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Abstract 

Molecular dynamics (MD) and enhanced sampling MD was performed for 100 ns on the biological assembly of the 
COVID-19 protease (6LU7), and a template of the COVID-19 S-protein:ACE2 receptor interface (99.88% coverage 
of 6M0J; model03 swissmodel). Apo-site pharmacophores of the resulting structural clusters were used to mine the 
FDA database (8700 compounds), and a multi-target library was developed from MD-based hits in high affinity sites 
across 100 ns.  Consensus hits from high throughput docking in crystal structures 5R82, 6LU7 and 6Y2F (protease), 
and 6VW1 (S-protein:ACE2) were also added, and the resulting libraries were re-docked into MD sites to collect 
potential COVID-19 re-purposed therapeutics by estimated binding energies.   
 
One sentence summary: Potential COVID-19 repurposed therapeutics targeting the viral protease and the S-protein: 
ACE2 interface are collected based on molecular dynamics, pharmacophore-based data mining, and consensus-based 
computational docking. 
 
Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated coronavirus disease 2019 (COVID-19) 
is a global pandemic challenging our economy and healthcare infrastructures.  From the first reported cases in Wuhan 
China in December 2019, significant research has been put forth to both understand and treat the disease, for which 
there remains no known cure.1-5  Strategies for the treatment of COVID-19 can be divided into two areas; those 
targeting viral replication leading to severe symptoms and respiratory failure, and those targeting initiation of the 
infection.  Due to the rapid onset of the pandemic, and the long timeframes of drug and vaccine development, the need 
for immediate treatments has made repurposing current therapeutics a necessary option.  
 
Here we report preliminary computational results of our current research that includes experimental validation and 
extended virtual screening on longer MD time-scales (> μ s) and other COVID-19 protein targets.  Although this work 
is ongoing, due to urgency we feel initial results warrant release to the experimental community.  In this study we 
report approved and investigational therapeutics with high affinities towards sites in the COVID-19 viral protease 
(Table 1) and S-protein:ACE2 interface (Table 2), as well other compounds with favorable interactions (SI) based on 
molecular dynamics (MD) and consensus high throughput virtual screening. 
 
Methods 

MD simulations were carried out for 80 ns on both systems using the Gromacs 2018.3 package.6 Simulations were 
run in the NPT ensemble, using the Parrinello-Rahman barostat with time constant τ = 2ps and the V-rescale thermostat 
with time constant τ = 0.1 ps, and a time step of dt = 2 fs.7, 8  Minimizations were performed on the initial protein 
structures up to a force threshold of 10 kj mol-1 Å-1, and the resulting geometries were brought from 0 to 300 K using 
a constant annealing of 400 ps.  In the case of the S-protein:ACE2 interface, enhanced sampling was carried out using 
Plumed version 2018.3 in Gromacs for N-acetly glucosamine (NAG),9 where the ligand-protein interaction was left 
un-biased, and NAG experiences a slight restraining potential 5 Å outside of the initial bound state (S1). This both 
prevents escape and allows sampling of detachment events without biasing ligand desorption. NAG was parameterized 
as a single point gas-phase Hartree-Fock calculation with NWChem, and the derived charges were embedded using 
the RESP method in antechamber and Biki 1.3.10   
 
Initial binding sites were identified for both systems using Ligand Scout 4.4,11 at 1 ns, 40 ns, and 80 ns from average 
structures of the most clustered conformations in corresponding 5 ns windows. Apo-site pharmacophores including 
exclusion volumes were constructed using Ligand Scout 4.4, and the FDA database from Drug Bank was converted 
to pharmacophore features and mined for spatial similarity.  High scoring hits on the database (> 65 similarity) were 
collected for each site and docked, and low energy conformations were merged with apo-site pharmacophores to re-
mine the database for possible missed hits.  Docking was performed using Autodock 4.2 with 70 genetic algorithm 
runs, an RMSD cluster tolerance of 1.7 Å, with 200 population individuals, and the maximum number of energy 
evaluations set to 5 x 106, with to 7 x 104 generations.5  The resulting concatenated libraries consisted of 91 ligands 



for the protease, and 128 ligands for the S-protein:ACE2 interface. Hits from consensus-based VS were further added 
(S7), and included Amprenavir, Nelfinavir, Sofosbuvir, and Tenofovir for the protease.  Approved or investigational 
ligands with at least -20 kcal/mol estimated binding energies (Tables 1,2) were separated from those with favorable 
interactions lower than -15 kcal/mol (SI). 

