which associates form. These seed nuclei then decay away as
the associates are consumed by crystals growing on homogeneous nuclei and/or the associate
acts as a heterogeneous seed for crystal growth. Either way, at this point the associate’s seed
nuclei is considered transfered to the crystal and thus consumed. So the nucleation rate for
associate seeds is negative and is denoted by J where J = −Gf(t, 0) since G > 0 and f > 0.
We let the time dependent normalized supersaturation be denoted by s(t). A common model
for the growth rate is then G = as where a is a constant that depends upon the interface
transfer coefficient. However, here we take a more general view and let G = G(t) that is,
the associate growth rate is some yet to be determined function of time.

We assume that all associates are born at t = 0 and that all will remain the same size
throughout the run so that there will be no size dispersion in the distribution. In this case it
will be that df/dt < 0, i.e. the total number of associates will decrease with time and with
the number of particles decreasing as they increase in size we will have that df/dr < 0. By
inspection of Eq. (1), which is used for cases where J > 0, we see that it must be adjusted
by a sign so that population balance for our system becomes

∂f

∂t
− ∂(Gf)

∂r
= 0 . (2)

In addition to Eq. (2), a second independent equation describing our system can be
written by assuming conservation of mass,

ds

dt
= −K

∫ ∞
0

r2G(t)f(t, r)dr , (3)

where K is a constant which includes a shape factor.
An essential part of the proposed propagation mechanism is for the associate seed nuclei

density n to be given as [8]

n(t) =
no

no−n1

n1
+ ekt

, (4)

where n1 is the initial seed nuclei density in the solution and no is the final nuclei density.
From Eq. (4) it can be seen, as mentioned above, that the initial seed nuclei density will
decay to zero as the intermediate nucleation phases passes. Therefore, in this model, the
final nuclei density, no, is due to homogeneous nucleation.
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The intermediate phase nucleation rate is J = dn/dt, which leads to

J = − noke
kt(

n0−n1

n1
+ ekt

)2 . (5)

Given the simple nature of the mono-disperse size population studied here we propose that
the distribution function be separable i.e.,

f = T (t)R(r) . (6)

While non-separable distributions have been studied extensively [14,18–20], separable distri-
butions have been shown to lead to a reasonable theoretical description of the supersatura-
tion decay during lysozyme and insulin bulk crystal growth [16,17] and have been shown to
describe the crystal size distribution during bulk insulin crystal growth from solution [21].

The associate nucleation rate is now given as,

J = −G(t)T (t)R(0) , (7)

Solving this for T gives,

T (t) =
−J

G(t)Ro

, (8)

where we have let R(0) = Ro. Now, Eq. (2) will be used to determine G(t) and R(r).
With these functions known, the distribution function f is assembled and the volume of the
intermediate phase as a function of time can be studied.

Using Eq. (6) and Eq. (8) in Eq. (2) gives,

− R

Ro

d(J/G(t))

dt
+

J

Ro

dR

dr
= 0 . (9)

Expanding the derivative and rearranging leads to

1

G2

dG

dt
− 1

GJ

dJ

dt
= − 1

R

dR

dr
. (10)

Letting the separation constant be λ, where λ > 0 leads to the following solution for R(r):

R(r) = Roe
−λr . (11)

Now, the time dependent part of Eq. (10) is considered. Rearranging leads to the Bernoulli
equation,

dG

dt
− 1

J

dJ

dt
G− λG2 = 0 . (12)

Eq.(12) is converted into linear form by using the substitution z = 1/G so that it becomes,

dz

dt
+

1

J

dJ

dt
z = −λ . (13)
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Using Eq. (5) an integrating factor for Eq. (13) is found to be

exp

[∫
1

J

dJ

dt
dt

]
= − J

nok
. (14)

Since G = 1/z we have then that

G =
−J

nok
[
−λ
∫ −J(t′)

nok
dt′ + C1

] . (15)

Here C1 is a constant. Now J = dn/dt so that Eq. (15) is written as

G =
−J

λ
∫
dn+ C1

, (16)

and therefore,

G =
−J

λn(t) + C1

. (17)

Letting C1 = 0 and using Eqs. (4) and (5) G becomes,

G(t) =
(k/λ)ekt

β + ekt
. (18)

Here we have set β = (no − n1)/n1.
Now, T (t) can be found from Eq. (7) and the distribution function written. However,

we first use Eq. (3) to determine s(t) and in doing so arrive at a relation for λ in terms of
other parameters. Additionally, the resulting expression for s(t) will be useful for defining
an undetermined parameter that will appear in the derivation of the following section. It
should be noted that the normalized supersaturation determined here and in the following
section no longer refer to the bulk supersaturation but rather to some subset of the bulk
supersaturation which drives each intermediate nucleation phase.

