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Abstract 

We describe a method for learning higher-level vector representations of interactions 

between molecular features and biology. We named the representations as the reason vectors. In 

contrast to the high-dimensional chemical fingerprints, reason vectors are much simpler with only 

about 5 dimensions. They allow abstract reasoning for bioactivity of chemicals or absence thereof, 

uncover causal factors in interactions between chemical features and generalize beyond specific 

chemical classes or bioactivity. These qualities enable us to perform powerful similarity searches 

that are vague and conceptual in nature. The methodology can handle novel combinations of 

features in query molecules and can evaluate chemical classes that are entirely absent in training 

data. The method consists of similarity-based near neighbor search on a reference database of 

biologically tested chemicals by a series of substructures obtained from stepwise reconstruction of 

the test molecule. A data-driven continuous representation of molecular fragments was used for 

molecular similarity computations. The technique was inspired by the ability of humans to learn 

and generalize complex concepts by interacting with the physical world. We also show that activity 

prediction of chemicals using the abstract reason vectors is very easy and straightforward, as 

compared to modeling in the raw chemistry space, and can be applied to both binary and 

continuous activity outcomes. Except for utilizing an unsupervised training to construct continuous 

molecular fingerprints, the methodology is devoid of gradient optimization or statistical fitting. 

 

Introduction 

Since its introduction almost 60 years ago,1 quantitative structure-activity relationship 

(QSAR) modeling was primarily intended for correlating molecular structures and their properties 

to predict activity of new molecules. However, QSARs are largely driven by statistical learning 

and correlations,2 elements of reasoning and causality are absent. This shortcoming was not too 

problematic at the beginning, as models were built with small, focused and carefully planned 

congeneric sets of chemicals with the aid of hand-picked molecular descriptors. They primarily 

reflected the reasonings postulated by the model builder. However, as increasingly more QSARs 
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are built with large diverse training sets, this is not the case anymore.3,4 Large training sets only 

allow models to be built directly using raw molecular structural data, e.g. molecular fragments, 

binary fingerprints or deep learning-based continuous representations.5,6 Unfortunately, such 

modeling methods pick up superficial patterns in the raw data and fail when models encounter 

unseen or unusual combinations of features during tests. These issues are well known in the 

machine learning field and has been found to be the cause of some serious problems.7 

Reasoning can be defined as the ability to evaluate implicit relationships that may not be 

explicitly present in the training data.8 Correlations sometimes give a false sense of reasoning, 

mostly due to patterns well represented in the training data. Also, QSARs (built using raw 

structural data) fail to produce meaningfully different results when we make subtle variations in 

the query structure to ask what if questions. Even for basic generalizations, prohibitively large 

number of examples are needed to cover possible structural variations of model parameters (curse 

of dimensionality). Models usually contain contributions of individual structural features towards 

activity and not discerning enough for relative positions or novel combinations in the query. This 

is why QSAR results frequently need to be reviewed by human experts, especially in safety 

assessment of chemicals towards human health.9  

The ability to perceive causality is much more than just capturing patterns in the raw data.10-

13 Traditional correlation-based models give unsatisfactory answers because they only account for 

individual features’ ability to increase or decrease activity (e.g. regression coefficients), but there 

is no statistical parameter that can represent causality, e.g. group A inhibits toxicity of group B. It 

is also very easy to falsely assume correlations as causations. As with reasoning, human experts 

often inject causality after reviewing prediction results. An important benefit of perception of 

causality would be the ability to compute effects of interventions with much better accuracy, e.g. 

toxicity reduction or efficacy improvements in drug candidates. 