Results 
 
Current effective treatments targeting viral replication and associated severe symptoms include Chloroquine and 
Hydroxychloroquine, Hydroxychloroquine with Azithromycin, Remdesivir, and in some cases janus-associated kinase 
inhibitors such as Ruxolitinib. 12-18  Antivirals such as Ganciclovir, Acyclovir, and Ribavarin have in contrast been 
declared inactive for COVID-19, and known viral protease inhibitors such as Darunavir (S5) and the pro-drug system 
Lopinavir-Ritonavir have also shown no significant antiviral activity, which in some sense was confirmed in this 
study- Lopinavir was not significant in consensus VS, and has low symmetric site affinity at 80 ns.19-22  The HIV 
antivirals Sofosbuvir, Nelfinavir, and Amprenavir were blind pharmacophore-based hits as well as consensus-based 
VS hits, and are shown in Figure 1. Alternate hits in their lowest energy binding modes, along with protein clusters 
are further collected in the SI. 
 
Although site 1 of the inhibited protease is the most logical drug target from crystal structure, the biological mechanism 
leading to the inhibited state remains unclear.  Based on binding affinities at the hetero-dimer interface, and also the 
symmetric inhibition site 3, it is possible that inhibitor pre-binding occurs before binding in site 1/3, or that protein 
response causes changes in symmetric site binding, or that overall efficacy is somehow related to perturbing the hetero-
dimer interface.  This virtual screening attempts to overcome such variables in protein response by probing multi-site 
affinity from the crystal-based biologically active form, to a relaxed state to 100 ns.  For example, Atorvastatin has 
high binding affinity towards site 1 at 1ns, while Sofosbuvir shows binding preference towards the hetero-dimer 
interface at site 2.  At 40 ns Sofosbuvir still shows preference to the hetero-dimer interface, like the other compounds, 
with Nelfinavir at the highest affinity to symmetric site 3. It is not until 80 ns in the relaxed state that Sofosbuvir shows 
direct preference towards site 1.  On the other hand, Lopinavir shows preference to site 1 vs. the heterodimer interface 
at 1ns, and 40 ns, similar to Fexofenadine, but has low affinity for the symmetric site 3 in the relaxed 80 ns state.  
There seem to be two chemotype trends in this regard, but we report affinity here across all sites. 
 

 
Compound est. binding energy (kcal/mol); time(ns); site Database 

ID 
Status 

1 ns 40 ns 80 ns 
1 1a 2 3 1 2 3 1 2a 2b 3   

BA3 -30.7 -31.9 -28.6 -29.2 -28.0 -31.0 -27.5 -24.6 -28.0 -30.0 -25.2 DB01690 exp.; nucleotide 
Atorvastatin -26.6 -22.1 -25.7 -24.9 -22.3 -23.7 -18.7 -22.9 -23.8 -23.3 -19.6 DB01076 approved 
Sofosbuvir -26.5 -26.9 -28.8 -27.9 -23.5 -27.5 -23.3 -26.1 -24.8 -25.5 -24.1 DB08934 approved 
Nelfinavir -25.4 -23.8 -23.2 -24.6 -23.3 -24.9 -23.4 -22.7 -23.9 -24.4 -20.3 DB00220 approved 
Montelukast -25.1 -25.3 -25.8 -25.4 -22.7 -27.3 -21.1 -23.5 -25.2 -23.7 -20.4 DB00471 approved 
Fexofenadine  -23.6 -23.9 -24.4 -25.0 -20.8 -25.7 -20.7 -23.0 -22.7 -22.9 -19.6 DB00950 approved 
Lopinavir  -23.2 -21.7 -21.6 -25.9 -22.3 -20.1 -21.3 -22.4 -22.4 -25.4 -15.6 DB01601 approved 
Riboflavin -22.9 -20.8 -24.1 -22.9 -19.2 -22.6 -20.7 -21.6 -22.0 -21.6 -19.6 DB03247 approved 
Sultamicillin -21.9 -21.5 -24.7 -21.6 -19.4 -21.9 -20.8 -21.1 -21.6 -20.4 -17.7 DB12127 approved 
Eluxadoline -21.8 -22.8 -23.7 -22.3 -20.5 -22.7 -23.9 -22.3 -24.0 -23.0 -19.6 DB09272 approved 
Relugolix -21.7 -22.1 -20.2 -21.3 -20.3 -23.3 -21.7 -19.7 -23.2 -20.2 -18.3 DB11853 investigational 
Macimorelin -20.1 -19.9 -23.8 -20.8 -18.2 -19.4 -19.2 -18.7 -20.1 -19.1 -19.2 DB13074 approved 
Amprenavir -20.4 -21.9 -19.3 -21.8 -18.2 -20.0 -20.2 -18.9 -19.8 -20.2 -18.0 DB00701 approved 

