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Partial nitritation and anammox (PN/A) is attrac-
tive for a complete chemolithoautotrophic re-
moval of nitrogen from wastewater. Mixed-cul-
ture biotechnologies like PN/A rely on systems-
level understanding and management of complex 
microbial communities. “Process ecogenomics” is 
promoted to integrate community systems micro-
biology into process physical designs. Scientific 
elucidation of microbial and metabolic networks of 
microbiomes should provide readily assimilable in-
formation to engineer them. Systems microbiology 
delivers thorough insights on the balance of meta-
bolic interactions in microbiomes that should then 
be managed by engineering of process conditions. 

Abstract: Aerobic and anaerobic oxidations of ammonium are core biological pro-
cesses driving the nitrogen cycle in natural and engineered microbial ecosystems. 
These conversions are tailored in mixed-culture biotechnology to propel partial 
nitritation and anammox (PN/A) for a complete chemolithoautotrophic removal 
of nitrogen from wastewater at low resource and energey expenditures. Good 
practices of microbiome science and engineering are needed to design microbial 
PN/A systems and translate them to a spectrum of wastewater environments. 
Inter-disciplinary investigations of systems microbiology and engineering are par-
amount to harness the microbial compositions and metabolic performance of 
complex microbiomes. We propose “process ecogenomics” as an integration 
ground to combine community systems microbiology and microbial systems en-
gineering by establishing a synergy between the life and physical sciences. It 
drives a high-resolution analysis, engineering and management of microbial com-
munities and their metabolic performance in mixed-culture systems. While ad-
dressing the key underpinnings of the science and engineering of aerobic-anaer-
obic ammonium oxidations, we advocate the need to formulate targeted re-
search questions in order to elucidate and manage microbial ecosystems in 
wastewater environments. We propose a systems-level roadmap to investigate 
and functional engineer technical microbiomes like PN/A, via: (i) quantitative bi-
otechnological measurement of stoichiometry and kinetics of nitrogen turnovers; 
(ii) genome-centric metagenomic fingerprinting of the microbiome; (ii) ecophys-
iological examination of the main metabolizing lineages; (iii) multi-omics elucida-
tion of expressed metabolic functionalities across the microbial network; and (iv) 
translation of microbial and functional ecology principles into physical designs.  

Keywords: Mixed-culture biotechnology; Microbial resource management; Mi-
crobial community engineering; Systems microbiology; Process ecogenomics; Ni-
tritation-anammox. 

 
Acronyms and abbreviations 
 
AMO: anaerobic ammonium-oxidizing organism; anammox: anaerobic ammonium oxidation; ANRA: assimilatory nitrite reduc-
tion to ammonia; AOA: ammonium-oxidizing archaeum; AOB: ammonium-oxidizing bacterium; AOO: aerobic ammonium-oxi-
dizing organism; ASV: amplicon sequence variants; BNR: biological nutrient removal; Ca.: Candidatus; CLSM: confocal laser 
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scanning microscopy; DNA: deoxyribonucleic acid; DNRA: dissimilatory nitrate reduction to ammonia; DHO: heterotrophic 
denitrifying organism;  EFM: epifluorescence microscopy; EPS: extracellular polymeric substances; FISH: fluorescence in situ 
hybridization; FLBA: fluorescence lectin-binding analysis; gDNA: genomic DNA; HRT: hydraulic retention time; MAR: micro-
autoradiography; MCE: microbial community engineering; mRNA: messenger RNA; NanoSIMS: nanoscale secondary ion mass 
spectrometry; N-DAMO: nitrite-driven anaerobic methane oxidation; NOO: nitrite-oxidizing organism; OHO: ordinary hetero-
trophic organism; OTU: operational taxonomic unit; PCR: polymerase chain reaction; PN/A: partial nitritation and anammox; 
qFISH: quantitative FISH; qPCR: quantitative real-time PCR; RNA: ribonucleic acid; rRNA: ribosomal RNA; RT: reverse tran-
scription; SIP: stable isotope probing; SRT: sludge retention time.  
 
