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Abstract 

In the context of bioactivity prediction, the question of how to calibrate a score produced 

by a machine learning method into either a relative or an absolute probability of binding 

to a protein target is not yet satisfactorily addressed. In this study, we compared the 

performance of three such methods, namely Platt Scaling (PS), Isotonic Regression 

(IR) and Venn-ABERS Predictors (VA) in calibrating prediction scores obtained from 

ligand-target prediction comprising the Naïve Bayes (NB), Support Vector Machines 

(SVMs) and Random Forest (RF) algorithms. Calibration quality was assessed on 

bioactivity data available at AstraZeneca for 40 million data points (compound-target 

pairs) across 2,112 targets and performance was assessed using Stratified Shuffle Split 

(SSS) and Leave 20% of Scaffolds Out (L20SO) validation. VA achieved the best 

calibration performances across all machine learning algorithms and cross validation 

methods tested, with the lowest (best) Brier score loss (representing the mean squared 

difference between an assigned probability and true label, weighted by fraction of 

predictions in that category). VA achieved the lowest Brier score loss for the RF with 

0.023±0.013 and 0.028±0.019 during the SSS and L20SO test set, respectively, 

indicating high quality calibration (the probability of the true label lies within ~0.15 of the 

ideal values, across the probability bins evaluated) compared to the base estimator 

Brier score loss of 0.024±0.014 and 0.03±0.022. In comparison, the PS and IR methods 

can actually degrade the assigned probability estimates, particularly for the RF with 

scores of 0.048±0.025 and 0.048±0.026 for SSS, respectively, and 0.047±0.027 and 

0.048±0.028 during L20SO.  VA was also able to successfully calibrate the probability 

estimates for even small calibration sets, performing with a mean Brier score loss of 

0.008±0.006 for targets with between 50 and 100 active training instances (i.e. 

estimates lie within ~0.02 of ideal values). VA is able to generate multi-probability 

values (lower and upper probability boundary intervals), which were shown to produce 

large discordance for test set molecules that are neither very similar nor very dissimilar 

to the active training set, and which hence were difficult to predict, suggesting that multi-

probability discordance can be used as an estimate for target prediction uncertainty. 

Overall, we were in this work able to show that VA scaling of target prediction models 

is able to improve probability estimates in all testing instances, which is currently being 

applied for in-house target prediction models.  
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Introduction 

 

In silico target prediction aims to annotate orphan compounds with their relative 

probabilities of binding protein targets of interest, usually at one or more activity 

thresholds1-4. Such methods are ideally designed to direct biological resources for 

subsequent experimental confirmation5-7, given they are still only computational 

predictions and usually do not predict quantitative activity. Algorithms which utilize 

negative bioactivity space are capable of also predicting the relative likelihoods for input 

compounds to be inactive, which has been shown to statistically improve the quality of 

predictions during internal and external validations8, 9. 

 

Alternative approaches, which also quantitatively model ligand-protein activity (and 

which are hence more similar to multi-target QSAR methods) have recently been 

published10-12, which, for a subset of targets and chemical space covered by the data, 

are able to approach assay reproducibility limits. Likelihood of activity and quantitative 

activity are two distinct axes of modelling bioactivity of compounds though, and 

generally a trade-off between both aspects exists (i.e., quantitative activity prediction, 

chemical coverage, and model performance cannot be optimized independently of each 

other at the same time). Hence, both quantitative activity predictions and target 

predictions, which aim to anticipate the likelihood of activity at a given threshold, have 

their value and distinct strengths and weaknesses. 

 

An important consideration for in silico target prediction methods providing a likelihood 

of activity is not only their statistical quality (such as performance on an independent 

test set), but also the accuracy of the algorithmic output to assign a probability estimate 

that reflects the ground probability for each individual prediction13, 14. For example, a 

raw probability score of 0.90 may represent a high estimate that a compound is active; 
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however only 70% of the compounds with that corresponding score may be active in 

reality. Thus, the ground truth likelihood of a compound obtaining this score is lower 

than the relative output from the algorithm, and hence the model is poorly calibrated15, 

16. In comparison, predictions from a perfectly calibrated (binary) single-label classifier 

would classify the samples such that, among the samples to which it gave a probability 

value of 0.90 (to belong to the active class), indeed 90% actually belong to the active 

class. While theoretically some algorithms aim to provide realistic probabilities, we will 

now discuss why this is often not the case in practice. 

 

Different reasons can lead to ‘raw’ output probabilities of classification algorithms to 

deviate from true probabilities. On one hand, they might not be functioning even for a 

single model (poor performance); but also beyond that, chemogenomic data cannot be 

considered identically, independently distributed (i.i.d)17, since compound-target 

associations are based on very different data distributions (i.e. different target classes, 

number of compounds, with higher or lower diversity)18. For example, published models 

using in-house data comprised a very different number of active compounds across the 

proteins modelled, with a median of 752 and (~6.5 times larger) standard deviation of 

4,954 compounds per protein target model19. Another study modelled 15 different 

protein families, with a range of 17 to 615 targets per family, and (comparatively large) 

standard deviation of 174 targets across families20. Enzymes and kinases dominate 

protein family distributions (~30% and ~34% of training data set size21), which also 

negatively influences the probability estimates for the minority family classes (models 

with fewer data points lead to fewer positive predictions in most approaches). Model 

behavior is also influenced by the origin of inactive training sets (putative or 

experimental annotations)22, 23, proportion of targets corresponding to protein 

complexes (~6% of ChEMBL data24) and degree of imbalance toward the inactive 

(majority) class25-27, i.e. a median active:inactive compound ratio of 96 and 

(comparatively large) ~16 standard deviation9. The chemical space of training data is 
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also biased, with often 10−30 compound exemplars per scaffold28, but also in some 

cases very highly populated scaffolds and high numbers of singleton scaffolds being 

present29. Bioactivity data for orthologue targets are also biased to distinct regions of 

the chemical space, outlining that probabilities generated for targets in related 

organisms often comprise separate distributions30. Hence, overall, bioactivity data is 

heavily biased, both with respect to the number, diversity, and particular distribution of 

data points in a given class, which often does not allow models to arrive at realistic 

probability estimates.  Calibration is therefore an important step to account for the 

aforementioned biases, to enable the cross-model comparisons (i.e. poly-

pharmacological assessment) of probability estimates across the proteome. 

 

Algorithmic behavior is a further factor which influences both the output probability 

range and distribution of the ‘raw’ probability estimates generated. For example, 

Support Vector Machines (SVMs) provide no direct support for probability estimates 

associated with every output prediction, and consequently require additional work to 

convert the decision function into interpretable probability estimates31, 32. Naïve Bayes 

generates posterior probabilities populating extreme regions of the probability scale 

(very high or low values) due to repeated multiplications over conditional feature 

probabilities33, 34. Conversely, Random Forests bias predictions toward the midpoint 

when the predicted fraction of classes across the underlying trees are employed as 

probability estimates, and extreme values can only be achieved when an exceptionally 

high proportion of trees predicts either label35, 36. Deep neural networks are also more 

often poorly calibrated compared to a decade ago, due to overfitting from increased 

application of depth, width, weight decay, and application of Batch Normalization 

techniques, which manifest in probabilistic error rather than classification error37, 38. 

 

The posterior probabilities from the aforementioned methods are hence often poor 

estimates of the actual likelihood of a positive bioactivity prediction if used directly in 
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this way39, 40. Despite this, the assessment of calibration performance receives little 

attention in the field41. The current study will hence explore the application of existing 

probability calibration methods to the area of in silico target prediction, which aim to 

better calibrate the raw estimates of the actual probability of a positive bioactivity 

prediction42. This topic should not be confused with applicability domain (AD) 

estimation, which instead aims to identify when the assumptions imposed by a model 

are fulfilled, presenting sufficient evidence to make a prediction at all43-45. For example, 

approaches such as Conformal Prediction (CP) generate prediction intervals that are 

guaranteed to be valid in accordance to a user-set confidence level (a confidence level 

of 0.8 means that the conformal predictor will commit, at most, 20% errors)46, 47. This 

however needs to be contrasted with probability calibration or probability ‘scaling’ 

(which is the topic of the current work), which aims to address the question of obtaining 

accurate likelihoods of predictions, based on previous observations given in a data set. 