Some of these shortcomings are due to the fact that usually all the learning happens during 

the model building phase. Then they are applied in tests without adjustments. Humans, on the other 

hand, continuously form new combinations of existing knowledge and dynamically adjust their 

importance to solve daily problems. A large part of our intelligence comes from our interaction 

with the world and assisted by our stored knowledge. Also, humans have a remarkable ability to 

envision imaginary situations and take actions based on them. It is worth noting about the two 
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different systems of human decision-making process proposed by Daniel Kahneman14: System 1, 

which is automatic, quick, involuntary and requires less effort; and System 2, which is slow, 

sequential, requires effort and can be expressed with languages. Current QSAR and machine 

learning methods are better at system 1 processes, but we would like them to achieve system 2 

abilities. Also, the seminal work of Judea Pearl on causality13,15 cannot be overlooked. He argues 

that current AI systems are at level 1 (association), and the higher level 2 (intervention) and level 

3 (counterfactuals) cannot be achieved without incorporating causality.  

Currently, these problems are focus of intense research in the field of artificial intelligence 

and machine learning. Concerted effort is being spent to unify principles of classic symbolic AI 

and modern deep learning techniques to account for causality and reasoning. A general solution 

seems to be distant at this point, but few clues have started to appear. One such direction is to learn 

higher levels of abstractions from raw input data.16-18 Researchers in the field argue that such 

abstractions allow disentanglement of underlying factors and helps in generalization and transfer. 

Disentanglement is the phenomenon when the raw data is transformed to the right higher space 

and the underlying factors become separated.19 Another approach includes agents interacting with 

the environment and observing the outcomes to uncover causal factors.20 

In this study, we developed a simple method to learn reasoning and causality for the 

purpose of bioactivity prediction, using clues from recent developments in the field of artificial 

intelligence. It involves learning higher abstract representation to uncover relevant underlying 

factors by systematically constructing molecules and observing their biological effects. Following 

are the highlights of the work: 

i. Reason vectors are generated by a stepwise reconstruction of the query molecule starting 

from a single atom to the whole structure, performing near-neighbor predictions with the 

reference database at every step. This is analogous to an agent interacting with world and 

observing the outcomes. We consider near-neighbor predictions to be a System 1 process; 

fast, works with stored knowledge and gives instant activity predictions. Whereas, reason 

vector construction is analogous to a System 2 process; sequential, slower and requires 

additional computation. 

ii. We have described the chemical world using distributed, continuous fingerprints. The 

building blocks of these fingerprints were learnt using a separate unsupervised learning from 
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~17 million unlabeled chemical structures. The purpose is to enable generalizations to new 

combinations of learned chemical features not seen during training and to have rich dense 

representation of small parts of molecules down to single atoms. 

iii. The reason vectors represent general concepts, e.g. “deactivation of a bioactive functionality 

by another”, a useful abstraction higher than the raw relationships between specific chemical 

features and specific biological outcomes. Also, the reason vectors uncover causality in the 

interaction between the chemical features. 

iv. It is straightforward to use the concepts encoded in the reason vectors to get activity 

predictions, for example, if majority of the vectors of a query molecule indicate activity, then 

the molecule is active. 

v. The methodology enables, to a certain extent, assessment of chemical classes for which no 

examples are present in the training set. This is possible by the combined benefits of the 

distributed representations and the sequential activity predictions encoded in the reason 

vectors. 

  

Methods 

Data. We tested our approach on four datasets:  

1) Ames mutagenicity (AMES)  

2) Aryl hydrocarbon receptor activators (AHR) 

3) Skin sensitization (SKIN_SENS) 

4) Rat acute oral toxicity (LD50)  

These data sets cover both binary (Ames, AHR, skin sensitization) and continuous activity 

outcomes (LD50); in vivo (LD50 and skin sensitization) and in vitro (Ames and AHR) bioassays; 

cell based (Ames), whole animal (skin sensitization and LD50) and receptor binding high 

throughput screening (AHR) assays. The data sets range in size from 3122 to 23070 compounds. 

They were subdivided in train and test sets via random split (Table 1). Two of the datasets, 

Ames27,28 and LD50,21 are suitable for comparing prediction performances as they appear in 

previous QSAR based publications. We kept the train and test sets same. 

