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Abstract:

Novel coronavirus, SARS-CoV2, has emerged one of the deadliest pathogens of this century creating a 

pandemic. Belonging to betacoronavirus family, it spreads through human contact and even through 

asymptomatic transmission. Till date, there is no known treatment in the form of drugs or vaccines, 

despite several attempts since it emerged. Several vaccines are in pre-clinical and two in clinical trials 

as of 4th April 2020 as per WHO document. Here, in order to develop subunit vaccine, attempts have 

been made to find globally conserved epitopes from all ten SARS-CoV2 proteins as there is no clear 

information on the virulence of these proteins. Using computational tools, a ranked list of probable 

immunogenic, promiscuous epitopes generated through all three main stages of antigen processing and 

presentation pathway has been generated. Moreover, on the way to finding these epitopes, several 

useful insights were gleaned. One of the most important insights is that all of the proteins in this 

pathogen present unique epitopes, so that if one protein's function is hindered by the immune system, 



other proteins can continue to assist in virus survival.  Due to presence of these unique epitopes in all 

SARS-CoV2 proteins, a stronger immune response generated may lead to immunopathology and 

consequently, less chances of human survival. These epitopes, after due validation in vitro, may thus 

need to be presented to the human body in that form of subunit vaccine that avoids such 

immunopathologies.

Introduction

Novel coronavirus (SARS-CoV2), also known as 2019-nCoV, causes Covid19 disease with significant 

mortality rate. As there is currently no known cure,  vaccine design and development is urgently 

required. Despite 77 drugs against viral spike protein being identified by world's fastest supercomputer,

Summit, (1), Immunoinformatics tools will prove crucial (2, 3).  As of 4th April 2020, WHO has put 

forward a draft which identifies 2 vaccines in clinical evaluation and 60 candidate vaccines in preclinical 

evaluation (4).  This study presents several such novel cytotoxic and helper T cell epitopes against 

ORF1ab protein and helper T cell epitopes against all other proteins.

SARS-CoV2 genome submitted by CDC, Atlanta (GenBank accession number: MT106054.1 

submitted on 24-Feb-2020)  is   29882 bp in length. Being 100% identical to reference sequence, 

NC_045512.2 from Wuhan, China, it harbors multiple structural, non-structural and accessory proteins 

essential or playing a role at various stages of the viral life cycle. This SARS-CoV2 genome is found 

82.3% identical to SARS-CoV  genome (NC_004718.3), using NCBI BLASTn tool. T cell epitopes 

against several proteins in SARS and MERS species have been identified (5, 6). In brief, the sequence 

of proteins in its RNA genome as per this GenBank accession information is as follows: 5′-ORF1ab-S 



(Spike/Surface)–ORF3a-E (Envelope)-M (Membrane)-ORF6-ORF7a-ORF8-N (Nucleocapsid)-

ORF10-polyA tail-3', which are usually seen in betacoronaviruses (7).  ORF1ab, a polyprotein, encodes

several non-structural proteins, 15 in number identified in this genome sequence annotation, including 

RNA-dependent RNA polymerase (RdRP). The role of structural proteins is determined from their 

homology to SARS-CoV as well as few experiments (8). Expression, localization and function of some

SARS-CoV2 accessory proteins is as yet unclear, although several such proteins have been 

characterized in SARS-CoV (9) and the roles may be similar in the two viruses.   Sequencing studies 

suggest that the most abundant transcript was N RNA followed by S, ORF7a, ORF3a, ORF8, M, E, 

ORF6, and ORF7b (10; ORF7b is identified in this paper). In view of scarcity of data on relevance and 

roles of these proteins, any one or more of these proteins may act as prime vaccine candidates. Hence, 

all of these proteins were used for T cell epitope prediction for the purpose of peptide-based subunit 

vaccine design and further analyses. The fact that this approach may be better also arises from previous

studies on related SARS-CoV virus (11), wherein more than 50% of the patients had T cell responses 

against at least one of the two proteins tested, and 25% showed responses against both proteins.

The advantages of peptide subunit vaccine as opposed to DNA and live attenuated virus vaccine

is that they do not contain live components and so are considered safe. Moreover, they present an 

antigen or a set of antigens to the immune system with lower risk of side effects (12).  These are also 

applicable to people with weakened immune response, which the old people have and are, therefore, 

prime targets in this SARS-CoV2 infection. Henec, this study has been done with the objectives of 

finding novel CTL and HTL epitopes and helping glean many important insights along the way.

Results and Discussion:

Cytotoxic T lymphocyte (CTL) epitopes

Two prediction algorithms were used to generate a consensus list of nonameric CTL epitopes. The 

consensus list was chosen to increase prediction accuracy from two different algorithms. While 



NetCTLpan uses neural network algorithm, PickPocket works on the basis of position-specific weight 

matrices.  NetCTLpan, in addition to HLA binding, also predicts TAP-transporter binding and C-

terminal proteasome cleavage predictions.  Total number of CTL epitopes generated was 9621 across 

ten SARS-CoV2 proteins including ORF1ab polyprotein. A total of 122 epitopes were enlisted.  These 

common, promiscuous CTL epitopes are enlisted in  Table 1 as ranked order for ORF1ab. For other 

proteins, it may be observed/enlisted from (13). It is seen that out of a few common promiscuous 

epitopes for surface protein across prediction algorithms (13), one of these epitopes, FVFLVLLPL, 

signal peptide in surface/spike protein, has been found to harbor a mutation, L5F, in many strains of 13 

countries in distinct phylogenetic clades and L8V/W mutation is present in Hong Kong (14). These 

authors further suggest that L5F mutation might be a sequencing artifact. The highest number of 

common top-ranking epitopes is seen in the case of  nsp7 of ORF1ab followed by ORF10, ORF8, 

ORF6 and ORF3a proteins. Among structural proteins, envelope protein provided the highest number 

of such epitopes. Venn diagram analysis showed no common epitopes at all across proteins and alleles. 