Figure 1. Re-docking scores in estimated kcal/mol (Autodock 4.2) of pharmacophore hits on the FDA database from 80 ns MD of the biologically active Cov-
19 protease.  The lowest energy poses of each ligand are shown in their binding sites and colored uniformly to the ligand with the lowest binding energy.  Site 
clusters are shown in grey when the lowest affinities are shared across sites for one ligand. Energies of the di-nucleotide analog BA3 are shown in grey. 



 
Human infections by SARS coronaviruses are closely associated with interactions between the viral spike protein and 
human receptors, namely the Angiotensin-converting enzyme 2 (ACE2).23-28  Virtual screening based on high 
throughput docking combined with MD was previously carried out on the ZINC database,29 and the highest ranked 
hits from that study are included herein, along with corresponding highest ranked hits from MD-based pharmacophore 
virtual screening shown in Figure 2, notable high affinity biomolecule analogs in grey, and other significant binding 
modes are collected in the SI.  The main difference between the two approaches is an additional layer of chemical 
abstraction from structure that enriches the virtual screening. 
 
Three sites were observed at 1 ns near the crystal structure; luminal sites 1a, and 3, and site 2 at the S-protein:ACE2 
interface, where Montelukast had the highest affinity.  At 40 ns, both affinity and re-docked pharmacophore hits 
increased for sites 1a, 2, and 3, and an additional site denoted 2t emerged within the S-protein at the interface, where 
binding energies were determined by re-docking into the unbound S-protein.  The distinction between sites 2 and 2t 
account for possible inhibition of the unbound S-protein (2t), or affinity towards site 2 in the S-protein:ACE2 interface 
leading to a ligand-S-protein 2t state. At 80 ns a site emerges denoted site 1 near the S-protein loop, showing the 
highest ligand binding affinity, with Fexofenadine as the most associated approved compound.  Both Fexofenadine 
and Montelukast show high S-protein affinity at all sites screened in the relaxed state, with Fexofenadine highest at 
sites 1 and 2, and Montelukast highest at sites 2t and 3.     
 