Except for the Ames set, which in part contains proprietary data, the data was collected 

from publicly available sources. The LD50 data is from the inventory of National Toxicology 

Program Interagency Center for the Evaluation of Alternative Toxicological Methods 
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(NICEATM) and the U.S. EPA National Center for Computational Toxicology (NCCT), who 

collected and curated the data from several sources.21 For skin sensitization, we have collected 

guinea pig maximization test, Buehler and human patch test data from several publications22-24 and 

public data sources including European Chemical Agency (ECHA) dossiers via eChemPortal.25 

AHR dataset is from a PubChem bioassay AID 2796.26 We have published the details of the 

mutagenicity data set in previous articles.27,28 In short, it contains data from a number of public 

and proprietary sources. The proprietary data is mainly from the Ames/QSAR International 

Challenge conducted by the Division of Genetics and Mutagenesis, National Institute of Health 

Sciences, Japan.29 

The datasets were subjected to some common preprocessing steps including aromaticity 

perception, elimination of stereochemistry, neutralizing charges on certain atoms and removal of 

alkali metal salt parts, only one chemical with the highest activity was retained in case of 

duplicates. The AHR data set initially contained 324858 compounds with an overrepresentation of 

the negative class, therefore, we randomly excluded a majority of the negatives to make it 

reasonably balanced with about one third positives.  

 

Table 1. Size of train and test splits of the datasets used in this study. First three sets have binary 

activity labels, whereas the LD50 dataset have continuous activity labels. 

dataset train test total (positive fraction) 
Ames mutagenicity (AMES) 17005 1942 18947 (38%) 
Skin sensitization 
(SKIN_SENS) 2810 312 3122 (30%) 

Aryl hydrocarbon receptor 
activators (AHR) 20763 2307 23070 (33%) 

Rat acute oral toxicity 
(LD50) *  6279 2134 8413 

*activity units: log LD50 (mmol/kg body weight); higher values indicate lower potency. 

 

Molecular fingerprints. A continuous, distributed representation of molecular fragments was 

used, which we and others reported recently.30,31 The publications provide complete description of 

these fingerprints. In brief, these fingerprints were built via unsupervised training on a text corpus 
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comprised of atom centered fragments from approximately 17 million unlabeled PubChem 

chemicals. The Word2Vec algorithm32 was used for the unsupervised training. As a result, we got 

167, 21395 and 340412 vectors for fragments of depth zero, one and two respectively. Summation 

of the vectors of these small fragments produce fingerprints for bigger molecular fragments. The 

size of the fingerprints was kept at 600 for this study. It is worth noting that the fingerprints can 

be generated for fragments of any arbitrary size, and consequently similarity between any two 

fragments can be calculated, even between a single atom and a full molecule. These qualities are 

particularly suitable for this work. 

Traditional fragment-based 1024-bits binary hashed fingerprints were also used in some parts of 

this study. They were built using linear molecular fragments of 2-10 path length. 

Similarity computation. Cosine and Tanimoto similarity measures were used for computing 

similarity within continuous and binary fingerprints respectively. Euclidean distances were used 

for the reason vectors. 

Generating reason vectors. A query compound and a reference dataset of molecules tested 

experimentally in the bioassay of interest are needed for computing these vectors. The process is 

shown in Figure 1, and consists of stepwise reconstruction of the query molecule, starting from 

each of its atoms and performing k-nearest neighborhood (k-nn) similarity search using the 

fragments from each step. Following is the process to generate one reason vector:  

i. Compute fingerprints for the molecules of the reference dataset. 

ii. Select an arbitrary atom m on the query chemical (a single atom fragment) and compute 

its fingerprint. 

iii. Compute similarity between the above fragment and all the molecules of the reference 

dataset, average the bioactivity for the k (5, 7 or 9) most similar reference structures. This 

is the first element of the reason vector. 

iv. Expand the fragment by adding neighboring bonded atoms to m, compute its fingerprint, 

perform step iii and add the average activity of the neighbors as the second element to the 

reason vector. 

v. Repeat steps iii and iv until the whole molecule is covered, producing the full reason 

vector. 
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It is important to note that each element of the vector is a result of the similarity measurement 

between a fragment and all the molecules of the reference database, not a substructure hit search. 

Also, the above methodology can be repeated for every atom to produce all reasons vectors of 

the query molecule, as shown in Figure 2a for the example query molecule with reference to the 

Ames mutagenicity dataset. 