Even though SARS-CoV2 RBD (331-527) is shown to harbor epitopes for eliciting neutralizing 

antibodies (14, 15), this region is not present in this data for CTL epitopes. However, receptor-binding 

motif (RBM) region (437-508), the ACE-2 binding motif of this RBD provided immunogenic HTL 

epitopes which are detailed below in section on promiscuous HTL epitopes. Immunogenicity prediction

of these proteins (Table 2) showed that 71 of these 122 epitopes had a positive immunogenicity score.  

Further, conserved residues between SARS-CoV2 and other HCoV and MERS species were found 

from multiple sequence alignments and found in several of these epitopes (Supplementary fig. S1). As 

the NCBI RefSeq sequence of SARS-CoV was unclear in proper annotations for respective proteins, it 

could not be used in MSA studies. It is observed that most of the epitopes with conserved residues 

belonged to ORF1ab region  (table 2), and epitopes belonging to this region may act as vaccine 

candidates targeting MERS and other HCoV species, in addition to SARS-CoV2. 



Table 1: Top ranked sequences of CTL epitopes common across HLA supertypes (HLA-A*01:01,  

HLA-A*02:01,  HLA-A*03:01,  HLA-A*24:02,  HLA-A*26:01,  HLA-B*07:02,  HLA-B*08:01,  

HLA-B*27:05,  HLA-B*39:01,  HLA-B*40:01,  HLA-B*58:01,  HLA-B*15:01) and across the two 

prediction algorithms used for SARS-CoV2 ORF1ab polyprotein. 
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NNTF

LVAEWF
LAY (not 
among 
top 
scorers in 
many 
alleles)

VVAFNT
LLF 
VVAFNT
LLF
all alleles 
except
HLA-
A*02:01,

HLA-
A*03:01,

HLA-
B*07:02,

HLA-
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among 
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B*40:01,

HLA-
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TSVVLL
SVL

YFIKGL
NNL

ITVTPE
ANM

QLEQPY
VFI

KLWAQ
CVQL

ALAYYN
TTK

VLSFCA
FAV

RTAPHG
HVM

VLLSVL
QQL

GMVLG
SLAA

YLASGG
QPI

EMLDN
RATL

FVLALL
SDL (in 
some, 
after 
around 
top 30)

EAFEKM
VSL



DVKCTS
VVL

LAKDTT
EAF

LHNDIL
LAK

LSMQG
AVDI

VQLHND
ILL

Table 2: Immunogenic CTL epitopes across proteins, sorted by high HLA-I binding, high immunogenicity, 

and conservation of residues in multiple sequence alignment (MSA); Epitopes in red are in consensus sequence

with HLA-II alleles, blue highlights are for the presence of conserved sequences



Epitope Protein Peptide start Peptide end Conservation in MSA

FLFLTWICL Membrane 26 34 0.35397 Singleton F, L, F semi-conserved

VFAFPFTIY ORF10 6 14 0.34042 No conservation

GIIITVAAF ORF8 8 16 0.30966 I,I semi conserved

IQYIDIGNY ORF8 71 79 0.30442 Singleton

NVFAFPFTI ORF10 5 13 0.30241 No conservation
FLAFVVFLL Envelope 20 28 0.30188 Singleton last V last L semiconserved

TIAEILLII ORF6 10 18 0.30101 No conservation
FLIVAAIVF ORF7a 101 109 0.29611 Singleton No conservation

KVSIWNLDY ORF6 23 31 0.29343 No conservation

VTIAEILLI ORF6 9 17 0.28951 No conservation

MGYINVFAF ORF10 1 9 0.28694 No conservation

YINVFAFPF ORF10 3 11 0.28259 No conservation

SFYEDFLEY ORF8 103 111 0.28049 Singleton

WNLDYIINL ORF6 27 35 0.24894 No conservation

NLDYIINLI ORF6 28 36 0.24642 No conservation
NTASWFTAL Nucleocapsid 48 56 0.22775 Singleton S fully,conserved,  F, L  semiconserved

TLAILTALR Envelope 30 38 0.1989 L A I L R semi

ILFLALITL ORF7a 4 12 0.1895 No conservation
WLIVGVALL ORF3a 45 53 0.18314 Singleton I, V and last L semi conserved
EYHDVRVVL ORF8 110 118 0.1807 Singleton No conservation

QVDVVNFNL ORF10 29 37 0.17787 No conservation

AFPFTIYSL ORF10 8 16 0.1775 No conservation

KIILFLALI ORF7a 2 10 0.16214 No conservation

ILLIIMRTF ORF6 14 22 0.16098 No conservation
CVRGTTVLL ORF7a 23 31 0.1536 Singleton No conservation

SIWNLDYII ORF6 25 33 0.15011 No conservation

YLYALVYFL ORF3a 107 115 0.13151 No conservation

YLQPRTFLL Surface/spike 269 277 0.1305 Singleton

LLYDANYFL ORF3a 139 147 0.11841 No conservation
ITLATCELY ORF7a 23 31 0.10084 Singleton No conservation