Using Eqs. (6), (8) and (11) in Eq. (3) leads to

ds

dt
= KJ

∫ ∞
0

r2e−λrdr . (19)

Computing the integral in Eq. (19) yields

ds

dt
=

2KJ

λ3
. (20)

Using Eq. (5) in eq. (20) and separating leads to∫
ds = −2K

λ3

∫
knoe

kt

(β + ekt)2
dt . (21)

Evaluating the integrals in Eq. (21) leads to the following for s:

s(t) =
2Kno
λ3

(
1

β + ekt

)
+ C2 , (22)
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where C2 is a constant of integration. The initial condition for s is that s(0) = 1. The final
condition is that s→ 0 as t→∞. These conditions are achieved when C2 = 0 and

s(t) =
2Kno
λ3

(
1

β + ekt

)
for λ = 3

√
2Kno
β + 1

. (23)

Now, using Eqs. (6), (8), (11) and (18) the distribution function can be written as

f(t, r) =

(
λno

β + ekt

)
e−λr for r = rm(t) . (24)

Here the distribution function is restricted to radii of r = rm(t) where rm(t) is the radius at
time t since in this case all associates were born at t = 0.

An expression for rm(t) can now be determined. By definition the linear growth rate is
G = dr/dt. Using this with Eq. (18) we have

drm
dt

=
(k/λ)ekt

β + ekt
. (25)

Separating and integrating with the initial condition r(0) = 0 gives

rm(t) =
1

λ
ln

(
β + ekt

β + 1

)
. (26)

Now, assuming that the associate is spherical in shape, the volume of associate phase per
unit volume of solution is given as

V (t) =
4

3
π[rm(t)]3n(t) . (27)

With Eqs. (4) and (26) this becomes

V (t) =
4π

3λ3

[
ln

(
β + ekt

β + 1

)]3 [
no

(β + ekt)

]
(28)

3 General Order Theory

A more general version of the derivation carried out in the previous section is now considered.
Here the growth rate will depend upon the associate radius as rp. Here p could be any positive
number but is typically an integer. Therefore, the growth rate G is modeled as

G =
g(t)

αrp
. (29)

Here α is a constant. As in the previous section we have that f > 0, G > 0 and J < 0.
Expressions for growth rates in the form of Eq. (29) have been discovered during theoretical
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studies of colloidal aggregation [22] and Ostwald ripening [23]. We assume a separable
distribution function as in Eq. (6) and that the nucleation rate J is modeled as

J = −g(t)

αrp
T (t)Ro . (30)

Now, using this in the separable distribution function and inserting into Eq. (2) leads to

− αrpRd(J/g)

dt
+ J

dR

dr
= 0 (31)

Rearranging and separating yields,

− 1

J

d(J/g)

dt
= − 1

αrpR

dR

dr
. (32)

The time dependent side of Eq. (32) leads to the same result as found in the previous section.
Letting the separation constant be λ, the right side can be rearranged to give,

1

R
dR = −λαrpdr . (33)

Integrating both sides applying initial conditions yields,

R = Ro exp

[
−λαr

(p+1)

p+ 1

]
. (34)

Using T (t) from Eq. (30), along with Eq. (34), the entire distribution function can be
written for the general order case.

f(t, r) =

(
λno

β + ekt

)
αrp exp

[
−λαr

(p+1)

p+ 1

]
for r = rm(t) . (35)

Using Eqs. (29) and (35) in Eq.(3), the normalized supersaturation can be determined
for the generalized case.

ds

dt
= KJ

∫ ∞
0

r2 exp

[
−λαr

(p+1)

p+ 1

]
dr = KJ

Γ
(

3
p+1

)
p+ 1

(
p+ 1

αλ

)3/(p+1)

, (36)

where Γ denotes the gamma function. Using Eq. (5) in Eq. (36), separating, integrating
and applying the final condition that s→ 0 as t→∞ leads to

s(t) = Kno
Γ
(

3
p+1

)
p+ 1

(
p+ 1

αλ

)3/(p+1)(
1

β + ekt

)
. (37)