 

 

Figure 1: A reason vector being generated from an atom of a query molecule, using the Ames 

mutagenicity dataset as the reference. The vector starts from the nitrogen of the aromatic amine. 

It is important to note that each element of the vector is a result of similarity calculations 

between a fragment and all the molecules of the reference database, not a substructure hit search. 
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a. Vectors from each atom b. Transfomed vectors 

Figure 2. Full list of reason vectors of a query molecule by using the Ames mutagenicity dataset 

as the reference. a) List of full-length raw vectors, note varying lengths for different atoms, b) 

vectors after transformation to a uniform length of 5.  

 

As shown in Figure 2a, raw reason vectors from a molecule can have different lengths 

depending on the location of the start atom and number of steps required to cover the whole 

structure. This creates a difficulty in their effective use. Therefore, we transform them to a fixed 

uniform length (e.g. 5 or 7) as shown in Figure 2b, by simple compression or expansion. This 

conversion preserves the overall character of the vectors. Mainly, it allows for similarity 

calculations using distances in Euclidean space. We have used the transformed vectors for all 

computations in this paper. 

Predicting activity of a reason vector: As shown in Figure 3a, the activity of a reason vector can 

be predicted by finding similar vectors from the reference chemicals (whose bioactivities are 

known). First, the reference vectors are annotated with the bioactivity of their parent chemicals. 

Second, a search is made to find a few (usually 10) vectors that are similar to the query vector. 
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The biological activities of the found vectors are averaged and assigned as the activity of the query 

vector. 

Predicting activity of a query molecule: Once the activity of the reason vectors of a query 

molecule have been predicted, its own activity can be calculated based on the distribution of 

predicted activities of its vectors. This is shown in Figure 3b. First, activity range of the training 

data is divided in equally spaced bins. Second, the vectors are placed in corresponding bins based 

on their predicted activity. A probability value is then computed for each bin based on the count 

of vectors in it. The predicted activity is simply the average of the mean activity of the bins 

weighted by the probability values. We found this procedure to be equally effective for both binary 

and continuous activity outcomes. 

 

 
 

Figure 3. Schematics of activity prediction method for (a) a reason vector and (b) a molecule. 

First, the activities of individual reason vectors of the molecule are predicted using the method 

shown in ‘a’. Second, the activity distribution of the vectors is used in prediction of the query 

molecule’s activity, shown in ‘b’. 
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Additional modeling techniques for comparison: We have used three standard modeling 

methods for comparisons: 

1. k-Nearest neighborhood using distributed fingerprints (knn_DISTR_FP): Activity of a 

molecule is predicted from the activity labels of k most similar molecules from the 

reference dataset. Distributed fingerprints are used for similarity computations. 

2. k-Nearest neighborhood using binary fingerprints (knn_BINARY_FP): Same as above, but 

binary fragment-based hashed fingerprints were used for similarity computations.33 

3. ECFP fragment-based regression modeling (LOGIST_REGR_ECFP): ECFP type atom-

centered fragment descriptors were used to build regression models. Logistic and ordinary 

regression was used for binary and continuous activity outcomes respectively. L1 

regularization was used to pick relevant fragments.27 

Validation methodology: In addition to the external test sets, we used multiple train-test subsets 

using random split from the primary training sets. A series of training sets of size of 100, 200, …, 

800, 6400 etc. were formed. The size of the test sets was kept at 2000, 2000, 281 and 1000 for 

mutagenicity, AHR, skin sensitization and LD50 respectively. Every combination of the train-test 

set was repeated multiple times to obtain stable estimates. Specifically, k-nn methods were 

repeated 50 times because they are computationally inexpensive as opposed to the reason vector 

methodology which we could repeat only 5 times for a few combinations. ROC-area under curve 

(ROC-AUC) was used for the binary datasets whereas root mean square error (RMSE) was used 

for LD50 prediction. 