 
Compound est. binding energy (kcal/mol); time(ns); site Database 

ID 
Status 

1 ns 40 ns 80 ns 
1a 2 3 1a 2 2t 3 1 2 2t 3   

NADH*  -16.7 -23.4 -- -20.5 -25.4 -20.6 -19.3 -30.5 -24.1 -18.5 -- DB00157 nutraceutical 
Fexofenadine -- -19.9 -- -17.6 -20.1 -16.3 -20.9 -24.2 -21.1 -17.1 -17.5 DB00950 approved 
Montelukast -- -20.4 -- -18.8 -22.3 -19.3 -21.6 -22.8 -20.3 -17.4 -21.7 DB00471 approved 
Cefpiramide -- -18.5 -- -17.5 -20.2 -17.4 -18.0 -22.6 -18.8 -15.3 -- DB00430 approved 
Etalocib -- -18.1 -- -15.7 -18.2 -16.4 -- -22.1 -18.4 -15.4 -15.2 DB12850 investigational 
Chenodeoxycholic acid -- -16.5 -- -- -16.6 -- -17.3 -21.4 -17.4 -15.0 -- DB06777 approved 
Pentosan polysulfate -- -18.5 -- -15.2 -19.0 -- -15.0 -21.3 -18.1 -17.0 -- DB00686 approved 
Lumacaftor -- -17.8 -- -- -16.0 -15.9 -18.1 -20.8 -17.9 -15.8 -- DB09280 approved 
Cloxacillin -- -- -16.0 -- -15.1 -- -17.9 -20.7 -- -- -16.2 DB01147 approved 
Foretenib -- -17.1 -- -- -17.9 -- -- -20.7 -18.1 -- -- DB12307 investigational 
Cholic Acid -- -- -- -- -16.3 -15.1 -- -20.5 -- -15.2 -- DB02659 approved 
Travoprost -- -16.0 -- -- -17.8 -15.7 -15.9 -20.5 -17.8 -- -15.8 DB00287 approved 
Dexamethasone MSB -- -16.8 -- -15.1 -18.3 -- -- -20.4 -18.5 -- -- DB14703 approved; exp 
Rosuvastatin -- -18.1 -- -15.2 -17.4 -- 17.8 -20.4 -16.0 -15.7 -15.8 DB01098 approved 
Telotristat ethyl -- -17.2 -- -15.7 -18.1 -- -- -20.3 -- -- -- DB12095 app;investigational 
* 
SUD -19.1 -22.5 -- -22.8 -25.1 -19.2 -23.3 -30.2 -24.6 -20.0 23.0 DB01859 exp; nucleotide  
AP-22408 -- -21.6 -- -19.0 -24.7 -18.8 -18.9 -26.9 -25.8 -17.6 -- DB01830 exp; Phe peptide  
RU83876 -- -22.2 -- -19.5 -25.1 -16.3 -20.9 -26.9 -24.3 -17.7 -- DB02336 exp; dipeptide 
ATP -15.6 -21.1 -20.9 -18.6 -22.1 -- -22.8 -26.9 -- -19.2 -18.8 DB00171 nutraceutical 
RU81843 -- -- -- -17.2 -22.6 -16.3 20.2 -26.1 -21.1 -17.1 -17.7 DB04495 exp; dipeptide 
FNS  -- -18.6 -15.8 -- -20.3 -16.4 -18.4 -18.4 -19.3 -17.0 -22.7 DB02164 exp; nucleotide 
Vitamin E -- -20.1 -- -- -18.4 -15.7 -17.5 -- -19.5 -- -- DB00163 nutraceutical 
ZINC000003869685 -- -- -- -- -- -- -- 17.2 -- -- --   
ZINC000018185774 -- -- -- -- -- -- -- -- -- -- -15.9   

Figure 2. Re-docking scores in estimated kcal/mol (Autodock 4.2) of pharmacophore hits on the FDA database from 80 ns MD of the Cov-19 S-protein:ACE2 
interface.  The lowest energy poses of each ligand are shown in their binding sites and colored uniformly to the ligand with the lowest binding energy.  Site 
clusters are shown in grey when the lowest affinities are shared across sites for one ligand. Energies of significant biomolecule analogs are shown in grey. 



 
Conclusions 
 
Based on the biologically active form of the COVID-19 protease from the 6LU7 crystal structure,30 and a model of 
the COVID-19 S-protein:ACE2 interface from 6M0J,31 MD-based apo-site pharmacophore and consensus-based 
(6LU7, 5R82, 6Y2F) VS was used to screen the FDA database of 8700 compounds to propose a multi-target library 
with high affinities towards their associated dynamic targets by computational docking.  Notable compounds include 
selected HIV protease inhibitors, cancer and hepatitis targeting compounds, a lipid lowering drug (Atorvastatin), a 
leukotriene receptor agonist (Montelukast), an antihistamine (Fexofenadine), and other nutraceuticals and bio-
molecule analogs. Although inhibition mechanisms are not explicitly proposed based on this approach, energetic and 
biological detail was nevertheless added by MD and enhanced sampling to enrich the virtual screening.  Further 
experimental and in-silico validation is ongoing and includes other protein targets, but we nevertheless disclose 
preliminary results here in hope to identify active chemotypes against COVID-19 infection and replication.   
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