 

In this study, we explore three different scaling methods as an approach to improve 

algorithm output, namely a parametric approach based on Platt’s Sigmoid Scaling32, 

and two non-parametric approaches, namely Isotonic Regression Scaling48 and Venn-

ABERS Predictors49. The advantages, disadvantages and previous applications of 

these methods are summarized in Table 1 and will be discussed in more detail in the 

following. 

 

Platt (Sigmoid) Scaling (PS) is a method employed to calibrate the probabilistic output 

of a base estimator to better reflect a confidence in a prediction, and it was initially 

developed to generate interpretable outputs from SVMs,32 but it is also applicable to the 

output of other machine learning methods. This procedure uses a cross validation split 

of the dataset and, for each split, employs the base estimator trained on the training 

samples to generate calibration predictions for the test set, as shown in Figure 1. A 

sigmoidal curve is then fitted to the distribution of the resulting base predictor 
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probabilities and the corresponding ground truth likelihood (i.e. the actual observed 

fraction of actives at a given base estimator probability bin). For each new input, query 

probabilities are then obtained and averaged across all folds to give an output 

probability estimate50. PS has been previously employed (and reported to provide valid 

estimates) for cytotoxicity prediction51, and to enable the successful comparison of 

probability estimates for acute toxicity prediction that were generated from a range of 

different machine learning algorithms52. 

 

Isotonic Regression Scaling (IR) uses the same cross-validation approach and 

interpolation to calibration as PS; however it employs a non-parametric approach based 

on IR when fitting the curve to the calibration data48. Overall, IR is preferable for non-

sigmoid calibration curves and in situations where large amounts of data are available53, 

whilst PS has been shown to perform better in cases where there is limited calibration 

data (smaller numbers of ligand-target data points), where IR tends to overfit16, 54. 

Datasets with limited number of data points are relatively frequent in target prediction, 

as outlined above, and hence our initial expectation was that this trend would also be 

observed in the current study. 

 

The final type of calibration method explored in this study are Venn–ABERS (VA) 

predictors, which are based on the idea of IR, though they apply this technique within 

the framework of Venn prediction49, which are a non-parametric approach related to the 

Conformal Prediction (CP) framework48, 55, 56. While CP methods produce valid region 

predictions and predicted labels (i.e. a region that contains the true target prediction 

with a pre-defined probability), Venn predictors produce valid probabilistic predictions57. 

In this scenario, the IR is for every data point to two series of bioactivity labels, assuming 

either of the activity labels (i.e. that a compound is either active or inactive) of the new 

prediction object. This results in the production of two prediction values, p0 and p1, 

respectively (i.e. that a compound is truly active or inactive at a given threshold, 
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respectively) with the theoretical advantage of validity guarantees from Venn 

prediction58. VA has been successfully combined with conformal prediction to improve 

p-value interpretability57, prediction of metabolic (site-of-metabolism) transformations59, 

protein target prediction58, 60, iterative screening61 and cardio-vascular risk 

assessment62. 

 

Since in silico target prediction approaches assume the data are independent and 

identically distributed (i.i.d)63, 64, and given the previously discussed advantages and 

disadvantages of the methods explored, we expect that VA will generally produce 

superior calibration results. PS, based on both theoretical considerations and previous 

studies, is only expected to perform better than IR for smaller target classes with limited 

calibration data. 

 

In this study, we evaluated which method provides practically meaningful likelihoods of 

activity by exploring the impact of PS, IR and VA scaling on protein target prediction 

with Bernoulli Naïve Bayes (BNB), SVM and RF algorithms by combining the bioactivity 

data available in AstraZeneca ChemConnect65 with additional inactive compounds from 

PubChem66, 67. Performance was assessed using Stratified Shuffle Split (SSS) and 

Leave 20% of Scaffolds Out (L20SO) validation, which emulates a scenario when 

protein target prediction models are tasked with extrapolating bioactivity predictions to 

novel chemical space, which is what we would assume to be a realistic scenario in the 

drug discovery context.  
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Methods 

Sources of bioactivity data 

Active compound set from AstraZeneca Chemistry Connect 

The AstraZeneca Chemistry Connect65 repository, comprising both in-house data and 

public repositories such as ChEMBL68, was filtered for activity values (IC50/EC50/Ki/Kd) 

better than or equal to 10 μM from ‘binding’ or ‘functional’ human protein assays, as 

defined by Entrez Gene ID metadata. The 10 μM cut-off for activity specified here is in 

accordance with previously validated target elucidation methods9, 21, and assigns both 

marginally and highly active compounds to targets. Compounds were filtered for targets 

with greater or equal to 50 active compounds to ensure proteins encompassing 

sufficient chemical space are retained for training. The resulting dataset includes 

3,381,388 distinct compounds for 8,485,161 bioactivities spanning 2,112 targets. The 

targets modelled comprise a variety of target classifications; the three most populated 

target classes include 449 kinases, 222 GPCRs and 192 ion channels (see 

Supplementary Table 1). 

 

Inactive compound set from AstraZeneca HTS screens 

HTS bioactivity data from 420 in-house target-based screens (using Entrez Gene ID) 

spanning 400 targets was employed as a resource of inactive bioactivity data from 

AstraZeneca sources. These screens were filtered for activity values (Ki/Kd) worse than 

10 μM. A compound was defined inactive if it was measured at least twice as many 

times as inactive versus as active in cases of conflicting annotations. Inactive data has 

coverage for a wide variety of targets, including 88 different GPCRs, 77 kinases and 31 

proteases (see Supplementary Table 2 for details). The resulting compound-target 

pairs resulted in a data set of 189,965,064 inactive data points, comprising 2,827,651 

distinct compounds for 400 targets from in-house sources. 

 



10 
 

 

Inactive compound set from PubChem 

In order to also compile experimental inactive data points for proteins not covered in 

the internal AZ databases, the PubChem BioAssay69 database was also used for 

additional experimentally confirmed inactive data points, as in previous work9, via the 

EUtils and PubChem Power User Gateway (PUG) REST APIs69. This process involved 

the ‘ESearch’ and ‘ELink’ EUtils procedures to obtain a comprehensive list of all Entrez 

Gene ID’s (GIDs) and Protein ID’s (PIDs) associated to a given GID. These GIDs and 

PIDs were used in ‘ELink’ to identify binding and functional assays held in the NCBI 

BioAssay database. A subsequent ‘ELink’ step was used to link from these assays to 

Compound IDs (CIDs) with a compound-target ‘activity_outcome’ annotation that has 

been declared as ‘inactive’ by the contributors of the screening data. Finally, inactive 

CIDs were mapped to SMILES using the PubChem PUG REST service. The active set 

of target-compound pairs were retained when conflicting inactive PubChem bioactivities 

arose, since active data has been calculated from dose-response curves and hence 

deemed to be more reliable. This workflow resulted in 419,121,152 inactive data points 

for 768,014 distinct compounds, spanning 2,116 targets (see Supplementary Table 2 

for details) 

 

Sphere exclusion of putative negative bioactivity data and 

undersampling 

The in-house and PubChem inactive data sets were combined, yielding 598,923,798 

inactive data points spanning 2,161 targets. A Sphere Exclusion (SE) algorithm was 

applied to 1,500 targets with insufficient numbers of inactive data points (to achieve a 

ratio of 7:1 inactives to actives per target, or at least a minimum of 5,000 inactive data 

points) for both public and proprietary data, as in previous work30. In this procedure, 

compounds were randomly sampled from PubChem with a Tanimoto coefficient (Tc) 
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fingerprint (as outlined in the “Compound pre-processing and RDKit fingerprint 

generation” section) similarity to actives lower than 0.4 to obtain the desired number of 

compounds which could reasonably be assumed to be inactive against a given target. 