Software: Python package Gensim34 was used for accessing the Word2Vec algorithm. The R 

package Rtsne35 was used for generating t-Distributed Stochastic Neighbor Embedding (t-SNE) 

plots. An in-house cheminformatics software library was used for handling chemical structures, 

fragmenting chemicals, computing fingerprints, reason vector methodology, traditional QSAR 

analysis and all other operations described in this paper. 

 

Results and Discussion 

Perception of causality: By means of a series of substructures following a systematic, stepwise 

procedure, the reason vectors mimic the sequential response of a biological system. Interactions 

between structural features of molecules can be deduced from these sequences, e.g. deactivation 
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or boosting of biological effects of a functional group by another. Moreover, cause and effect can 

be separated. In Figure 1 for example, the reason vector generated from the amine nitrogen (atom 

#18) suggests that aromatic amines can cause mutagenicity as shown by the elevated mutagenicity 

(red cells) in the first half of the vector. But, as soon as the sulfonyl group gets added to the growing 

substructure, mutagenicity decreases significantly (green cells). Whereas, when a vector is 

generated from the sulfonyl group (atom #11) of the same molecule (Figure 4), the vector is devoid 

of any activity, implying a causality supported reasoning that sulfonyl group suppresses mutagenic 

potential of the aromatic amine. Human experts with domain knowledge routinely perform such 

causal deductions, whereas, we are computationally generating such reasoning for more effective 

use. 

 

 

 
Figure 4. Using the same molecule from Figure 1, a mutagenicity reason vector is being 

generated from the sulfur atom of the sulfonyl group. The Ames mutagenicity dataset was used 

as the reference. Note the absence of mutagenic activity in the resulting vector. 
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Ability to generalize: We present evidence in this section to show that the vector shown in Figure 

1 represents “deactivation of a bioactive functionality by another” rather than “deactivation of 

mutagenic potential of aromatic amino group by the sulfonyl group”.  

Two nearby vectors in Euclidean space represent similar reasoning for bioactivity or 

absence thereof. For instance, vectors that are similar to the one in Figure 1 depict some type of 

deactivation mechanism and their parent molecules are almost all non-mutagenic. The search 

results are shown in Table 2. Specifically, the aromatic amine functionality is deactivated by the 

sulfonyl group in the query molecule, however, the associated functional groups are not always 

the same in the search results. For example, the mutagenicity hits in Table 2 include an aromatic 

nitro group deactivated by a bulky tertiary-butyl group. Most interestingly, hits from other activity 

domains (e.g. aryl hydrocarbon or skin sensitization) also represent deactivation of a bioactive 

functionality by another and their parent molecule are all inactive (i.e. AHR non-activators or skin 

non-sensitizers). We got similar results using an ‘active’ query vector from the AHR space as 

shown in Table 3. The hits are active compounds from skin sensitization and mutagenicity datasets. 

We believe this to be an important finding, i.e. a reason vector from one activity domain can be 

used for searching in a completely different bioactivity domain. This shows that rather than being 

directly anchored to any specific molecular feature or bioactivity, reason vectors are abstractions 

of activity mechanisms. Therefore, facilitate useful generalizations and wider applicability. They 

are much simpler than the chemical fingerprints (5 elements vs. 600) yet capture more than just 

patterns in the raw data and bring us closer to the underlying causality. The results shown in Tables 

2 and 3 also represents a different type of similarity search, where the query is not a molecule or a 

substructure, but an imprecise concept. 
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Table 2. Search hits from different bioactivity domains, using a reason vector from mutagenicity 

domain as a query representing deactivation of a bioactive functionality by another. All hits are 

inactive and contains a variety of active functionality (red) deactivated by another (green) from 

different activity domains. 
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Non-Sensitizer Non-Sensitizer Non-Sensitizer Non-Sensitizer Non-Sensitizer 

     
 

Table 3. Hits from searching different bioactivity domains, using a reason vector from aryl 

hydrocarbon domain as a query representing a reason for activity. All hits are active and contains 

a variety of active functionalities (red) from different activity domains. 
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Next, a more detailed experiment was performed to confirm the generalizing ability of 

the reason vectors. A thousand ‘active’ vectors were randomly selected from each activity 

domain, then a cross-search was performed in different domains to obtain a few (e.g. 9 or 11) 

closest vectors. Same process was repeated for sets of ‘inactive’ reason vectors. The percentage 

of active and inactive vectors are counted in the results. Mutagenicity, AHR and skin 

sensitization datasets (binary outcome sets) were used for this purpose. The results are shown in 