HLVDFQVTI ORF6 3 11 0.0982 No conservation

NSRNYIAQV ORF10 22 30 0.09731 No conservation

IAQVDVVNF ORF10 27 35 0.09546 No conservation

MFHLVDFQV ORF6 1 9 0.09154 No conservation

YFIASFRLF Membrane 95 103 0.06887

FPFTIYSLL ORF10 9 17 0.05708 No conservation
FVFLVLLPL Surface/spike 2 10 0.04076 Singleton F V F L V SEMI CONSERVED
ELYSPIFLI ORF7a 95 103 0.03913 Singleton No conservation
FLYLYALVY ORF3a 105 113 0.03563 Singleton No conservation

LTALRLCAY Envelope 34 42 0.01886 first L semi, R semi, LC fully
ORF1ab

Epitope Protein From To Clustering Conservation in MSA

LVAEWFLAY nsp3 1505 1513 0.45285 Singleton L, L, A semi conserved, Y fully conserved
FLARGIVFM nsp6 184 192 0.3263 Singleton L,R semi-conserved
HVGEIPVAY Leader 110 118 0.28861 Singleton No conserved residue
GTGTIYTEL nsp9 61 69 0.26744 Singleton second G and I semi conserved, E, L fully conserved
FLNRFTTTL 3C-like proteinase 219 227 0.25596 Singleton F,L,N semi conserved
LLLDDFVEI EndoRNAse 297 305 0.24386 Singleton Second L, D,D,F,V fully conserved; I semi-conserved

LMIERFVSL RdRp 854 862 0.24273 L, M, I semi, E,R fully, F semi, V, S, L fully
VMVELVAEL Leader 84 92 0.23373 Singleton No conserved residue
HSIGFDYVY 3'-5'exonuclease 229 237 0.23318 Singleton H fully, S semi, D, Y fully, V semi, Y fully
VSIINNTVY EndoRNAse 24 32 0.22161 Singleton S, first I, N,N,T,V semi-conserved
KSDGTGTIY nsp9 58 66 0.22152 Singleton S, D, second G, I semi

VLSFCAFAV nsp10 13 21 0.17009 V semi, L fully, S semi, second F fullyA semi, V fully
ITVTPEANM nsp10 55 63 0.16515 Singleton I fully, T,T, E, A, N semi

LHNDILLAK nsp7 35 43 0.15288 H,N,I fully, D semi

VQLHNDILL nsp7 33 41 0.14937 H,N,I fully, D semi

VVAFNTLLF nsp4 314 322 0.1449 second V, T, L semi

LAKDTTEAF nsp7 41 49 0.13402 D, A fully
EMLDNRATL nsp7 74 82 0.11684 Singleton E,D,A semi, last L fully
RTAPHGHVM Leader 77 85 0.11636 Singleton No conserved residue

FAIGLALYY Helicase 291 299 0.09181 I,G, last Y fully, A,L,A,L,Y semi
TMADLVYAL RdRp 123 131 0.08282 Singleton T,M,D,first L, A, last L fully, Y semi
YVMHANYIF Ribose methytransferase222 230 0.0822 Singleton H,A,N,Y,F fully, M,I semi
MLVYCFLGY nsp6 211 219 0.07782 Singleton First L, Y,G fully, M, last L, last Y semi
YVFCTVNAL Helicase 355 363 0.07781 Singleton Y, F, T, N, A, L fully, V, V semi
TTLPVNVAF EndoRNAse 47 55 0.07705 Singleton First T, P, N, A  fully-conserved, second T, V, V,F semi-conserved

SQLGGLHLL EndoRNAse 243 251 0.07388 First L semi-conserved, G,G,L,H,L,L fully-conserved
CTDDNALAY nsp9 23 31 0.07355 Singleton T, A semi
TELEPPCRF nsp9 67 75 0.06065 Singleton E, L, P, P, C, f fully, second E and R semi

ALAYYNTTK nsp9 28 36 0.05473 Y fully, second A, N semi

NMMVTNNTF nsp2 625 633 0.03347 F semi

QLEQPYVFI Leader 63 71 0.0049 Q, I semi

Immunogenicity
score

Clustering with
HLA-II epitopes

In 10- membered
group
In 5- membered
group

Fully conserved residues
across bat, mers and ncov,
I, Q, I in IQYI

In 10- membered
group

In 23- membered
group

In 23- membered
group
In 23- membered
group
In 10- membered
group
In 10- membered
group

semi conserved S F E D
and conserved L

In 23- membered
group
In 23- membered
group

In 8- membered
group
In 6- membered
group

In 3- membered
group
In 10- membered
group
In 6- membered
group
In 23- membered
group

In 23- membered
group
In 7- membered
group

First L fully conserved, last
L, L semi conserved

In 7- membered
group

In 6- membered
group
In 9- membered
group
In 3- membered
group
In 6- membered
group

In 14- membered
group

Y, F, S, R, L fully
conserved, F, F semi-
conserved

In 10- membered
group

In 8- membered
group

Immunogenicit
y score

is part of 6-
membered group

is part of 14-
membered group

is part of 20-
membered group
is part of 20-
membered group
is part of 16-
membered group
is part of 20-
membered group

is part of 10-
membered group

Is part of 8-
membered group

is part of 6-
membered group
is part of 6-
membered group
is part of 2-
membered group



During these CTL epitope identification studies, it was also found that many epitopes same as SARS-

CoV epitopes found previously in spike, membrane, nucleocapsid and ORF3a proteins (16) were in the 

lower ranking positions, in the case of different alleles, and many were not common across epitopes, so

confidence could not be gathered in enlisting these. However, in ORF3a case, one epitope harbouring 

both CD8+ and CD4+ T cell epitopes, PLQASLPFGWLVIGV, among the 3 most frequently 

recognized by T cells (17) was also present among top-ranked ones in our study (Table 1a). Purely for 

the sake of information to the readers, these T cell epitope data recognized in humans /transgenic 

mouse in case of SARS-CoV that are same/similar to lower ranking T cell epitopes in SARS-CoV2  are

provided as supplementary table S1.