16,188,048 additional putative inactive compounds were sampled in this manner (see 

Supplementary Table 2 for details). Although model performance is not directly 

comparable if some models use experimental inactive compounds and some use 

putative inactive compounds from sphere exclusion (which artificially samples points 

further away from the actives and thereby inflates model performance), this sampling 

step is essential from the practical side (since data points for both active and inactive 

class are needed) and in order to have a large applicability domain in chemical space 

(there is benefit in having a reasonably large set of (putatively) inactive compounds 

available for training26). Conversely, 1,003 target models over the 5,000 absolute 

compound threshold required under-sampling of the inactive train set to achieve a 7:1 

maximum ratio of inactive to active molecules, as in previous work30. In this procedure 

compounds were randomly removed from the inactive set to achieve the desired ratio. 

The putative inactive compounds were combined with the sub-sampled inactive 

bioactivity datasets, producing a final dataset of 38,902,310 inactive labelled compound 

annotations. 

 

Supplementary Table 1 summarizes the sources and number of data points 

contributed by each data source and the large variance between the amount of 

bioactivity data available per family, with a median of 326,895 active compounds per 

family and standard deviation of 743,122. The table also outlines that different target 

families require putative sampling to obtain the 7:1 ratio to different extents (i.e. Nuclear 

Hormone Receptors (NHRs) had 822,412 inactive compounds added via sphere 

exclusion, versus Oxidoreducatases which do not require any additional sampling). 

Target classes also comprise different ratios of Murcko scaffolds to the size of the 

compound set (and hence different chemical diversity), such as GPCRs with a 
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compound:scaffold ratio of 3.3, versus Phosphatases with a ratio of 2.0. Overall this 

analysis outlines how the bioactivity data used for this work is highly imbalanced and 

biased, and shares the problems described in the introduction section. 

 

Compound pre-processing and RDKit fingerprint generation 

Compound structures were standardized using an in-house script70 to remove salts, 

normalize charges, tautomerize (to the most favorable form) and to remove duplicates. 

RDKit71 (Version 2019.03.4) was employed to remove structures without carbon, and 

to retain only compounds with atomic numbers between 21–32, 36–52, and greater 

than 53, and with a molecular weight between 100 and 1000 Da, to retain a small 

organic molecule-like chemical space. RDKit was used to generate 2,048-bit circular 

RDKit fingerprints72, with the radius set to 2. 

 

Outer and Inner Cross Validation Strategies 

Five-fold Stratified Shuffle Split (SSS) cross validation was employed as a first outer 

split (see Figure 1) using the function ‘StratifiedShuffleSplit’ in Scikit-Learn73 with 

‘n_splits’ set to 5 and the ‘train_size’ and ‘test_size’ set to 0.2 and 0.8, respectively. 

Leave 20% of Scaffolds Out (L20SO) cross validation was also employed (see Figure 

1) as a more challenging outer split strategy to explore scaling method performance 

when the i.i.d assumption is not valid. L20SO was performed using the 

‘GroupShuffleSplit’ function with ‘test_size’ of 0.2 and ‘n_splits’ set to 3, whilst suppling 

the ‘groups’ function of the ‘split’ method with the Murcko skeletons of training 

molecules using ‘GetScaffoldForMol’ followed by ‘MakeScaffoldGeneric’ in RDKit. 

 

Both splits above served as an outer fold to benchmark the scaling methods. Figure 1 

outlines how PS, IR and VA are then applied to the base classifiers for each SSS or 

L20SO split. That is, the outer train split (used for benchmarking) is subsequently split 
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three-fold to produce an inner split (for scaling). The default probabilities generated by 

the unscaled classifiers are recorded for comparison against the absolute or scaled 

probabilities. The calibration (reliability) curves were generated in Scikit-Learn using the 

class ‘calibration.calibration_curve’ with the number of bins set to 10. The Brier score 

loss, a metric to assess how well predictions are calibrated, was generated in Scikit-

Learn using the function ‘metrics.brier_score_loss’.  This score measures the ability of 

the model to distinguish between the classes across threshold bins through the mean 

squared difference between the predicted probability assigned to the classification 

items, and the actual outcome74, 75. Therefore, the lower the Brier score loss for a set of 

bioactivity predictions, the better the predictions are calibrated, where the best possible 

score of 0.0 represents that probability estimates are perfectly accurate and the lowest 

possible score of 1.0 outlines that the estimates are wholly inaccurate. 

 

Platt Scaling and Isotonic Regression Scaling using Scikit-learn  

Platt Scaling (PS) and Isotonic Regression Scaling (IR) were performed using the 

Scikit-Learn class ‘CalibratedClassifierCV’ with the ‘StratifiedShuffleSplit’ function used 

to split the (inner) folds, with (‘n_folds’) set to 3 whilst supplying the ‘sigmoid’ and 

‘isotonic’ method parameters, respectively. This function performs a three-fold cross 

validated calibration methodology on the training data and is kept constant in every run. 

The sigmoid or logistic function is fit to each fold, based on the generated probabilities 

from the base classifier trained on the train split and the true positive compound 

predictions from the test split. The protocol averages the interpolation for a given input 

compound based on the interpolated true positive rate between the sigmoid curves 

amongst all folds. 

 

Venn-ABERS Predictors 
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Venn-ABERS Predictors (VA) were trained using the Scikit-Learn class 

‘StratifiedShuffleSplit’ (as above), with the number of (inner) folds (‘n_folds’) set to 3. 

For each split, VA Scaling was performed as described in Vovk et al.,55 and 

implemented at https://github.com/ptocca/VennABERS using the training and test split 

of compounds and a base classifier. The output of this algorithm are two probabilities 

(p0 and p1), which can be interpreted as upper and lower boundary of probability 

estimates for an individual active or inactive prediction. While there is a value in having 

multi-probability predictions for individual classes, it is required for compatibility to 

compare a single point probability prediction for the purpose of comparing VA with PS 

or IR. We constructed a single point probability prediction (𝑃𝑖 ), for compound 𝑖,  from 

a multi-probability prediction that minimizes the ‘regret’ under a given loss function, as 

described in Toccaceli et al.58: 

𝑃𝑖 =  
𝑝1

1 − 𝑝𝑜 + 𝑝1
 

Equation 1 

 

Finally, the single point probabilities were averaged across all splits to produce a final 

VA probability, which was then comparable with the PS and IR methods. 

 

Target prediction methodology 

Bernoulli Naïve Bayes 

The Bernoulli Naïve Bayes (BNB) algorithms were trained using Scikit-Learn73 with the 

‘alpha’ values of 1.0 (selected from hyper-parameter optimization). The Bernoulli 

algorithm explicitly penalizes the non-occurrence of a feature indicative of protein target 

activity (i.e. negative evidence within the fingerprints when a 0-bit is interpreted as the 

absence of a fingerprint feature in a molecule). This base classifier was trained using 

the binary matrix of the active and inactive compound-target fingerprints on a per-target 
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basis. In this procedure, each model is trained for a single target using the active and 

inactive compounds annotated for that target. The output is a raw posterior probability 

from the ‘predict_proba’ function.  

 

Support Vector Machine 

Linear Support Vector Machines (SVMs) were trained in Scikit-Learn with the kernel set 

to linear (due to size and number of models and hence time to train) and with a ‘C’ 

penalty parameter of 1.0 and ‘class_weight’ set to ‘balanced’ (obtained from hyper-

parameter optimization). The raw output from the ‘decision_function’ in Scikit-Learn was 

normalised between 0 and 1 using the MinMax scaling algorithm in Equation 2, where 

𝑃(𝐶1, … . , 𝐶𝑛) is the probability vector output from the SVM for each compound 𝐶, 

and 𝑃𝑖  is a single point probability per-compound input. 