Table 4. We found that active query vectors from mutagenicity and AHR produce active hits 

from other domains. For example, Ames positive vectors returned 81% and 84% active vectors 

from AHR and skin sets respectively. Active vectors from skin sensitization were an exception, 

returning a mix of active and inactive vectors from other datasets, possibly due to a relatively 

small dataset size. Inactive query vectors from any set, on the other hand, returned mostly 

inactive hits across all three activity domains. 
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Table 4. Results from searching active and inactive reason vectors across different activity 

domains. Each query set (first column) is comprised of a thousand vectors from a particular 

domain.  

query 
vector * 

activity distribution of vectors in search result 

AHR+ Skin+ Ames+ AHR– Skin– Ames– 
Ames+ 81% 84% - 19% 16% - 

Ames– 5% 10% - 95% 90% - 

AHR+ - 79% 70% - 21% 30% 

AHR– - 17% 12% - 83% 88% 

Skin+ 42% - 45% 58% - 55% 

Skin– 7% - 8% 93% - 92% 

* ‘+’ or ‘–’ indicates active or inactive query vectors, e.g. AHR+ stands for active vectors from the aryl 
hydrocarbon dataset. 
 
Analysis of different vector spaces: From a broader perspective, the process of activity 

prediction is equivalent to placing the query molecule in three consecutive vector spaces, with 

progressive simplification from one to the next:  

1. Chemistry space: Represented by the high dimensional (600D) molecular fingerprints 

from the input data. Each molecule is represented by one point in this space. 

2. Reason vector space: Consists of reason vectors of low dimensions (5D or 7D). Each 

chemical is represented by multiple points (depending on the number of reason vectors 

from the molecule). The vectors contain only a few factors relevant to bioactivity. 

3. Decision space: Consists of 10-20D vectors representing the distribution of predicted 

activities of reason vectors in the query molecule. This space is used for activity 

prediction. Every molecule is represented by one point. 

These three spaces are actually a confirmation of the manifold hypothesis36,37 that high 

dimensional data usually lie close to a low dimensional manifold and real data of interest lives in 

a space of low dimensions. This is illustrated in Figure 5a with two molecules’ (AHR active and 

inactive respectively) in the corresponding vector spaces of AHR activity domain. We have used 

principal components to help the display. It can be seen that the reasons for activity and 

inactivity are separated with less overlap in the reason vector space as compared to the chemistry 



 17 

space. The reason vector space has considerably more data points as compared to the chemistry 

space, however, the vectors only contain a few key features. The two example molecules are 

represented by multiple points in the reason vector space and their activity distributions are well 

separated as shown in Figure 5b. The decision space for the AHR dataset practically has only 

two dimensions, one rich in actives while the other in inactive molecules, in line with the binary 

nature of this dataset.  

Figure 6 shows the vector spaces for the LD50 dataset. We have used a t-SNE plot to 

show the chemistry space because PCA was not able to provide any visual separation of 

molecules of varying toxicities. The stepwise simplification and distillation of the reasons of 

activity results in the final heart shaped decision space, which contains the most toxic chemicals 

at left side. Toxicity of the molecules reduces smoothly towards right. 
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Figure 5. (a) Depiction of chemistry, reason vector and decision vector spaces for the aryl 

hydrocarbon receptor dataset. Active and inactive vectors are shown with red and green color 

respectively. Two example molecules are placed in the vector spaces, yellow dots were used for 

the active and green for the inactive molecule respectively. (b) Predicted activity distribution of 

the reason vectors for the two example molecules. 