Promiscuous helper T cell (HTL) epitopes:

All of the ten SARS-CoV2 proteins, predicted or otherwise, were also studied for helper T cell epitope 

generation using well validated prediction tool, NetMHCIIpan, in addition to an immunogenicity 

prediction tool, CD4episcore, which predicts epitopes based on both HLA-binding and 

immunogenicity. Prominent HLA-II alleles studied using NetMHCIIpan were HLA DRB1 alleles, 

specifically, DRB1*01:01, DRB1*03:01, DRB1*07:01, DRB1*09:01, DRB1*10:01, DRB1*11:01 and

DRB1*15:01, because these alleles are found to be frequent across populations ranging from North 

America, India, Japan, China, Africa and Europe (allelefrequencies.net). The alleles in CD4episcore 

studied are: HLA-DRB1:03:01, HLA-DRB1:07:01, HLA-DRB1:15:01, HLA-DRB3:01:01, HLA-

DRB3:02:02, HLA-DRB4:01:01 and HLA-DRB5:01:01.

Helper T lymphocyte epitopes are typically 15 amino acids residues long.  High throughput data for 

these epitopes was analysed manually to identify common epitopes across alleles and 10 coronaviral 

proteins. 

From NetMHCIIpan studies, a total of 1802 HTL epitopes (same epitope is predicted to be bound to 



multiple alleles) selected till rank 2% which are strong binders (or till rank 10%, weak binders in case 

strong binders were not found) were generated. Among these epitopes, 649 epitopes (15-mer) were 

found to be immunogenic by CD4episcore across all alleles. Another immunogenicity prediction tool, 

ITcell, was used to predict immunogenic epitopes across two alleles DRB1*01:01 and DRB1*15:01 as 

it uses PDB files for TCR and there was no structure for other alleles in PDB. Also, ITcell predicts 12-

mer HTL epitopes. Taking ITcell results into account, top scoring common immunogenic epitopes to 

both these immunogenicity prediction tools were 95 in number  and were taken for further analysis.  

These also included some of the epitopes for other HLA-DRB1 alleles studied. This can be explained 

on the basis of observations that among all HLA-II molecules, there exists a high degree of repertoire 

overlap, reflecting multiple binding partners. This is most probably due to backbone interactions rather 

than anchor residues playing a major role (18).  Many of the top-scoring immunogenic epitopes were 

common among the two immunogenicity prediction tools, and top 50 high scoring candidate epitopes 

are tabulated in Table 3. A complete list of these and other epitope candidates are provided in 

Supplementary Table S2. This list also provides immunogenic HTL epitopes in RBM region (437-508),

the ACE-2 binding motif of  RBD of Surface protein, which has been shown to elicit neutralizing 

antibodies (14). The whole dataset of HLA-I and HLA-II epitopes across these mentioned as well as 

other alleles is available as supplementary information (Supplementary Tables S4, S5 and S6).

Table 3: Top 50 immunogenic sequences from CD4episcore and ITcell tools, Red Colored fonts: common

to IT cell immunogenicity epitopes sorted by DRB1*0101 score, Blue highlights: common to ITcell 

immunogenicity epitopes sorted by DRB1*1501 score, Yellow highlights: Immunogenic candidates from 

CD4episcore and common to ITcell and different from Grifoni et al Cell Host and Microbe, 2020 paper with 

patent; also those in blue highlights that are different from Grifoni etal., 2020 paper have been put into text.



Bar diagram for CTL and HTL immunogenic epitope distribution across proteins (Fig. 1) shows

a general trend with the number of epitopes not correlated with the size of proteins. The smallest 

predicted protein, ORF10, is found to provide more number of CTL epitopes in the context of this 

study than the larger spike protein. Some previous studies have also found this to be true, wherein 

capsid and matrix proteins in studied viruses were found to "pack significantly more epitopes than 

those expected by their size" (20) . Some proteins such as ORF6, ORF8, ORF10, Envelope and 