𝑃′(𝐶1, … , 𝐶𝑛) =  ∑
𝑃𝑖 −  min (𝑃(𝐶1, … , 𝐶𝑛))

max(𝑃(𝐶1, … , 𝐶𝑛)) − min (𝑃(𝐶1, … , 𝐶𝑛)

𝑛

𝑖=1

 

Equation 2 

 

Random Forest 

The Random Forest (RF) classifier was deployed using 100 for the number of Trees in 

Scikit-Learn, with the number of features and maximum depth set to ‘auto’ and the 

‘class_weight’ set to ‘balanced’. This base classifier was trained whilst providing the ‘fit’ 

method the ‘sample_weights’ of the ratio of active versus inactive compounds. The raw 

probability output from “predict_proba” is defined as the mean predicted fraction of class 

samples in a leaf across the Trees73. 
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Results & Discussion 

Calibration results from five-fold cross validation 

We first investigated the desired behavior of each scaling methodology and contrasted 

this with the behavior of a perfectly calibrated classifier, when positive prediction scores 

generated by an algorithm perfectly encapsulate the number of positive instances 

obtaining that score. This is done by calculating the fraction of true active data points 

(ground likelihood) retrieved as a function of probability estimate, also known as a 

calibration (reliability) plot.  

  

Results from the calibration plot for Stratified Shuffle Split (SSS) are shown in Figure 2 

with the overall Brier score loss for each line outlined in Table 2. Our findings show that 

VA produces the calibration points closest to perfect calibration (dashed line), and 

hence performs with the lowest (best) overall Brier score loss of 0.050, 0.043 and 0.033 

for the BNB, SVM and RF, respectively. In context, a RF Brier score of 0.033 represents 

the average mean squared error of the true label probabilities across probability 

estimates (i.e. (0.825-1)2 in this case). This means the scaled probability outputs are on 

average within 0.175 of the ideal values across the estimates generated and probability 

bins evaluated, which can be contrasted with the BNB estimates that are within 0.245 

of the ideal values. 

 

The predictions from VA can be considered underconfident for the SVM and RF 

algorithms within higher probability bins above 0.5, since the fraction of active 

compounds is higher than the forecast probabilities (i.e. perfect probabilities would be 

higher). In contrast, the PS and IR methods represent overconfident predictors, where 

the highest fraction of actives are disproportionately distributed within the larger 

probability estimate bins. The latter two methods hence obtain higher (worst) overall 

Brier loss scores, where PS obtained values of 0.072, 0.056 and 0.046 for the BNB, 
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SVM and RF methods, whilst IR obtained values of 0.067, 0.053 and 0.047, 

respectively. Hence, we can conclude that VA produces the best calibrated estimates 

for compound activity, despite the fact that this method still produces under-confident 

predictions in some cases. 

 

We further explored the per-target Brier score loss for the scaling approaches across 

the 2,112 protein target models, since due to different distributions and numbers of data 

points per model we expected to see differences in behavior between them. Results 

from this analysis are shown in Table 3 and Figure 3, and show that VA performs with 

the lowest mean Brier score loss (shown in bold) of 0.029±0.017, 0.025±0.012 and 

0.023±0.013 (i.e. average of Brier score loss for 2,112 targets ± the standard deviation), 

across the range of BNB, SVM and RF models, respectively. There is hence little 

difference between VA performance across algorithms, since RF Brier score loss shows 

that scaled probability outputs are within 0.17 on average of the ideal probability 

estimates whilst BNB estimates are also within 0.15 of the ideal values. 

 

Overall VA improved the baseline BNB, SVM and RF Brier scores by a margin of 

0.01±0.02, 0.108±0.024 and 0.001±0.001 (± standard deviation across 2,112 targets) 

respectively, which in context means that output probability estimates are now 

0.100±0.145, 0.320±0.155 and 0.032±0.032 closer to ideal values across the probability 

scale bins. In comparison, the PS and IR perform with inferior Brier score loss, with 

degraded performance compared to the base estimates of BNB and RF, by a Brier 

score loss margin of 0.018 and 0.013, and 0.024 and 0.024, respectively. Hence, we 

can conclude that VA produces the superior probability estimates on a per-target basis, 

compared to all other methods tested in this study. 

 

To better understand why Brier score loss may be degraded by scaling we next 

analyzed how within-class changes in probabilities are assigned by the scaling methods 
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applied. To this end, we further explored the mean, median and standard deviation of 

the per-compound probability estimates assigned to all compounds across all protein 

target models after calibration in Table 4. If probabilities are inflated for inactive 

compound predictions, this would manifest in a high proportion of false positive 

compounds within higher probability estimate bins. The table numerically corroborates 

the trend of PS and IR overconfidence, since inactive compound probability estimates 

(which should be as low as possible) are increased from the BNB default of 0.057±0.204 

(i.e. mean of per-compound probability estimates across all targets ± the standard 

deviation) to 0.175±0.175 and 0.147±0.192, for PS and IR respectively. RF also exhibits 

inflation for the probability estimates of inactive compounds, with an increase from the 

base estimator of 0.066±0.106 to 0.117±0.165 and 0.110±0.174 for PS and IR, 

respectively. Furthermore, the distribution of change as a function of base predictor 

probability estimate, shown in Supplementary Figure 1 (Bland-Altman plot included in 

Supplementary Figure 2), outlines how the PS and IR probabilities are particularly 

inflated for inactive compound predictions in the lower half of the default probability 

scale (below 0.5). Taken together, these findings outline that both the PS and IR 

approaches assign enlarged probability estimates to inactive compounds, which hence 

manifests in a higher false positive rate. 

 

VA alters the probabilities assigned to compounds to a lesser (more conservative) 

extent, for compounds with initially low ‘raw’ probability estimates compared to both PS 

and IR. In comparison, the mean probability estimates for the inactive compounds are 

actually often decreased (which is favorable behavior in this context), since the 

calibrated scores of 0.046±0104 are lower than the mean RF base estimates of 

0.066±0.106. More specifically, 66.7% of the inactive probability estimates are 

decreased (see Supplementary Table 3 for the ∆probability analysis). This trend is 

further illustrated by the distribution of markers around the VA curves across all 

machine learning methods in Supplementary Figure 1, and (in comparison to PS and 
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IR) do not often inflate probabilities within in the first half of the probability ranges as 

shown in the Bland-Altman plot (Supplementary Figure 2). Hence VA predictors 

assign lower probability estimates to inactive compounds, which manifests in a lower 

false positive rate. 

 

We can hence conclude that VA provides the relatively best Brier score loss across the 

Stratified Shuffle Split (SSS) tests performed, where probability estimates are better 

calibrated, and scores more accurately reflect the actual distribution of compounds with 

those scores across the breadth of models evaluated. We hence expect that VA will 

also produce superior results when applied to an external distribution of compounds 

with scaffolds distinct from the training set, whilst PS and IR may confound performance 

due to the larger probability estimates assigned to input compounds. This is the analysis 

we have performed in the next step. 

 

 

Calibration results from leave 20% of scaffolds out validation (L20SO) 

The calibration plot obtained from the fraction of active data points retrieved as a 

function of probability estimate for the Leave 20% of Scaffolds Out (L20SO) validation 

which is hence a more difficult classification task, resulting in lower positive prediction 

scores for true positive compounds and a violation of the underlying i.i.d assumption, 

since the chemical space of test compounds are further from training compounds. 

 

Results from the analysis are shown in Figure 4, with the corresponding overall Brier 

score loss for each method outlined in Table 2. The second column of the table sows 

Brier score loss is higher (worse) compared to the equivalent scores obtained during 

SSS benchmarking, with scores ranging from 0.074 (for the base BNB classifier) to 

0.039 (for the VA method and RF classifier), which is expected when applying models 

to a distribution of chemical scaffolds distinct from training data.  
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In a similar manner to SSS, L20SO validation Figure 4 highlights that VA generates a 

calibration curve closest to optimal calibration, with the lowest Brier score loss of 0.054, 

0.048 and 0.039, for the BNB, SVM and RF, respectively. The output generated by the 

PS and IR methods is again distinct from VA, with inferior Brier score loss of 0.075, 

0.058 and 0.048 and 0.070, 0.055 and 0.049, respectively (for methods in the same 

order as before). In a similar manner to SSS benchmarking, both PS and IR have 

calibration lines above the perfect calibration, characteristic of overconfident 

algorithms. Hence, we conclude that VA produces the best probability estimates of the 

methods benchmarked here, also when applied to an external dataset of chemistry. 