In Eqs. (23) and (37) it must be that s(0) = 1. This implies that

2

λ3
=

Γ
(

3
p+1

)
p+ 1

(
p+ 1

αλ

)3/(p+1)

, (38)
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thus leading to,

α = λp(p+ 1)

Γ
(

3
p+1

)
2(p+ 1)

(p+1)/3

. (39)

Now an expression for rm(t) in the general order case is sought. Using Eq. (29) we have
for the linear growth rate,

drm
dt

=
g(t)

αrmp
. (40)

Using Eq. (18) for g(t) in Eq. (40) re-arranging and taking the integral of both sides leads
to ∫ rm

0

α(r′m)
p
dr′m =

∫ t

0

(k/λ)ekt
′

β + ekt′
dt′ . (41)

Integrating and solving Eq. (41) for rm yields,

rm(t) =

[
p+ 1

λα
ln

(
β + ekt

β + 1

)]1/(p+1)

. (42)

The form of Eq. (42), for large times, is comparable to similar expressions derived by
Sugimoto in his study of Ostwald ripening [23, 24]. That is for large t, rm ∝ t1/(p+1), where
Sugimoto refers to p as the order of the reaction, a terminology that is also used in this
report.

Following the reasoning used in the previous section we use Eqs. (4) and (42) to define
the associate volume per unit volume of solution as

V (t) =
4

3
π

[
p+ 1

λα
ln

(
β + ekt

β + 1

)]3/(p+1)(
no

β + ekt

)
. (43)

As expected, Eq. (43) reduces to eq. (28) when p = 0.
Additional insight into the effect of reaction order on the kinetic behavior of the inter-

mediate phase can be gained by using Eq. (39) in Eq. (43) and generating a surface plot
of V vs. p and t. In Fig 1. it can be seen that higher reaction orders lead to higher peak
values of total associate volume which appear earlier in the crystal growth run. It will be
demonstrated in the next section that the intermediate phase activity investigated here can
be described as the sum of an early time, or fourth order reaction, phase and a time delayed
zeroth order phase each with a distinct protein concentration.

4 Comparison with Experiment

Previously in Refs. [2] and [8] a model was proposed to describe the kinetic behavior of the
intermediate phase in a reported case of BLG crystal growth. In both cases the resulting
curve giving the concentration of the intermediate phase was always smooth and concave
down, that is, the curve has one hump. However, the X-ray diffraction data indicative of
its presence, reported in Ref. [2], clearly indicates otherwise. This data is given by the area
of X-ray intensity peaks vs. scattering vector for two cases of protein crystal growth from
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Figure 1: Surface plot of associate volume per ml of solution vs. time and reaction order,
i.e. using Eq. (39) in Eq. (43). Rate constant was set to 0.71 min−1. no, n1 and λ are set
to the values given in Table 1 and β = (no − n1)/n1.

solution and appears to have two humps. To address this discrepancy we propose that the
observed intermediate phase is due to two distinct intermediate phases growing in the same
associate: A low density solute rich phase and a higher density solute rich phase each having
a distinct reaction order.

It is now shown how the expressions derived in the previous sections can be used to
describe this phenomenon. We assume that the reported X-ray area data is proportional to
the scattered intensity. From Glatter and Kratky [25] we find that the scattered intensity
is directly proportional to a mass density squared times a volume squared. Therefore we
consider the square of the mass of the intermediate phase per unit volume of solution and
compare this with the reported X-ray data. For the low density phase mass per unit volume
of solution is given by

MI(t) = ρIVI(t) , (44)

and likewise for the higher density phase MII(t). Then the net mass per unit volume of the
intermediate phase is

MT = ρIVI(t) + ρIIVII(t) . (45)

V1 and V2 are given by Eq. (43). We assume that the two phases have different rate constants
which will be left as adjustable parameters so that k will be replaced by kI in MI and by
kII in MII . ρI and ρII give the mass of protein with respect to associate volume for the two
phases respectively; both are assumed to remain constant.