Protein  Protein Number Protein Description  Peptide Peptide start Peptide end Combined Score
Membrane 58 seq47, seq58 SYFIASFRLFARTRS 94 108 22.026
ORF6 28 seq28, seq44 ILLIIMRTFKVSIWN-Different from Grifoni14 28 22.64144
nsp4 106 seq106 FYWFFSNYLKRRVVF 390 404 23.04084
ORF6 22 seq3, seq22, seq25, seq42 EILLIIMRTFKVSIW-different from Grifoni13 27 23.3002
nsp4 113 seq113 KHFYWFFSNYLKRRV 388 402 23.52856
Membrane 46 seq46, seq59 YFIASFRLFARTRSM 95 109 23.85188
nsp4 109 seq109, seq120 HFYWFFSNYLKRRVV 389 403 24.61324
nsp2 103 seq90, seq103 QTFFKLVNKFLALCA 496 510 24.64816
nsp6 64 seq64 AMMFVKHKHAFLCLF 56 70 24.94928
nsp4 115 seq115 TKHFYWFFSNYLKRR 387 401 24.98624
ORF6 27 seq2, seq27, seq43 AEILLIIMRTFKVSI-different from Grifoni15 29 25.0036
nsp2 91 seq91, seq111 VQTFFKLVNKFLALC 495 509 25.1072
Membrane 43 seq43, seq64 IASFRLFARTRSMWS 97 111 25.22452
Membrane 42 seq19, seq33, seq39, seq42, seq65ASFRLFARTRSMWSF 98 112 25.24444
nsp6 60 seq60, seq80 AFAMMFVKHKHAFLC 54 68 25.25948
nsp6 81 seq62, seq81 FAMMFVKHKHAFLCL 55 69 25.52472
nsp6 75 seq58, seq75 SAFAMMFVKHKHAFL 53 67 26.23016
nsp2 105 seq89, seq105 SVQTFFKLVNKFLAL 494 508 26.38856
RdRp 5 seq5, seq71, seq100, seq165MPNMLRIMASLVLAR-different from Grifoni626 640 26.47384
Membrane 60 seq45, seq60 FIASFRLFARTRSMW 96 110 26.53024
nsp2 108 seq95, seq108 TFFKLVNKFLALCAD 497 511 26.67152
RdRp 113 seq9, seq75, seq113, seq172AMPNMLRIMASLVLA-different from Grifoni625 639 27.38192
RdRp 53 seq53, seq135 LRIMASLVLARKHTT-different from Grifoni630 644 27.69396
RdRp 20 seq20, seq180 RAMPNMLRIMASLVL 624 638 28.1144
nsp4 125 seq125 STKHFYWFFSNYLKR 386 15 28.29724
RdRp 152 seq1, seq48, seq70, seq91, seq96, seq152, seq164PNMLRIMASLVLARK-different from Grifoni627 641 28.29936
Ribose methyltransferase 6 seq6, seq48 GRLIIRENNRVVISS 278 292 28.37836
RdRp 120 seq11, seq49, seq120, seq140, seq174MLRIMASLVLARKHT 629 643 28.38828
RdRp 74 seq6, seq45, seq74, seq102, seq142, seq167NMLRIMASLVLARKH-different from Grifoni628 642 28.83568
ORF6 45 seq4, seq20, seq29, seq45 LLIIMRTFKVSIWNL-different from Grifoni15 29 28.88076
ORF6 48 seq17, seq30, seq48 LIIMRTFKVSIWNLD 16 30 29.11184
RdRp 99 seq19, seq83, seq99, seq131QMNLKYAISAKNRAR 541 555 29.1294
nsp8 28 seq28 VVLKKLKKSLNVAKS 33 47 29.31276
Ribose methyltransferase 7 seq7, seq47 KGRLIIRENNRVVIS 277 291 29.31836
nsp8 27 seq27 EVVLKKLKKSLNVAK 32 46 29.46256
Ribose methyltransferase 8 seq8 RLIIRENNRVVISSD 279 293 29.7396
nsp2 94 seq94 ESVQTFFKLVNKFLA 493 507 29.9796
RdRp 107 seq86, seq107, seq139 TQMNLKYAISAKNRA 540 554 30.01152
Membrane 68 seq21, seq34, seq38, seq44, seq68SFRLFARTRSMWSFN 99 113 30.13772
Nucleocapsid 49 seq49 DQIGYYRRATRRIRG 82 96 30.45712
RdRp 87 seq24, seq87, seq108, seq129MNLKYAISAKNRART 542 556 30.4728
nsp6 22 seq22, seq92 VLLILMTARTVYDDG-different from Grifoni121 135 30.78116
Exonuclease 56 seq15, seq32, seq56 AYNMMISAGFSLWVY 497 511 30.94884
Nucleocapsid 48 seq48 QIGYYRRATRRIRGG 83 97 30.9554
Exonuclease 53 seq11, seq30, seq53 DAYNMMISAGFSLWV 496 510 31.22164
nsp6 91 seq20, seq84, seq91 VVLLILMTARTVYDD-different from Grifoni120 134 31.25796
Helicase 84 seq84 CFKMFYKGVITHDVS 471 485 31.35264
Exonuclease 71 seq3, seq31, seq39, seq60, seq71DMTYRRLISMMGFKM-different from Grifoni48 62 31.65644
Ribose methyltransferase 49 seq9, seq49 SKGRLIIRENNRVVI 276 290 31.83036
Nucleocapsid 50 seq50 IGYYRRATRRIRGGD 84 98 31.83548



Membrane do not have immunogenic HTL epitopes that harbour nonameric CTL epitopes binding to 

either HLA-DRB1*0101 and  HLA-DRB1*1501, and in some cases to none of the two alleles. Also, 

leader, nsp7, nsp10 and EndoRNAse proteins of ORF1ab did not provide common epitopes between 

the two immunogenicity prediction tools. The highest number of immunogenic HTL epitopes as 

predicted by CD4episcore was provided by RdRp, followed by nsp3, nsp4, helicase and spike (surface) 

protein.

Fig. 1: Bar diagram for CTL and HTL immunogenic epitope distribution across proteins. HTL 

(CD4epi) depicts immunogenic epitopes from CD4episcore tool. HTL (Combined) depicts epitopes 

common to CD4episcore and ITcell tools. First panel: All ORF1ab proteins.
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Venn diagram showed a common list of many epitopes from a single protein across alleles 

(Supplementary fig. S2). A distinct pattern is to be noted, analysis of HTL epitopes belonging to HLA-

DRB1*03:01, HLA-DRB1*11:01 and HLA-DRB1*15:01 showed the lowest number of common 

epitopes or none at all across most of the proteins, and can be considered outlier epitopes. Envelope 

protein was unique in the sense that it did not provide either strong or weak binders to HLA-

DRB1*03:01 allele. ORF10 was also unique in providing only weak HTL binders to all of the alleles 

studied. Venn diagram of all these cytotoxic and helper T cell epitopes taken together showed no 

common epitopes at all across proteins, but within a protein set, common epitopes can be seen. This 

shows that every protein of SARS-CoV2 may present antigenic epitopes to the immune system, 

resulting in a high number of targets. This further lends credence to the theory that multiple T cell 

epitopes may elicit an immune response in each case, some eliciting strong and some providing weaker

responses and therefore, there may be high degree of T cell immunopathology at the infection site. 