 
1 Introduction  
 
The biotechnology of the nitrogen cycle 1 is an at-
tractive field under constant evolution and redis-
covery 2 to promote sustainable solutions for 
wastewater treatment and environmental services 3. 
Complex ecosystems like activated sludge remains 
a vast below 4. Discoveries of new organismal 
functions promote new engineering designs 5. Sig-
nificant breakthroughs in microbiological science 
6, process engineering science 7, and analytical bi-
oscience 8 have led to better understand and make 
use of metabolic interactions that govern nitrogen 
conversions. This microbial network comprises a 
diversity of lithoautotrophic, organoheterotrophic 
and nitrogen-fixing organisms that act in concert to 
metabolize nitrogen.  
 
The completely autotrophic process of aerobic (i.e., 
nitrification) and anaerobic ammonium oxidation 
(anammox) is economically and technologically 
appealing to remove nitrogen from wastewater at 
low energetic and resource expenditures 9-11. This 
open mixed-culture biotechnology is referred to as 
partial nitritation and anammox (PN/A) in engi-
neering practice 12,13. It is one masterpiece of envi-
ronmental biotechnology.  
 
1.1 An established potential from microbial process 

discovery to engineering innovation 
 
PN/A developments started from the postulation 
for and discovery of novel chemolithoautotrophic 
microorganisms involved in anammox from natu-
ral 14,15 and engineered settings 16,17. Anammox is 
credited with massive transformations of nitrogen 
and production of about half of atmospheric dini-
trogen 18-21. Engineering efforts to metabolically 
combine guilds of anammox organisms (referred to 
as AMOs according to standardized notation by 
Corominas, et al. 22) with their aerobic counterparts 
(AOOs) has driven the attractiveness of PN/A on 
the biological wastewater treatment market 7. 

Evolving concepts on the field of PN/A are illus-
trated by Fig. 1. 
 
Full-scale PN/A systems are increasingly imple-
mented to treat high loads of nitrogen from concen-
trated streams such as anaerobic digester centrates 
(“side streams” on flow-schemes of wastewater 
treatment plants, WWTPs), landfill leachates, live-
stock effluents, and source-separated urine 23-27. 
Current incentives target PN/A implementation for 
the direct treatment of diluted municipal 
wastewaters (“main streams”) 28-35. Success in this 
endeavor may constitute a major advance for the 
environmental engineering sector, while techno-
logical challenges still needs to get overcome. An 
efficient combination of several disciplines within 
environmental biotechnology is needed to this end 
36.  
 
1.2 Managing PN/A processes under the scope of 

systems microbiology  
 
PN/A processes harbor high potential to improve 
the energy efficiency of WWTPs while achieving 
effective nitrogen removal 7,37. Engineering ambi-
tions and limitations have been formulated. Fol-
lowing promising start-up behavior, longer-term 
PN/A operations have been related to process in-
stabilities and operational challenges 23,38. Main-
taining a reliable performance is not trivial 39 since 
PN/A systems should rely on a coordinated activity 
and cross-feeding between AOO and AMO guilds 
40. PN/A biosystem performance and instability 
should be elucidated on a continuum from process 
engineering to environmental biotechnology and 
systems microbiology. Systems-level investiga-
tions 41 should bridge process boundaries (i.e., 
macro scale), bioaggregate properties (i.e., meso 
scale), and microbial communities (i.e., micro 
scale) from populations to their genomes and ex-
pressed metabolisms.  
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Figure 1. Evolution of the science of PN/A processes. It was launched by the observation at engineering level of substantial loss 
in nitrogen mass balances in nitrifying and denitrifying biofilm systems (1). Anammox populations and metabolisms are studied 
extensively at microbiology level in high-grade enrichments since then (2). This fundamental knowledge has then been trans-
ferred back to practice for in two-stage and single-stage technologies achieving a syntrophy of aerobic and anaerobic ammonium 
oxidizers (3). Principles of microbial ecology and microbial community engineering are required for a good practice of microbial 
resource management in PN/A systems, which display instabilities on the long run (4). Systems microbiology will allow to unravel 
and harness the phylogenetic, ecophysiology, and metabolic features that underlie the performance of the PN/A microbial sys-
tem beyond the bioaggregate boundaries (5). The development of a “process ecogenomics” framework in the engineering con-
text is key to bring engineers closer to their PN/A biosystem, and to transpose microbial community signatures and ecogenomics 
concepts into engineering (6). Images 2 and 5 were taken from Kuenen 42, and Albertsen, et al. 43, respectively. 
 