 

We next investigated the per-target performance of the different methods, the results 

of which are shown in Table 3. It can be seen that that VA performs with the relatively 

best mean Brier score loss on a per-target basis, with the lowest scores of 0.033±0.023 

(mean of the Brier score loss across the 2,112 models ± standard deviation), 

0.032±0.02 and 0.028±0.019 for the BNB, SVM and RF, respectively. Only 27% of 

inactive VA predictions showed an increase (∆probability analysis in Supplementary 

Table 3), with mean inactive probability estimates of 0.043±0.101. The base estimate 

as a function of calibrated probability in Supplementary Figure 3 and the absolute 

change in probability estimates after calibration, shown Supplementary Figure 4, 

further outline this trend. Similar to SSS, the figures show the conservative nature of 

the VA predictors to assign lower probability estimates within the lower range of the 

probability scale (between 0.0 and 0.5) with a higher proportion of markers below zero. 

 

Results from the per-compound probability estimates, shown in Table 4, outline that 

the PS and IR methods inflate initially low inactive RF compound probability estimates 

(across all compounds and targets) during L20SO validation, consistent with the SSS 

result. Conversely, the RF algorithm obtained mean probability estimates of 
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0.109±0.161 for PS and 0.103±0.171 for IR, compared to the default algorithm 

estimates of 0.062±0.102. Hence, taken together we have shown that PS and IR 

methods actually degrade the quality of the probability estimates compared the base 

estimator, due to the inflation of the probability estimates generated. 

 

We can hence conclude that VA predictors perform with smaller Brier score loss, 

indicating the best calibration both during SSS and during L20SO, and that VA scaling 

also performs with optimal Brier score loss for extrapolation to novel chemical scaffolds 

(violation of the i.i.d assumption). Therefore, VA scaling should be employed when 

extrapolating predictions to novel chemical space (i.e. new scaffolds and chemical 

features), since the probability estimates are closer to the perfect calibration and do not 

exhibit the same trend to assign over-confident probability estimates, compared to PS 

and IR. 

 

Effect of model size on the performance of the scaling algorithms 

Since calibration set size has been shown to influence the performance of the various 

scaling algorithms (through overfitting or a lack of sufficiently distributed calibration 

points)16, we next explored the effect of target training set size as a function of the per-

target Brier score loss for the Random Forest (RF) models (the most relatively optimal 

algorithm from SSS and L2SO validation based on Brier score loss). Target calibration 

set sizes were split into four bins; active training sizes between 50 and 100, between 

100 and 500, between 500 and 1000, and larger than 1000, which are henceforth 

referred to as bins one, two, three and four, respectively.   

 

Results from this analysis are shown in Figure 5, with the mean, standard deviation 

and median scores provided in Supplementary Table 4. Overall, VA achieves the 

lowest Brier score loss performance throughout all binned class sizes, with scores of 

0.008±0.006 (mean of model scores within the bin ± the standard deviation), 
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0.020±0.015, 0.033±0.028 and 0.037±0.025, for bins one through four, respectively 

(illustrating that probability estimates are 0.090, 0.144, 0.182 and 0.193 closer to ideal 

probability estimates). This supports the view that there is hence a positive impact on 

the predictivity of VA scaling at any training set size. We conclude in particular that VA 

is applicable for even the smallest datasets, containing 50 to 100 calibration instances. 

 

Converse to the findings in previous literature (which were performed on different 

datasets48, 58) which outlined PS outperforms IR for small calibration sets, our results 

indicate PS and IR exhibit relatively similar performance for models within the smaller 

training set sizes. For example, the PS and IR approaches achieved a mean Brier score 

loss 0.045±0.049 and 0.047±0.050 for bin one and 0.051±0.049 and 0.049±0.048 for 

bin two, respectively. Taken together, these findings support the view that IR overfitting 

on small amounts of calibration data is no more detrimental to performance than 

enforcing a PS sigmoidal form to calibration data on small data sets. Overall, PS and 

IR actually degrade Brier score loss compared to the RF base estimator (with scores of 

0.009±0.006, 0.021±0.014 and 0.036±0.026, respectively within the first three bins), 

and hence we conclude (on the datasets employed in this work, which due to size and 

diversity we would however assume to be representative of large-scale target prediction 

tasks) that PS or IR should not be applied to small bioactivity training datasets when 

using the BNB and RF algorithms. 

 

The choice of scaling method does not produce significantly different Brier score loss 

performance for the default RF, PS and IR methods for the largest calibration set in bin 

four (1000+ active compounds), with a similar overall distribution obtained across the 

three scaling methods. Here, the base estimator, PS, IR and VA methods obtain scores 

of 0.041±0.030, 0.046±,0.027, 0.045±0.026 and 0.037±0.025, respectively. Although 

VA hence performs still with the lowest Brier score loss of the methods tested, we 

conclude that the underlying probability estimates from the base algorithm are overall 
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already more reliable for larger training set sizes, leading to overall less impact of 

scaling or the particular method chosen (though VA scaling still performs better by a 

small margin). 

 

We have shown here that VA generates the most accurate predictions for both smaller 

and larger sized models (to somewhat different extents), and thus they are better suited 

to calibrating for the actual probability of activity for either the active or inactive class, 

regardless of calibration set size. 

 

Uses for the multi-point probabilities from the Venn-ABERS predictors 

We next examined how to best use the multi-point probabilities p0 and p1 produced 

from the VA predictors during L20SO validation for the RF, beyond combining both 

values into a single probability value using Equation 1. The rationale is that probabilities 

p0 and p1 provide information for class membership of the inactive and active class, 

respectively, which we could hence use to provide an estimate for the expected 

uncertainty of the resulting model. Our results, depicted in Figure 6 and available in 

Supplementary Table 5, show the relationship between the p0, p1 and single point 

probabilities compared with the similarity to nearest neighbor compounds (based on 

circular RDKit (ECFP_4) Tanimoto coefficient (Tc) fingerprint similarity between test 

and training set). The Tc bins 0.0-0.25, 0.25-0.5, 0.5-0.75 and 0.75-1.0 are henceforth 

referred to as bins one, two, three and four within this section, respectively. Our results 

show a large discordance (margin) between the p0 and p1 values toward the center of 

the Tc similarity scale, with a mean discordance of 0.014±0.031 and 0.011±0.029 

(mean compound prediction discordance within that bin across all L20SO predictions ± 

the standard deviation) for Tc bins two and three, respectively. This region 

encompasses testing compounds which are neither similar nor dissimilar to the training 

set, and which hence produce unconfident RF predictions since the RF classifier would 

assign a probability estimate of 0.5 when neither activity label is certain (i.e. 50% of the 
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Trees in the Random Forest predict the compound as active and inactive, as outlined 

in Table 1). Conversely, there are smaller margins between the p0 and p1 values for 

the low and high similarity bin one and four with mean discordances of 0.011±0.029 

and 0.005±0.016, respectively.  This is hence an indicator for more confident test cases, 

when a compound is either likely to be active due to similarity to an active compound, 

and vice-versa, when an input compound is highly likely to be inactive due to 

dissimilarity to actives in the training set. Taken together, these findings demonstrate 

that scaling-derived p0 and p1 values are linked to conceptual chemical meaning, i.e. 

chemical structure similarity to the input data of the models generated. Therefore, we 

propose that this probability discordance renders itself to predicting the uncertainty of 

subsequent model predictions. 
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Summary 

This work explores the application of three different scaling techniques, namely Platt’s 

(Sigmoid) Scaling (PS), Isotonic Regression Scaling (IR) and Venn-ABERS Predictors 

(VA) for scaling prediction scores obtained from ligand-target prediction using the Naïve 

Bayes (NB), Support Vector Machines (SVMs) and Random Forest (RF) algorithms. 