Stronger T cell immune response may cause even the normal, uninfected cells to be attacked while 

weaker helper T cell immune response, in some protein targets, may cause weak neutralizing antibody 
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responses as well as weak CTL response at varying times during infection. Very recently, one study has

pointed to this immune dysregulation (21) in Covid19 patients with IL6-mediated low HLA-DR 

expression with sustained cytokine production. Another correspondence paper also pointed to a 

cytokine storm in context (22). Antibody-mediated enhancement of immune response is also not ruled 

out and can be seen from the fact that all the epitopes present in the list of dominant B cell epitopes 

(Table 4 in ref  23) belonging to surface, membrane and nucleocapsid protein, are unique, and there 

may be a higher non-neutralizing antibody level in Covid19 patients, like in the case of dengue viruses 

(23). 

While this study was at writing stage, two studies on T cell epitope  generation using all 

proteins (24, 25)  were published. This present study is different from Grifoni et al. 2020 (24) study in 

that two prediction tools with very different algorithms, one using neural network and another using 

postion-specific weight matrices were employed to generate a list of common epitopes, thereby 

increasing  prediction accuracy. Also, Grifoni et al, 2020  focussed mostly on previous SARS 

coronavirus epitope similarity for predicting epitopes, while this paper identified several novel epitopes

across all ten proteins using two different prediction algorithms in each case. Further, this epitope list 

comprises of common top-scoring epitopes with a higher accuracy and is restricted to highly frequent 

HLA alleles across population. Also, in view of the several mutations in SARS-CoV2 genome distinct 

from SARS-CoV, these epitopes not found from SARS-CoV similarity may be potentially more 

immunogenic.  Most of the novel HTL and CTL epitopes were distinct from the epitopes predicted by 

Grifoni et al., 2020, and were found among top 100 immunogenic candidates predicted by 

CD4episcore as well as those in common to ITcell predictions (Supplementary table S2). There was no 

supplementary material on the website or sequence information of the epitopes in the study from 

Nguyen et al., 2020 (25).  Further, their work did not take into account TAP transporter binding 

predictions as well as HLA-II binding studies, while this study used all three stages of MHC processing

and presentation pathway: proteasomal cleavage, TAP transporter binding and MHC class I and II-



binding as well as immunogenicity studies into account for predictions.

Clustering analysis:

All 1924 CTL and HTL top-most epitopes (122 CTL epitopes and 1802 HTL epitopes) across the 

proteins studied, of which 1096 were non-redundant, unique epitopes, were then clustered using IEDB 

epitope cluster analysis tool (26) to make further biologically meaningful decisions. Results analyzed 

suggested that many epitopes were clustered around one consensus sequence (Supplementary table S3).

The total number of clusters (including subclusters) was 244, and 66 epitopes were singletons not 

present in a cluster.

The larger clusters harbouring consensus sequences were: 

VDFQVTIAEILLIIMRTFKVSIWNLDYIINLIIKN (23 members), 

KLWAQCVQLHNDILLAKDTTEAFEKMVSLLSVLLSM and 

TQHQPYVVDDPCPIHFYSKWYIRVGARKSAPLIEL (20 members each). These clusters across 

proteins and alleles  may be considered immunodominant epitopes and tested first among the ranked 

list of epitopes. 

Among immunogenic 122 CTL epitopes from IEDB and 666 HTL epitopes from CD4episcore, 

again HLVDFQVTIAEILLIIMRTFKVSIWNLDYIINLII topped the list. Further, among the same 

immunogenic 122 CTL and  95 HTL epitopes common to two prediction algorithms, CD4episcore and 

ITcell, VTIAEILLIIMRTFKVSIWNLDYIINL belonging to ORF6 again topped. Moreover, 

PIHFYSKWYIRVGARKSAPLIEL belonging to ORF8 and MGYINVFAFPFTIYSLL belonging to 

ORF10 were also among the top 3 clustered sequences. It is of interest  to note that sequences in the 

consensus sequence MGYINVFAFPFTIYSLL belonging to ORF10  are weak binders to all the HLA-

DRB1 alleles studied while the same sequences are strong binders to all HLA-I supertypes studied. 

Table S3: Consensus and singleton sequences generated using IEDB Clustering tool



Crossreactivity studies:

Crossreactivity analyses against human proteome based on UniProt data (Fig. 2) showed that all  the 

immunogenic CTL and HTL epitopes (all HTL epitopes taken from CD4episcore list, removing 

redundant HTL epitopes; total 719 CTL + HTL epitopes) obtained were not present in human proteome

and hence, no crossreactivity to normal human cells may occur. 

Fig. 2: Multiple Peptide Match of 719 predicted SARS-CoV2 coronaviral epitopes aganist Homo 

sapiens proteome from UniProt.