MT
2 is fitted to X-ray diffraction data indicative of the presence of the intermediate

phase taken from Ref. [2] and shown in Fig. 2. This curve fit is achieved when the low
density phase is order p = 4 and the high density phase is order p = 0. The rate constants
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are kI = 0.17 min−1 and kII = 0.126 min−1. The remaining parameter values used in this
application of Eq. (45) are listed in Table 1 and further described in the following section.
The estimated concentration of the low and high density intermediate phase for this growth
case are also plotted individually in Fig. 3. Though Sauter et. al. [2] reported area data
for two distinct cases (different initial supersaturations and salt concentrations) of BLG
crystal growth where the intermediate phase is present, we study only one here as it was
also reported with accompanying kinetic data for crystal density and size.

The previous kinetic models for an intermediate phase of uniform density, given in Refs.
[2] and [8], were written in terms of one rate constant k. It is therefore the case here that
the two distinct rate constants and thus different nucleation rates involved in the creation
of MI and MII can be thought of as competing rate-limiting steps and that by the law of
kinetic resistances the rate constants combine as [26]

1

k
=

1

kI
+

1

kII
, (46)

to yield the overall rate constant for intermediate phase nucleation. We speculate here
that the zeroth order phase is a kinetically limited phase, that is, limited by the rate of
incorporation at the associate surface, while the fourth order phase is diffusion limited.

Figure 2: The square of intermediate phase mass, MT from Eq. (45), in one ml of solution
fitted to X-ray area data for the intermediate nucleation phase for protein crystals grown
from a 20 mg/mL BLG solution with 15 mM CdCl2 taken from Ref. [2]. T = 293 K.

Crystal size data vs. time was reported in Ref. [2] for the crystallization case depicted
in Fig. 2. Also, in this same report, kinetic data was given for the density of crystals in
solution. It is clear from these two sets of data that the crystal growth rate does not have
the same kinetic behavior as the nucleation rate the growth rate being significantly retarded
at early times. It is possible that the presence of the intermediate phase affects the crystal
growth rate somehow. We suggest here that the growth of the intermediate phase creates a
diffusion limited situation for crystal growth and thus lowers the solute diffusion coefficient
with respect to the crystal which in turn acts to lower the crystal growth rate. This notion
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Figure 3: A figure showing each term on the right of Eq. (45) plotted separately showing
the estimated mass in each of the intermediate nucleation phases per ml of solution for
protein crystals grown from a 20 mg/mL BLG solution with 15 mM CdCl2 taken from
Ref. [2]. Dashed curve shows the lower density, fourth order phase, solid curve gives the
higher density zeroth order phase. T = 293 K.

is incorporated within a model for the linear crystal growth rate which is used to estimate
the crystal radius vs. time and then compared with the reported data mentioned above.

To find an expression for the crystal radius, rc, we invoke a commonly used model for the
linear growth rate for crystals grown from solution where the rate is directly proportional to
the supersaturation [9, 19, 27, 28]–a model typically valid for cases where there are uniform
attachments to a surface which is rough on the molecular scale [29]. Specifically, a version
of the model suggested by Laudise [30] is used here where

drc
dt

=
kd
σ

(c(t)− cs) . (47)

Here, c(t) is solute concentration, cs the equilibrium solubility, kd the diffusion velocity
constant and σ the width of the diffusion layer. Letting the initial solute concentration be
given by co we define ∆c = co − cs. Now we write drc/dt as the sum of two terms involving
the concentration of solute converted to crystal Mc and the solute within the intermediate
phases MI and MII .

drc
dt

= kd[
1

σc
(∆c−Mc(t))−

1

σi
(MI(t) +MII(t))] , (48)

where it is assumed that the crystal has the diffusion layer σc and the intermediate associate
has diffusion layer σi. Eq. (48) will have the initial conditions that drc/dt = kd∆c/σc and
rc = 0 at t = 0 and the final conditions of drc/dt = 0 and ∆c = Mc(t) at equilibrium. Using
the model of Eq. (27) we define
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Mc(t) = ρ
4

3
πrc

3nh(t) , (49)

where nh is the homogeneous nucleation rate taken from Ref. [8]:

nh(t) =
noe

kt − no
(no−n1)

n1
+ ekt

. (50)

Using Eq. (49) in Eq. (48) we arrive at Abel’s differential equation of the first kind. An
exact solution for this nonlinear differential equation has been reported [31]. However, as
this solution is elaborate and transcendental, a numerical approximation for Eq. (48) is
considered here for purposes of comparison with experimental size data.