Data available at AstraZeneca and PubChem were combined and calibration 

performance assessed using Stratified Shuffle Split (SSS) and a Leave 20% of 

Scaffolds Out (L20SO) methodology. Out of the three methods tested, we found that 

the VA scaling method provided the best probability estimates of during both SSS and 

L20SO validation, obtaining an overall (aggregated across all compounds and targets) 

Brier score loss of 0.050, 0.043 and 0.033 for the BNB, SVM and RF during SSS, 

respectively, and 0.054, 0.048 and 0.039 during L20SO, illustrating that the output 

probabilities are better reflected in the actual distribution of active compounds. VA were 

also shown generated better estimates on a per-target basis, for both smaller and larger 

sized models, and thus they are better suited to calibrating for the actual probability for 

compound activity regardless of the amount of calibration data available. In comparison, 

the calibration analysis for PS and IR showed class membership estimates were over-

confident and further from perfect calibration (and even in many cases degrade 

calibration performance compared to the base classifier for the BNB and RF). A final 

analysis into the scaling-derived p0 and p1 values from VA highlighted how the margin 

between these values could be used to provide an estimate for the anticipated 

prediction [un-]certainty of the model for a particular data point. Overall, this analysis 

hence provides a step towards scaling model output in in silico target prediction to arrive 

at more reliable class probability estimates. 
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Figures 

  
Figure 1. Flow chart of the methods to calibrate models and determine model 
performance. Stratified Shuffle Split (SSS) and Leave 20% of Scaffolds Out (L20SO) 
validation were used to split the training data into outer training and test splits. The outer 
train set was split using three-fold stratified cross validation for calibration. The inner 
train and test split were used to train and calibrate each model. Models were finally 
benchmarked using the test set from SSS or L20SO, using the calibrated model, with 
calculation of the Brier score loss. 
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Figure 2. Calibration curves for the Stratified Shuffle Split (SSS) cross validation 
for Bernoulli Naïve Bayes (BNB), Support Vector Machines (SVMs) and Random 
Forests (RF). Venn-ABERS (VA) (red) achieves a reliability curve closest to a perfectly 
calibrated model across all classifiers tested, where the calibrated probabilities are 
better reflected in the true distribution of active compounds. In comparison, Platt scaling 
(PS) (yellow) and Isotonic Regression (IR) (green) methods produce overconfident 
calibration lines (above perfect calibration).  
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Figure 3. Per-target (n=2,112) Brier score loss of the Platt Scaling (PS), Isotonic 
Regression (IR) and Venn-ABERS (VA) scaling methods across different machine 
learning methods during Stratified Shuffle Split (SSS) and Leave 20% of Scaffold 
out (L20SO) cross validation. The Bernoulli Naïve Bayes (BNB), Linear Support 
Vector Machine (SVM) and Random Forest (RF) algorithms show different behavior in 
response to calibration. Our results show VA produces the most optimal per-target Brier 
score loss (lower scores are better) across the BNB, SVM and RF. VA achieved higher 
respective scores during L20SO, due to more challenging tasks of extrapolating to 
novel chemical scaffolds. PS and IR often even degrade Brier Score Loss for SSS and 
L20SO when compared to the base scores generated for the BNB and RF methods. 
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Figure 4. Calibration curve for Leave 20% Scaffolds Out (L20SO) validation for 
Bernoulli Naïve Bayes (BNB), Support Vector Machines (SVMs) and Random 
Forests (RF). It can be seen that all curves are further from the prefect calibration 
scenario, due to the more difficult classification task of extrapolating to novel chemical 
space. VA produces the relatively most optimal calibration curves of the methods 
tested. PS and IR result in overconfident calibration curves (above the diagonal), 
consistent with our previous Stratified Shuffle Split (SSS) results. 
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Figure 5. Brier Score Loss as a function of training set size and scaling methods 
using the Random Forest (RF) algorithm (which showed overall best performance 
based on preceding investigations). VA maintains performance across all target 
training set bin sizes, even in case of lower numbers of training points. In comparison, 
PS and IR exhibit degraded performance for smaller bins containing 50-100 and 100-
200 data points in the training set. IR performs with similar performance to PS for the 
50-100 data point bin, and hence IR overfitting on small amounts of calibration data is 
no more confounding than the sigmoidal assumption of calibration data form imposed 
by the PS approach for target prediction (which is different from previous studies, which 
were however performed on different data sets). 
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Figure 6. Analysis of p0, p1 and single point probabilities obtained from Venn-
ABERS scaling across nearest neighbor train-test Tanimoto Coefficient (Tc) 
similarity bins. During L20SO validation we observe that the discordance (margin) 

between the p0 and p1 derived values are higher for intermediate (central) similarities 
for the similarity bins 0.25 to 0.5 and 0.5 to 0.75, resulting in less confident predictions. 
Conversely, the very dissimilar and similar bins 0.0-0.25 and 0.75-1.0 have lower p0 

and p1 discordance. Hence, we propose that p0 and p1 values could be used to provide 
an indication of prediction (un-)certainty.
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Table 1. Classifiers and scaling methods used in this work, with their advantages, disadvantages and exemplary previous applications. 
Algorithm/ 
Scaling 

Core Methodology 
for class probability 

Advantages Disadvantages 
Example previous 
applications 

Bernoulli Naïve 
Bayes (BNB) 

 Class conditional 
posterior probability 

 
(default) 

 Likelihood output populates extreme regions of the 
probability scale near 0 and 1 

9, 21, 25, 39, 52, 76 

Linear Support 
Vector Machine 
(SVM) 

 Signed distance of 
prediction to the 
hyperplane 

(default) 
 Decision function scale ranges from negative to 

positive values, with many close to the mid-point 
due to the margin property of the hinge loss 

8, 26, 31, 63, 77, 78 

Random Forest 
(RF) 

 Mean predicted 
fraction of active 
class samples in a 
Leaf across all the 
Trees in the Forest 

(default) 

 Difficulty making predictions near 0 and 1, since 
the underlying base models variance biases 
predictions that should be near 0 or 1 away from 
these values14 

10, 11, 19, 25, 39, 52 

Platt Scaling 
(PS) 

 Parametric 
approach using a 
sigmoidal curve 

 Applicable for small 
calibration sets 

 well suited to sigmoidal 
form 

 Parametric form assumes a sigmoid sigmoidal 
distribution 

 Assumed symmetry, which is not true for highly 
unbalanced bioactivity data 

 Initially developed for 
SVMs32 
toxicity prediction to 
ensemble predictions3, 52 

Isotonic 
Regression 
(IR) 

 Non-parametric 
approach using 
isotonic curve 

 Non-parametric method 
makes no assumption 
on curve form 

 Requires large numbers of calibration points 

 Tendency to overfit 
 Target prediction58 

Venn-ABERS 
(VA) 

 Non-parametric 
approach using 
multi-probabilistic 
Venn Predictors 
based on IR 

 Validity guarantees 
provided by Venn 
predictors 

 Susceptibility for IR to 
overfit is reduced 

 p0 or p1 probability intervals must be combined 
into a single prediction for comparison between the 
scaling methods 

 Combined with conformal 
prediction to improve p-
value interpretability57. 

 Metabolic transformation 
prediction59 and target 
prediction58, 60, 79 
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Table 2. Overall Brier score loss performance during Stratified Shuffle Split (SSS) and Leave 20% of Scaffolds Out (L20SO) validation. 
Results from the Brier score loss performance highlights that Venn-ABERS (VA) provides superior probability estimates (lower values in bold) 
compared to both the Platt Scaling (PS) and Isotonic Regression (IR) across all the algorithms tested, during both SSS and L20SO validation. 
Overall the effect of PS and IR scaling is minor overall except for the SVM. PS and IR methods perform with inferior performance than the baseline 
for the RF and BNB, which is due to the increased probabilities for inactive compounds, resulting in a larger number of false positive predictions. 
 