B-cell Epitopes:

The widespread presence of novel, unique T cell epitopes in the SARS-Cov2 proteome, is also the main

reason that in this paper, B cell epitopes were not studied.   Including B cell epitopes in the vaccination 

strategy with T cell epitopes may not be a good strategy, and may even be counter-productive. Even 

though neutralizing antibody levels are found to be low in Covid19 patients (27, 28), it is expected that 

CD4+ T cell expansion responses may increase the neutralizing antibody levels (29) and hence  



quantifying CD4+T cell responses using IFN-gamma ELISPOT assays will be useful. This is so done 

in order to minimize the possible immune system backfiring (21, 22) due to the presence of too many 

overlapping as well as non-overlapping epitopes in multi-subunit vaccines.  It is suggested that helper T

cell epitopes be chosen so as to elicit an immune response robust enough to prime and maintain 

antibody responses, as well as keep the immunopathology under check. In the proven scenario of 

immune system backfiring , it may be one possible mechanism by which SARS-CoV2 may be acting at

its deadliest nature. It is indeed, a dangerous pathogen to control, although for  effective 

immunotherapy at a global scale,  efforts should already be underway using these ranked list of 

epitopes. Almost all of its proteins may pose as foreign agents to the human immune system, with each 

protein contributing several unique, different immunogenic epitopes. This horde of foreign proteins 

brings down an avalanche of immune system molecules to the infection site, in order to fight the virus. 

But instead of immune protection, this may lead to immune enhancement or allergic inflammation at 

the infection site.  These analyses show that coronavirus genome has evolved to be a unique genome.   

Even as this study is  important in pointing out the possible mechanisms in contagious nature of SARS-

CoV2 , more evidence is required in the form of experiments. 

While many of the proteins studied are found to be expressed and also their functions known by

virtue of homology with SARS-CoV, many of the novel ORFs including ORF8 and ORF10 need to be 

experimentally tested for their expression and functional validation. Experimental MHC-peptide 

binding and T cell assays are now required for in vitro testing for further refinement and development 

as potent immunogens to be incorporated as components of subunit vaccines.

Conclusions:

Utilizing all ten SARS-CoV2 proteins, predicted or otherwise, a ranked list of CTL and HTL 

epitopes with high HLA binding affinity, high TAP transport efficiency and  high C-terminal 

proteasomal cleavage ranking has been generated. Utilizing alleles predominant in whole world 

population, two different prediction algorithms were implemented in identification of common epitopes



for consensus.  Immunogenicity scores for these epitopes have also been predicted in order to further 

narrow down the list to key few epitopes that can be experimentally tested. Peptide  matching with 

human proteome showed no indication of possible crossreactivity. These epitopes are provided to the 

scientific community for further in vitro and in vivo assays and saving their time and costs involved in 

our urgent bid to tackle SARS-CoV2 infections and ensuing death. This work provides esential 

information for developing prophylactic and therapeutic interventions and for understanding human 

immune system responses to this virus.

Materials and Methods:

Genome sequence:

The genome sequence of novel coronavirus was retrieved from GenBank accession number 

MT106054.1/RefSeq sequence number NC_045512.2 and the corresponding proteins were retrieved.  

RefSeq sequences of all of the proteins present in this genomic sequence, ORF10 protein 

(YP_009725255.1), nucleocapsid phosphoprotein (YP_009724397.2),  ORF8 protein (GenBank: 

QID21074.1, no RefSeq sequence identified for ORF8), ORF7a protein  (YP_009724395.1), ORF6 

protein  (YP_009724394.1), membrane glycoprotein  (YP_009724393.1), envelope protein  

(YP_009724392.1), ORF3a protein  (YP_009724391.1), surface glycoprotein (YP_009724390.1), 

ORF1ab (YP_009724389.1) were analysed in order to cover the entire genome of SARS-CoV2 in view

of absence of data on its virulent proteins. Within ORF1ab (full protein accession number: 

YP_009724389.1), the accession number of the following proteins taken were as follows: leader 

protein-YP_009725297.1, nsp2 -YP_009725298.1 , nsp3 -YP_009725299.1, nsp4- YP_009725300.1, 

3C-like proteinase -YP_009725301.1, nsp6 -YP_009725302.1, nsp7 -YP_009725303.1, nsp8 

-YP_009725304.1, nsp9 -YP_009725305.1, nsp10 -YP_009725306.1, RNA-dependent RNA 

polymerase -YP_009725307.1, helicase -YP_009725308.1, 3'-to-5' exonuclease -YP_009725309.1, 



endoRNAse -YP_009725310.1 and   2'-O-ribose methyltransferase -YP_009725311.1. Fasta sequences

of all of these proteins were taken as  inputs in several T cell epitope prediction and analysis tools.

Cytotoxic T cell epitopes prediction:

NetCTLpan version 1.1 (http://www.cbs.dtu.dk/services/NetCTLpan/, 30 ) and PickPocket version 1.1 

( http://www.cbs.dtu.dk/services/PickPocket/, 31) were used.  All the parameters used were default 

parameters. Nonameric peptide epitopes were selected. Epitopes from NetCTLpan were ranked 

according to the combined score using all three different methods, and epitopes from PickPocket 

algorithm were sorted by affinity (IC50 values in nM). In order to increase prediction accuracy, high 

scoring epitopes common to both these algorithms (among top 10 in PickPocket and same epitopes 

among high scoring ones in NetCTLpan)  were fished out.  12 HLA supertypes (HLA-A*01:01,  HLA-

A*02:01,  HLA-A*03:01,  HLA-A*24:02,  HLA-A*26:01,  HLA-B*07:02,  HLA-B*08:01,  HLA-

B*27:05,  HLA-B*39:01,  HLA-B*40:01,  HLA-B*58:01,  HLA-B*15:01) as present in both 

algorithms were used (2). For ORF1ab proteins, promiscuous epitopes were selected among top 30 

candidates, as not many common epitopes could be found from NetCTLpan and PickPocket.