Advances in sequencing and bioinformatics have 
driven the elucidation of this microbial “dark mat-
ter”. Phylogenetic, genomic and metabolic signa-
tures of complex natural and engineered microbi-
omes can be tackled with high throughput and res-
olution in a science frequently referred to as sys-
tems microbiology or “ecogenomics” 44-48. Com-
munity systems microbiology 49-51 can provide 
mechanistic insights on microbial selection, inter-
action and competition by unravelling the func-
tional ecology of the PN/A microbiome. 
 
Engineering microbiomes is like engineering a 
bridge. The design-build-test-learn (DBTL) cycle 
typically used in civil engineering has been trans-
lated to microbiomes 52. Collaboration between 
process engineers, environmental biotechnologists 
and microbiologists is fundamental to advance 

PN/A. Starting from early calls for synergies be-
tween microbial ecology, environmental microbi-
ology, and environmental biotechnology 53-55, we 
emphasize the need for close interaction and con-
sensus building between the life and physical sci-
ences. 
 
A glossary is provided at the end of the article on 
terminologies and concepts. We therefore promote 
the integrative discipline of “process ecogenomics” 
for systems-level investigations, using PN/A as a 
guiding thread, to analyze, understand, engineer 
and control technical microbial communities and 
their distributed metabolic performance.  
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2 Engineering the performance of the micro-
bial ecosystem 

 
2.1 PN/A biotechnology: managing scales beyond 

process variations 
 
Process performance and variabilities originate 
from multi-scale interactions 41,56 (Fig. 2). 
 
At macro scale, impacts of process configurations 
(e.g., two-stage or single-stage), operational condi-
tions, and environmental perturbations on PN/A re-
main far from being fully understood and solved 
23,38,57,58. Applied research is actively involved to 
optimize sidestream installations, while new appli-
cations are investigated to implement PN/A along 
with variations in wastewater composition, loads, 
and temperature at mainstream 59-62. 
 
At meso scale, PN/A has been achieved using var-
ious biomass morphotypes such as flocs, granules, 
biofilms and hybrid biofilms-flocs combinations 
33,63-67. Suspended-growth (i.e., flocs) and attached-
growth (i.e., biofilms) regimes exhibit different 
performances mostly relying on substrate diffusion 
68, while no consensus has converged on process 
benefits. Flocculent sludge displays interesting 
PN/A activity with stable baseline conversions 69. 
However, flocs do not offer a durable and resilient 
solution to maintain a substantial guild of active 
AMOs 38. Physical separation using, e.g., hydrocy-
clones 70 prevent the wash-out of these slow-grow-
ing organisms that exhibit doubling times between 
2-30 d 71,72 and that assemble into compact micro-
colonies forming dense granular aggregates. Bio-
film reactors intensify volumetric rates and possi-
bly achieve higher robustness 68,73. In biofilm sys-
tems, the presence of a floc fraction as low as 5% 
of the total biomass affects the nitrification and 
PN/A performances 74,75. True hybrid biofilm-floc 
systems such as integrated fixed-film activated 
sludge (IFAS) processes benefit from intrinsic fea-
tures of both biofilms and a substantial amount of 
flocculent sludge 64.  
 