 

  
Learner Scaling 

Overall Brier score loss 
SSS 

(n=58,777,503) 
L20SO 

(n=23,533,709) 

BNB 

Base 0.069 0.074 

PS 0.072 0.075 

IR 0.067 0.070 

VA 0.050 0.054 

SVM 

Base 0.156 0.158 

PS 0.056 0.058 

IR 0.053 0.055 

VA 0.043 0.048 

RF 

Base 0.035 0.042 

PS 0.046 0.048 

IR 0.047 0.049 

VA 0.033 0.039 
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Table 3. Per-target Brier score loss performance during Stratified Shuffle Split (SSS) and Leave 20% of Scaffolds Out (L20SO) validation 
across all targets modelled in this work. Results from the Brier score loss performance highlights that Venn-ABERS (VA) provides superior 
probability estimates (highlighted in bold, lower values) compared to both the Platt Scaling (PS) and Isotonic Regression (IR) across all the 
algorithms tested, during both SSS and L20SO validation. The PS and IR methods perform with inferior performance, which is due to the increased 
probabilities for inactive compounds, resulting in false positive predictions.  

Learner Scaling 
SSS per-target Brier score loss (n=2,112) L20SO per-target Brier score loss (n=2,112) 

Mean 
Standard 
Deviation 

Median Mean 
Standard 
Deviation 

Median 

BNB 

Base 0.039 0.052 0.02 0.044 0.053 0.028 

PS 0.057 0.053 0.04 0.058 0.051 0.044 

IR 0.052 0.049 0.037 0.053 0.048 0.04 

VA 0.029 0.032 0.017 0.033 0.033 0.023 

SVM 

Base 0.133 0.056 0.129 0.144 0.058 0.139 

PS 0.046 0.052 0.025 0.046 0.05 0.028 

IR 0.042 0.049 0.022 0.043 0.047 0.026 

VA 0.025 0.032 0.012 0.032 0.034 0.02 

RF 

Base 0.024 0.029 0.014 0.03 0.029 0.022 

PS 0.048 0.053 0.025 0.047 0.05 0.027 

IR 0.048 0.053 0.026 0.048 0.05 0.028 

VA 0.023 0.028 0.013 0.028 0.029 0.019 



37 
 

Table 4. Analysis of the probability estimates assigned to compounds across all protein target models. Venn-ABERS (VA) assigns the 
relatively most optimal probability estimates to compounds, with lower probability estimates in the mean and median columns for inactive 
compounds, whilst maintaining comparatively high estimates for the active compounds, when compared to the base score, as well as Platt scaling 
(PS) and Isotonic Regression (IR) methods, during both Stratified Shuffle Split (SSS) and Leave 20% Compounds Out (L20SO) validation.  Overall, 
VA is more conservative in its predictions, whilst PS and IR may generate overconfident predictors with higher false positive rates. Standard 
deviations are large due to the deviation between probability estimates assigned to compounds across the range of target models. Large variances 
in scores are observed due to the different number and diversity of data points in every bioactivity class, as well as a different ratio of active to 
inactive data points.  

Scaling Classifier Label 
SSS (n=58,777,503) L20SO (n=23,533,709) 

Mean Std. Dev Median Mean Std. Dev Median 

Base 

BNB 

Inactive 

0.057 0.204 0.000 0.057 0.205 0.000 

SVM 0.388 0.122 0.384 0.389 0.127 0.384 

RF 0.066 0.106 0.020 0.062 0.102 0.020 

BNB 

Active 

0.826 0.354 1.000 0.803 0.372 1.000 

SVM 0.669 0.120 0.678 0.671 0.130 0.681 

RF 0.811 0.266 0.950 0.746 0.278 0.870 

PS 

BNB 

Inactive 

0.175 0.175 0.119 0.171 0.175 0.116 

SVM 0.131 0.188 0.038 0.121 0.187 0.028 

RF 0.117 0.165 0.046 0.109 0.161 0.039 

BNB 

Active 

0.815 0.281 0.957 0.796 0.299 0.955 

SVM 0.860 0.224 0.975 0.841 0.246 0.973 

RF 0.887 0.232 0.997 0.858 0.258 0.995 

IR 

BNB 

Inactive 

0.147 0.192 0.063 0.145 0.192 0.061 

SVM 0.122 0.182 0.038 0.113 0.180 0.030 

RF 0.110 0.174 0.028 0.103 0.171 0.024 

BNB 
Active 

0.835 0.267 0.993 0.815 0.280 0.986 

SVM 0.866 0.233 0.989 0.843 0.258 0.987 
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RF 0.889 0.229 0.999 0.860 0.251 0.995 

VA 

BNB Inactive 0.067 0.018 0.124 0.066 0.017 0.124 

SVM 0.066 0.015 0.125 0.065 0.011 0.133 

RF 0.046 0.009 0.104 0.043 0.007 0.101 

BNB Active 0.766 0.970 0.324 0.741 0.953 0.335 

SVM 0.791 0.950 0.285 0.778 0.959 0.305 

RF 0.840 0.993 0.284 0.798 0.978 0.307 
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Supplementary Table 

Supplementary Table 1. Description of the bioactivity training data across 
different protein target families. There are biases toward the Kinase, GPCR and 
Ion Channel protein families, due to the wealth of bioactivity data for these target 
classes. Annotations are based on in-house methods. 

Classification 
#Target 
models 

#Actives #Inactives 

#Sphere 
Exclusion 
(Putative) 
Inactives 

#Murcko 
Skeleton 
Scaffolds 

Ratio 
compounds: 

scaffolds 

Kinase 449 2,401,875 6,358,405 1,410,230 3,513,304 2.9 

Other 380 889,769 2,986,157 1,212,943 2,063,307 2.5 

GPCR 222 2,139,718 4,314,921 1,483,299 2,395,925 3.3 

Ion Channel 192 667,823 1,322,885 1,431,875 1,271,155 2.7 

Transporter 164 336,593 690,023 694,637 704,208 2.4 

Hydrolases 150 326,895 1,078,919 539,106 774,500 2.5 

Protease 144 642,495 1,580,399 668,626 1,016,426 2.8 

Oxidoreductases 132 434,312 900,535 873,930 822,412 2.7 

Transferases 118 216,032 781,959 391,271 576,936 2.4 

Lyases 39 64,842 107,988 273,027 187,327 2.4 

NHR 34 266,440 851,785 - 351,058 3.2 

Phosphatase 31 22,096 172,054 29,746 110,765 2.0 

Ligases 22 18,422 113,739 49,836 86,343 2.1 

Isomerases 20 22,810 118,656 41,909 81,915 2.2 

Lipase 15 35,039 83,246 92,334 83,110 2.5 
  



40 
 

Supplementary Table 2. Sources of bioactivity data and the number of data points 
extracted. Intermediate steps of inactive data extraction are not shown in bold. AZ 
comprises both in-house and public data, so little as little data bias is introduced as 
possible, whilst maintaining the largest training set possible. 

Data source Label 
Number of 
data points 

Number of 
targets 

Requires 
subsampling? 

AZ ChemConnect 
(ChEMBL version 26 
and in-house data) 

Active 8,505,197 2,112 No 

AZ HTS Screens  Inactive 189,965,064 400 Yes 

PubChem Inactive 419,121,152 2,116 Yes 

Sphere Exclusion 
(SE) 

Inactive 16,188,048 1,003 Yes 

Final Inactive 
Dataset 

(after sub- sampling) 
Inactive 38,902,310 2,112 No 
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Supplementary Table 3. Effect of scaling compared to the base algorithm scores. 
VA assigns conservative probability estimates outlined by a higher percentage of 
probability estimates in the “Decreased” and “No Change” columns, compared to PS 
and IR, which over-inflate probabilities for the RF during SSS and L20SO (with a higher 
proportion of “Increased” probability estimates compared to the base model). Absolute 
numbers of data points are shown in brackets. 
 