Helper T cell epitope prediction:

NetMHCIIpan version 3.2  (http://www.cbs.dtu.dk/services/NetMHCIIpan/, 32) was used to predict 

helper T cell epitopes across several HLA-DRB1 alleles, specifically, DRB1*01:01, DRB1*03:01, 

DRB1*07:01, DRB1*09:01, DRB1*10:01, DRB1*11:01 and DRB1*15:01. It works on the basis of 

quantitative MHC-peptide binding affinity data obtained from the Immune Epitope Database. A 

consensus list of 15 amino acids long ranked epitopes was generated. For generating top ranked 



epitopes, these were sorted using descending order of percent rank. Percent rank is normalized 

prediction score, comparing to prediction of a set of random peptides (32). The epitopes with %rank 

<2% and  <10% were considered strong and weak binders, respectively.

Immunogenicity prediction:

Immunogenicity is a characteristic property of peptide epitopes that can elicit an immune response. 

High binding affinity to HLA alleles is not a sufficient criterion for high immunogenicity. Therefore, 

all the epitopes that were generated as a consensus were checked for their immunogenicity. Immune 

Epitope database (IEDB) immunogenicity tool (http://tools.iedb.org/immunogenicity/, 33) was used to 

generate a list of immunogenic CTL eptopes.   Immunogenicity of a peptide-MHC complex is 

predicted based on the physicochemical properties of amino acids  and their positions in the predicted 

peptide. Specifically, amino acids with large and aromatic side chains and positions 4-6 are more 

important to the immunogenicity of the peptide being presented. Ranking was done after sorting from 

higher to lower immunogenicity score (33). For helper T cell epitopes immunogenicity prediction, 

CD4episcore (34) and ITcell (35) were used. CD4episcore was developed using neural networks and 

combines HLA binding and immunogenicity prediction and outputs a list of immunogenic peptides 

using a combined score. The authors combined immunogenicity and HLA binding scores, using the 

median percentile rank score (HLA_score) of the 7-allele method (ranging from 0 to 100) and 

combined it with their neural network-based immunogenicity score. This combined score is calculated 

as follows:  

Combined score: (alpha * Imm score) + ((1-alpha) * HLA_score), where alpha is optimized to 0.4.

The 7 alleles used are: "HLA-DRB1:03:01","HLA-DRB1:07:01","HLA-DRB1:15:01","HLA-

DRB3:01:01","HLA-DRB3:02:02","HLA-DRB4:01:01","HLA-DRB5:01:01". The whole HTL epitope



sequence list belonging to each protein was given as an input and IEDB-recommended combined 

method was selected for scoring. Lower combined scores imply higher immunogenicity according to 

the authors developing this prediction tool. The immunogenic vs non-immunogenic epitopes cutoff was

a combined score of 50 as per CD4episcore paper.

ITcell works on the basis of three stages of MHC-II processing and presentation pathway. These

three stages are, in the authors'  (35) own words: "....antigen cleavage, MHCII presentation, and TCR 

recognition. First, antigen cleavage sites are predicted based on the cleavage profiles of cathepsins S, 

B, and H. Second, for each 12-mer peptide in the antigen sequence we predict whether it will bind to a 

given MHCII, based on the scores of modeled peptide-MHCII complexes. Third, we predict whether or

not any of the top scoring peptide-MHCII complexes can bind to a given TCR, based on the scores of 

modeled ternary peptide-MHCII-TCR complexes and the distribution of predicted cleavage sites". The 

scores are given as normalized Z-scores with negative scores implying higher immunogenicity. The 

epitope sequences as well as PDB files for TCR molecules corresponding to their cognate MHC alleles 

were given as an input. The PDB ID for files for HLA-DRB1*01:01 and  HLA-DRB1*15:01 alleles are

1FYT.pdb and 1YMM.pdb, respectively. PDB files for all other alleles were not available.

Clustering

As globally conserved epitopes are relevant at this time to contain and treat coronavirus infection, 

clustering approach was used to find patterns among disparate datasets. In order to group epitopes into 

several clusters,  IEDB epitope cluster analysis tool (26) was applied. All the topmost CTL and HTL 

epitopes across proteins targets were used as inputs with minimum sequence identity threshold as 70%. 

Cluster-break algorithm was applied for clear representative sequence.

Cross-reactivity analysis:

All the immunogenic CTL and HTL  epitopes obtained were used to search against human proteome 



data from UniProt database (2020_02 release, 181,292,975 sequences as of date 06-05-2020) for  any 

matches to human proteome, thus avoiding cross-reactivity. For this, Multiple Peptide Match tool 

(https://research.bioinformatics.udel.edu/peptidematch/batchpeptidematch.jsp) of Protein Information 

Resource was used. 

Multiple Sequence Alignment:

MUSCLE (https://www.ebi.ac.uk/Tools/msa/muscle/) was used to generate multiple sequence 

alignments of all SARS-CoV2 proteins with corresponding proteins in other HCoV and MERS species.

The species chosen and their GenBank accession IDs were: Alpha-CoV: HCoV-NL63 (NC_005831.2), 

HCoV-229E (NC_002645.1); Beta-CoV: HCoV-OC43 (NC_006213.1), HCoV-HKU1 (NC_006577.2),

MERS CoV (NC_019843.3) and  SARS-CoV2 (SARS-CoV2, accession IDs same as above). Spike 

protein sequence for SARS-CoV was taken from UniProt (P59594).  In view of different/unclear 

annotations, it was difficult to get corresponding protein sequences from SARS-CoV (RefSeq 

accession ID NC_004718.3).  There are no human CoVs in gamma/delta CoV categories. In addition, 

bat coronavirus RaTG13 sequences (MN996532.1) were also used. 
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