 

 
Figure 6. Depiction of chemistry, reason vector and decision spaces for the LD50 activity 

domain. Higher toxicity (lower LD50 values) is depicted using darker shade of color. 
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‘biophores’. Also, this can be done during test time as opposed to traditional techniques in which 

the biophores have to be extracted during the model building phase. This allows identification of 

novel biophores that do not exist in the training set. As shown in Figure 7, the mapping method 

consists of annotating the atoms of the test molecule with the corresponding activity values at a 

particular depth of reason vectors. The chosen depth can be varied to observe the change in the 

biophores, presenting a dynamic picture of the underlying mechanism in terms of relevant 

substructures. 

 
Figure 7. Mapping of biologically relevant substructures (biophores) in an example AHR 

activator. The biophores are highlighted on the molecule. Note that as the chosen depth is 

increased, the biophore also expands to cover larger part of the query molecule.  
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subjected to mutagenicity prediction. The aromatic amino moiety in molecule #1 is flanked by 

two bulky t-butyl groups, blocking its mutagenic potential. However, when the bulky 

substituents are removed from the vicinity of the amino group, mutagenic potency should 

increase. This change is reflected nicely in the reason vectors of the two molecules, as a sizable 

high activity red patch appeared in the reason vectors in Molecule #2. It is worth noting that the 

two molecules showed negligible difference when evaluated using near neighbors in the 

chemistry space, both were predicted inactive.  
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Figure 8. Change in the activity distribution of the reason vectors as a result of change of 

relative position of functional groups in the two hypothetical query molecules predicted for 

mutagenicity. 

 

Bioactivity prediction performance of reason vectors: We envision reasoning and causality 

perception to be the main function of the reason vectors. Consequently, primary objective of this 

paper is to develop the concept of the reason vectors and not to focus entirely on prediction 

metrics. Nevertheless, it is important to check if they have acceptable ability to predict biological 

activity of new chemicals, else their practical applications will certainly be limited. As 

mentioned in the methods, we used a few standard methods for comparison, i.e. k-nn using 

binary and distributed fingerprints and ECFP fragment-based regression. The results are 

presented in Figure 9 and the external test metrics are given in Table 5 and 6 separately. 
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Figure 9. Prediction performance plots for cross-validations and external tests. Note that the 

external test was performed only once (pointed by the red arrow on right end of every plot), 

while the cross-validations were repeated multiple times for every training set size. The error 

bars indicate the standard deviation of trials for different training sets. Also note that the 

REASON_VECTORS and the LOGIST_REGR_ECFP validations’ training set sizes are not as 

many as the knn methods, for being computationally expensive. For the cross-validations, the 

test set size was kept at 2000, 2000, 281 and 1000 for mutagenicity, AHR, skin sensitization and 

LD50 respectively. 
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The reason vectors performed quite well in cross-validations as well as in the external 

tests. In the cross-validations, it consistently outperformed the k-nn methods in all the datasets 

and almost for all training set sizes. Performance increased consistently with the training data set 

size for all methods. The LOGIST_REGR_ECFP performed best in the AHR dataset while the 

reason vectors were the top performer in the skin sensitization cross-validations. In the external 

tests, reason vectors gave the best performance for mutagenicity and LD50 and second best in 

AHR and skin sensitization (Table 5 and 6). We do not think that the external tests are the best 

indicators of performance, mainly because they were performed only once. On the other hand, 

cross-validations were repeated several times with multiple combinations of train-test sets. 

We have recently published prediction results using a LSTM deep learning model for this 

mutagenicity dataset and an AUC of 0.938 was achieved for the same external set. In 

comparison, the reason vectors produced a slightly better AUC of 0.944.  

The prediction performance of this LD50 external set was also reported by others using a 

variety of modeling techniques. For example, Gadaleta et al reported r2 and RMSE of 0.590 and 

0.585 respectively using random forests. In comparison, the reason vectors produced a slightly 

lower r2 and RMSE of 0.554 and 0.601 respectively. However, it should be noted that Gadaleta 

et al’s results include enforcement of applicability domain, resulting in a coverage of about 91% 

of the test chemicals. Whereas, the reason vector methodology includes 100% of the test 

chemicals and therefore, a slight decrease in performance is expected. 