Lab
el 

Le
arn

e
r 

Scalin
g  

SSS (n=58,777,503) L20SO (n=23,533,709) 

Decreased No Change Increased Decreased No Change Increased 

In
active

s 

B
N

B
 

PS 
16.79% 

(7,728,517) 
73.99% 

(34,066,972) 
9.22% 

(4,244,912) 
16.67% 

(3,075,300) 
74.03% 

(13,655,582) 
9.29% 

(1,714,359) 

IR 
47.61% 

(21,919,701) 
13.15% 

(6,053,449) 
39.24% 

(18,067,251) 
48.03% 

(8,859,512) 
12.27% 

(2,262,334) 
39.7% 

(7,323,395) 

VA 
51.37% 

(23,649,466) 
7.45% 

(3432144) 
41.18% 

(18,958,791) 
50.77% 

(9,364,792) 
8.62% 

(1,590,161) 
40.61% 

(7,490,288) 

SV
M

 

PS 
54.25% 

(24,976,775) 
0.24% 

(112,227) 
45.51% 

(20,951,399) 
54.04% 

(9,968,680) 
0.24% 

(44,773) 
45.71% 

(8,431,788) 

IR 
53.72% 

(24,733,488) 
0.26% 

(120,662) 
46.02% 

(21,186,251) 
53.53% 

(9,873,319) 
0.25% 

(46,973) 
46.22% 

(8,524,949) 

VA 
51.23% 

(23,587,023) 
0.26% 

(120,284) 
48.51% 

(22,333,094) 
51.46% 

(9,491,693) 
0.26% 

(47103) 
48.29% 

(8,906,445) 

R
F 

PS 
60.89% 

(28,033,370) 
5.38% 

(2,476,549) 
33.73% 

(15,530,482) 
60.28% 

(11,118,819) 
7.17% 

(1,322,432) 
32.55% 

(6,003,990) 

IR 
62.43% 

(28,744,333) 
7.94% 

(3,657,744) 
29.62% 

(13,638,324) 
61.81% 

(11,401,407) 
9.14% 

(1,686,298) 
29.05% 

(5,357,536) 

VA 
66.71% 

(30,712,592) 
6.57% 

(3,024,712) 
26.72% 

(12,303,097) 
65.93% 

(12,160,286) 
8.4% 

(1,549,487) 
25.67% 

(4,735,468) 

A
ctives 

B
N

B
 

PS 
37.31% 

(4,752,550) 
53.79% 

(6,851,595) 
8.89% 

(1,132,957) 
40.74% 

(2,072,847) 
49.68% 

(2,528,132) 
9.58% 

(487,489) 

IR 
56.34% 

(7,176,532) 
23.36% 

(2,975,597) 
20.29% 

(2,584,973) 
59.06% 

(3,005,413) 
19.14% 

(974,125) 
21.79% 

(1,108,930) 

VA 
54.65% 

(6,960,823) 
17.23% 

(2,194,104) 
28.12% 

(3,582,175) 
57.96% 

(2,949,237) 
14.39% 

(732334) 
27.65% 

(1,406,897) 

SV
M

 

PS 
57.98% 

(7,385,027) 
0.28% 

(35,677) 
41.74% 

(5,316,398) 
59.91% 

(3,048,400) 
0.34% 

(17,330) 
39.75% 

(2,022,738) 

IR 
58.55% 

(7,457,258) 
0.29% 

(37,538) 
41.16% 

(5,242,306) 
60.68% 

(3,087,636) 
0.33% 

(17,001) 
38.99% 

(1,983,831) 

VA 
60.14% 

(7,660,134) 
0.24% 

(31,085) 
39.62% 

(5,045,883) 
61.94% 

(3,151,933) 
0.31% 

(15,643) 
37.75% 

(1,920,892) 

R
F 

PS 
56.96% 

(7,255,559) 
8.59% 

(1,093,497) 
34.45% 

(4,388,046) 
56.77% 

(2,888,779) 
2.92% 

(148,811) 
40.3% 

(2,050,878) 

IR 
51.02% 

(6,498,004) 
8.88% 

(1,130,922) 
40.1% 

(5,108,176) 
53.98% 

(2,746,966) 
2.76% 

(140,315) 
43.26% 

(2,201,187) 

VA 
66.48% 

(8,467,948) 
6.42% 

(817,212) 
27.1% 

(3,451,942) 
64.46% 

(3,279,820) 
1.73% 

(88,000) 
33.81% 

(1,720,648) 
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Supplementary Table 4. Effect of calibration set size on RF Brier score loss 
performance. VA performs with the best Brier score loss across all bins, outlining that 
this method is able to provide reliable probability estimates for even small number of 
calibration instances. In comparison, PS and IR produce worse probability estimates 
compared to the base estimator for the small bins 50-100 and 100-500, hence these 
methods should not be used for targets with small number of calibration instances. 

Bins Scaling Mean 
Standard 
Deviation 

Median 

50-100 
(n=270) 

Base 0.009 0.006 0.008 

PS 0.047 0.050 0.026 

IR 0.045 0.049 0.023 

VA 0.008 0.006 0.008 

100-500 
(n=656) 

Base 0.021 0.014 0.018 

PS 0.049 0.048 0.033 

IR 0.051 0.049 0.034 

VA 0.020 0.015 0.018 

500-1000 
(n=282) 

Base 0.036 0.026 0.032 

PS 0.047 0.051 0.030 

IR 0.048 0.051 0.032 

VA 0.033 0.027 0.028 

1000+ 
(n=904) 

Base 0.041 0.035 0.030 

PS 0.045 0.051 0.026 

IR 0.046 0.052 0.027 

VA 0.037 0.036 0.025 
 



43 
 

Supplementary Table 5. Distribution of single point probability, p0 and p1 values 
across train-test set Tanimoto Coefficient (Tc) similarity bins. We show here that 
there is larger p0 vs. p1 discordance for difficult testing instances (similarity bins 0.25-
0.5 and 0.5-0.75), where input chemistry is neither very similar or very dissimilar to the 
nearest neighbor in the training set, and hence the interval between p0 and p1 could 
be used in the future to estimate the confidence of a prediction. 

 
 

Nearest Neighbour  
Train-Test ECFP_4 

Tanimoto Coefficient (Tc) 
Similarity Bin 

Number 
data 

points 
Mean 

Standard 
Deviation 

Median 

Single Point 
Probability 

0.0-0.25 52,127 0.104 0.155 0.04 

0.25-0.5 918,683 0.398 0.316 0.307 

0.5-0.75 2,715,779 0.854 0.237 0.976 

0.75-1.0 1,432,072 0.975 0.085 0.997 

p0 vs. p1 
Discordance 

0.0-0.25 52,127 0.011 0.029 0.003 

0.25-0.5 918,683 0.014 0.031 0.005 

0.5-0.75 2,715,779 0.011 0.027 0.004 

0.75-1.0 1,432,072 0.005 0.016 0.001 
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Supplementary Figures 

 
Supplementary Figure 1. Effect of scaling during SSS validation versus base 
probabilities (n=58,777,503). Platt (Sigmoid) and Isotonic Scaling inflate the 
probabilities generated by the models, as shown by the spread markers towards the 
top right of these plots. In comparison, Venn-ABERS markers show a tendency to form 
conservative probabilities indicated by the density of markers shifted toward the right of 
the bottom of the curve. 
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Supplementary Figure 2. SSS validation Bland-Altman plot of the scores 
generated using Platt (sigmoid) (PS), Isotonic Regression (IR), Venn-ABERS (VA) 
Scaling (n=58,777,503). PS and IR produce markers above the zero line, illustrating 
the tendency for PS and IR to produce inflated probabilities. VA produces conservative 
estimates with markers below the zero line for already low base probability estimates. 
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Supplementary Figure 3. Effect of scaling during L20SO validation 
(n=23,533,709). Platt (Sigmoid) Scaling (PS) and Isotonic Regression (IR) methods 
inflate the probabilities generated by the models, as shown by the shifted markers 
towards the upper right of these plots. In comparison, Venn-ABERS markers form a 
tighter curve with a tendency to form conservative probabilities, particularly indicated 
by the shifted density of markers toward the bottom right of the curve. 
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Supplementary Figure 4. L20SO validation Bland-Altman plot of the scores 
generated using Platt (sigmoid) (PS), Isotonic Regression (IR), Venn-ABERS (VA) 
Scaling (n=23,533,709). PS and IR produce a higher number of markers above the 
zero line then compared to VA, illustrating the tendency for PS and IR to produce 
inflated probabilities. VA shows markers below the zero y-axis around, when the base 
algorithm assigns already low predictions. 
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