The crystal size data reported in Ref. [2] will now be compared with the numerical
solution of Eq. (48). In this report crystal size is given as length which we take to be twice
the crystal radius rc. Using expressions for MI and MII , used previously in the curve fit of
Fig. 2 and letting kd/σc and kd/σi be adjustable parameters, the solution for Eq. (48) is
fitted to the size data from experiment. This result is shown in Fig. 4.

Figure 4: Radius vs. time data points for BLG crystals grown from a 20 mg/mL solution
with 15 mM CdCl2 taken from Ref. [2]. Curve is from the numerical solution to Eq. (48)
using the parameters listed in Table 1. T = 293 K.

The invariable parameter values used in the implementation of Eqs. (48) and Eq. (45)
were arrived at as follows. The parameter k was estimated recently in Ref. [8] for the growth
run studied here. no and n1 are estimated using the dimensional scale on the video included
with the supplemental information for Ref. [2]. A slide and thus image thickness of 300
µm, as reported in Ref. [2], was assumed. The density of BLG in the crystalline state ρ
is given the value reported by Heijna et al. for lysozyme [10]. To determine the initial
supersaturation ∆c, it is assumed that at equilibrium all of the excess solute has gone into
crystal so that ∆c ' 4

3
ρπ rM

3no where rM is the maximum crystal radius at equilibrium.
rM is estimated from the kinetic size data reported in Ref. [2] to be 50 µm. 1/λ gives the
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mean radius for the spherical associate in the zeroth order model and fulfills a similar role
in all higher order cases. Vekilov [3], Heijna et al. [10] and Liu et al. [11] have reported for
lysozyme crystallization from solution that regions of solute rich material initially form and
yet do not go on to form crystals. They do grow to detectable size before disappearing. From
optical micrographs in these reports we judge the median radius of solute rich associates to
be around 10 µm. We therefore set λ = 1000 cm−1.

The density for the intermediate phase has been estimated by Pan and co-workers for
lysozyme [32]. They report a range of density, for the temperature at which the data in Fig.
2 was collected, of 0.1 g/ml to 0.4 g/ml. The fit in Fig 1 was obtained by letting the ratio
of ρI to ρII be 4:11. We therefore let ρI = 0.1 g/ml and ρII = 0.275 g/ml. Values for all
of the parameters used in the generation of the curves of Figures 1, 2, 3 and 4 are listed in
Table 1.

Table 1: Values for parameters used in the generation of the curves in Figures 1, 2, 3 and 4.

kd
σc

(
cm4

gs

)
kd
σi

(
cm4

gs

)
no (cm−3) n1 (cm−3) ∆c (mg/ml) ρ (g/cm3) rM (µm)

11.5 ×10−4 1.5 3.87 ×104 3.87 ×103 16.4 0.81 50.0

k (min−1) kI (min−1) kII (min−1) ρI (g/ml) ρII (g/ml) λ (cm−1)

0.071 Ref. [8] 0.17 0.126 0.1 0.275 1000
0.072 Eq. (46)
0.05 Ref. [2]

Additionally, from the values used for kd/σc and kd/σi we find that σc ' 1304σi. That
is, the diffusion width for the crystal is predicted to be about 1300 times wider than for the
intermediate associate.

5 Maximum Crystal Size

Useful information concerning the maximum crystal size in the distribution at equilibrium
can be obtained by considering Eq. (48) at large times when the second term on the right
side is essentially zero. This leads to

drl
dt

=
kd
σc

(∆c− ρ4

3
πrl

3no) . (51)

where from Eq. (50) the fact that nh → no as t → ∞ is used. rl then denotes the crystal
radius at large times. Eq. (51) can be separated and integrated leading to,

rM
3σc

kd∆c

{
1

rM 2
√

3
arctan

(
2rl + rM

rM
√

3

)
− 1

6rM 2
ln

[
(rM − rl)3

rM 2 − rl3

]
− 1

rM 2
√

3
arctan

(
1

rM
√

3

)}
= t ,

(52)

13



where

rM
3 =

∆c

ρ4
3
πno

. (53)

Interestingly, Eq. (52) points to there being a theoretical maximum for the crystal radius,
rM . This is given by

rM =

(
3∆c

4ρπno

)1/3

. (54)