In summary, these results support the notion that the reason vectors are not deficient in 

terms of prediction performance and works well for both binary and continuous activity 

outcomes. 
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Table 5. External set prediction results in terms of ROC-AUC and RMSE. 

methodology AMES AHR SKIN_SENS LD50 

 ROC-AUC 
higher is better 

RMSE 
lower is better 

REASON_VECTORS 0.944 0.881 0.793 0.601 

knn_DISTR_FP 0.936 0.857 0.763 0.608 

knn_BINARY_FP 0.935 0.868 0.777 0.615 

LOGIST_REGR_ECFP 0.937 0.905 0.816 0.634 

 

Table 6. External set prediction results in terms of sensitivity, specificity and r2 for 

REASON_VECTORS and the LOGIST_REGR_ECFP. 

dataset 
reason vectors ECFP logistic regression 

sensitivity specificity accuracy sensitivity specificity accuracy 

AMES 85.25 89.09 87.17 81.97 91.32 86.75 

AHR 83.25 77.50 80.37 85.09 81.86 83.48 

SKIN_SENS 72.97 72.14 72.56 72.97 77.61 75.29 

LD50 r2 = 0.554 r2 = 0.506 
 

Prediction of chemical classes that are absent in training data: The validation experiments 

described above were based on test sets by random splitting of the data. As a convention, the 

models are only expected to successfully test chemicals that are well represented in the training 

set. Present study offers a possibility to overcome this limitation due to two reasons: i. the use of 

a distributed, continuous representation of molecular chemistry and ii. the reason vectors encode 

biological activity of parts of the molecules. The first point makes it possible to identify 

chemicals in the training data that have ‘similar’ chemistry in spite of not of being identical to 

that of the query chemical. The latter enables activity prediction of small chunks of query 

molecules, reducing chances of a complete failure if the whole query chemical is not represented 

well. Therefore, we checked if we can correctly identify biologically relevant core features of 

classes of query chemicals for which no examples are present in the training set. 



 24 

The mutagenicity dataset was utilized to explore this idea because it contains many well-known 

chemical classes with known mechanism of actions, e.g. nitroso, aromatic nitro, alkyl halides, 

aromatic amines etc. First, a training set was created by removing all instances of compounds of 

the chemical class in question. Second, a query chemical of the excluded class was tested using 

the reason vector methodology in an attempt to identify biophores. We evaluated two mutagenic 

classes: aromatic nitro and reactive three membered ring compounds (e.g. epoxides, aziridines). 

In the results presented in Figure 10a and 10b, it can be seen that the appropriate mutagenic 

functionality was identified in both instances, shown as elevated activity zones in the reason 

vectors. Next we examined the underlying training compounds that were utilized in the absence 

of matching examples to ensure if results actually agree with our chemical intuition. We found 

that for epoxides, some alkyl halides were identified as similar chemicals. Both epoxides and 

alkyl halides cause mutagenicity by alkylation, therefore the results are not wrong. For the 

aromatic nitro class, hydroxylamines, azo compounds, aromatic amines and azoxy compounds 

were identified as replacements. Aromatic nitro group causes mutagenicity via metabolic 

reduction to hydroxylamine and amines. Similarly, azo compounds are metabolically reduced to 

amines and hydroxylamines. The results indicate that the distributed fingerprints indeed encode 

notions of chemistry and the reason vectors are suitable candidates for identifying causes of 

activity in query molecules that are not well represented in the training data. 
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b. 

 
Figure 10. In the absence of any matching training examples, mutagenicity assessment of (a) an 

epoxy and (b) an aromatic nitro molecule using reason vectors. The epoxy and aromatic nitro 

‘biophores’ were correctly identified by the reason vectors. The molecules shown in the boxes 

were utilized while forming the reason vectors as similar to epoxy or aromatic nitro 

functionality. 

 

Conclusions 

In this paper we describe the reason vectors which are high-level abstract representations 

of interaction between chemical features and a biological system. These vectors representations 
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believe that this work is a step forward for towards making computational reasoning and 

causality as an integral part of the QSAR modeling. 
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