This result is consistent with no fewer than three other estimates for the maximum crystal
size during protein crystal growth from solution reported previously in the literature. First,
Nanev and co-workers gave for insulin crystal growth [33]

rM =

(
Ω∆c

no

)1/3

, (55)

where Ω is a density defined in Ref. [33]. Barlow derived for insulin crystal growth that [17]

rM =
1

λ
cosh−1

(
Bλ3

3
√

∆c+ 1
)
, (56)

where the constant B is described in Ref. [17] and in this case 1/λ refers to the mean size of
the insulin crystals at equilibrium. If rM is within 25% of the mean size in the equilibrium
distribution then Bλ3 3

√
∆c < 1 so that the above is approximately given by

rM ∼ Bλ2(∆c)1/3 . (57)

Recently, work was reported by Braun et al. [34] where BLG clusters in solution were
studied using X-ray scattering and neutron backscattering methods. While suggesting that
the native form of BLG in solution is that of the dimer they find that larger clusters form in
BLG solutions where the cluster hydrodynamic radius is directly proportional to the cube
root of the number of dimers present. In other words, they find that the radii of clusters
increase in direct proportion to the cube root of the solute concentration.

Of course Eq. (54) does not necessarily imply that conditions can be brought about
whereby the largest crystal size at equilibrium is unlimited. It is known that for most protein
solutions there is an upper limit to the initial supersaturation whereby protein crystallization
can occur; above this concentration aggregation takes place. This point is at the high
concentration side of the so called crystallization gap in the temperature-concentration phase
diagram [35]. More specifically, Eq. (54) predicts that the maximum crystal size will occur
when the ratio ∆c/no is a maximum. Here ∆c, restricted to be within the crystallization gap,
could in fact be anywhere within the gap where the maximum of ∆c/no occurs. Therefore,
the development of a diagram involving ∆c and no, which denotes the crystallization gap,
might be useful for identifying the true maximum possible crystal size.

6 Conclusion

In this report an expression for the nucleation rate of the non-classical intermediate phase for
protein crystal growth from solution is used within a classic population-mass balance model
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to study the kinetics of concentration of the intermediate phase associates for a case of BLG
crystallization. This leads to an expression for the associate growth rate as a function of
time. Modifying this growth rate by adding the factor of an inverse power law of the radius
allows for a more general result in terms of the positive integer exponent of the radius, or the
Sugimoto order of the reaction. With this result an expression for the over all concentration of
the intermediate phase is written. These expressions are used to study a case of non-classical
BLG protein crystal growth where the intermediate phase was confirmed by real-time X-ray
diffraction data.

It was hypothesized here that in this case the intermediate phase is composed of two
distinct parts: a low density phase and a higher density phase. The high density phase is
fit by a zeroth order law while the low density phase by a fourth order law. We should
note here, that given the fact that we were only able to analyze one set of data, there is no
reason to believe that the Sugimoto reaction orders adopted here are universal. The sum of
these two time dependent mass densities are shown to accurately describe the overall kinetic
behavior of the intermediate phase as given in the experimental report.

The crystal growth rate was taken to be directly proportional to the supersaturated solute
not involved in the intermediate phase nor yet taken up into the crystal. Using this model,
along with the expression for kinetics of the intermediate phase concentration, we are able
to estimate the crystal radius as a function of time and compare this with experimental size
data for the crystal growth run mentioned above.

These results lead us to propose that the intermediate phase particles do not go on to
form crystals themselves but are rather consumed by crystals growing from homogeneous or
heterogeneous seeds. This proposal contrasts with the two-step mechanism given by Sauter
et al. [2]. In their worked it was assumed that the presence of an intermediate phase would
not sufficiently restrict the solute flow to a growing crystal so that the observed retardation
of the crystal growth rate must be due to the maturing of some essential seed within the
intermediate phase. We demonstrated here, via Eq. (48) and Fig. 4, that the presence of an
intermediate phase can temporarily restrict solute flow to the crystals in such a way as to
yield the kinetic size data reported in Ref. [2]. Our alternative proposal is consistent with
recent experimental results reported for lysozyme crystallization by Yamazaki et al. [12].
Here they report the presence of two distinct precursor intermediate phases that possibly
act as heterogeneous seeds but do not go on to form crystals themselves.

Finally, these results point to there being a maximum possible crystal size which is directly
proportional to the cube root of the initial supersaturation and inversely proportional to the
cube root of the final number density of homogeneous nuclei.
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