At micro scale, engineering the PN/A mixed cul-
ture is required to select and activate the microor-
ganisms toward reliable performances. PN/A tradi-
tionally leads – while neglecting anabolism and de-
cay – to estimated savings of 60% in aeration en-
ergy, 65% in alkalinity, 100% in organic require-
ment, and 95% in surplus sludge production 76,77, 

while favorably uncoupling nitrogen from carbon 
removal 77. An efficient management of the micro-
bial resource should drive the syntrophy between 
AOOs and AMOs 40,78-80, while preventing their 
outcompetition by autotrophic nitrite-oxidizing or-
ganisms (NOOs) and denitrifying heterotrophic or-
ganisms (DHOs) 81-83. A balance of interactive mi-
crobial niches is aimed along gradients of solutes 
inside bioaggregates 84,85. Localizations of popula-
tions differs according to physiologies and metab-
olisms, which has been rationalized in mathemati-
cal models using stoichiometry and kinetics, in-
cluding yields, growth rates, substrate affinities and 
inhibition effects 75,86. Their micro-scale interac-
tions are strongly impacted by morphotypes in-
volved in the process, but do reversely determine 
important meso-scale properties of bioaggregates 
87. Maintaining AMOs in suspended flocs is more 
challenging in the long term 38,88. In hybrid sys-
tems, AOOs mostly occupy the floc fractions 
where they experience a more uniform distribution 
of solute concentrations and readily access the ox-
ygen dissolved in the bulk liquid phase 
59,64,71,72,89,90. AOOs and AMOs can be maintained 
inside the architectures of biofilms 63 and granules 
58. Attached growth prevents the unfavorable wash-
out of AMOs. Diffusional limitations in biofilms 
allow them to adapt to oxygen-depleted microenvi-
ronments. AMOs benefit from larger anoxic zones 
in biofilms. NOOs unfavorably populate biofilms 
when competing for nitrite, while their beneficial 
wash-out is more simply realized from flocs 67.  
 
Bacterial population segregation in PN/A systems 
is illustrated in Fig. 3. Amplicon sequencing anal-
ysis of biofilm and floc fractions of sidestream and 
mainstream processes highlighted that AMOs prin-
cipally populate the biofilms of both types of sys-
tems while AOOs and NOOs are mainly present in 
the flocs. DHOs are present in both flocs and bio-
films, with a more balanced partitioning between 
the two types of aggregates under mainstream con-
ditions. These predominant metabolizing guilds are 
accompanied by a diversity of populations that 
make up to more than 60% of the PN/A commu-
nity, but whose functions remains poorly investi-
gated 91. Many are supposed to thrive on metabo-
lites and endogenous products released within the 
microbial ecosystem. Populations of the family of 
Saprospiraceae hydrolyze complex carbonaceous 
substrates making their presence in the floc fraction 
of sidestream systems (whose influent contain a 
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substantial fraction of recalcitrant organic matter 
remaining after anaerobic digestion) rational. Pop-
ulations within Gemmatinonadaceae are slow-
growing anaerobic-aerobic organisms with traits 
resembling polyphosphate-accumulating organ-
isms (PAOs) 92. Their higher relative abundance at 

mainstream can result from the loads of orthophos-
phate present in municipal wastewater, and might 
be of interest in the perspective of coupling biolog-
ical phosphorus removal to PN/A 93. 

 
 
 

 
Figure 2. Multi-level investigation approach in the engineering context of partial nitritation and anammox (PN/A). The macro 
scale (a): replication at process level is desirable since providing substantial power in data analysis. The meso scale (b): PN/A can 
notably be efficiently implemented in attached-growth mode such as exemplified by this biofilm carrier. The micro scale (c): 
inside biofilms and bioaggregates microorganisms occupy different niches by forming microcolonies (here clusters of auto-fluo-
rescent anammox cells; blue color allocation) inside a matrix of extracellular polymeric substances (here matrices of glycoconju-
gates stained using fluorescent lectins; green color allocation). The molecular and metabolic scales (d): systems microbiology 
investigations should start with a simplified sketch of typical network of microbial guild and metabolic pathways of experienced 
in engineering practice. Here the simplified catabolic network of the nitrogen cycle inside PN/A systems: the engineered combi-
nation targets partial aerobic oxidation of ammonium (NH4

+) into hydroxylamine (NH2OH) and nitrite (NO2
-) (so-called nitritation; 

orange) and anaerobic oxidation of the ammonium residual by nitrite via nitric oxide (NO) into hydrazine (N2H4) and dinitrogen 
(N2) (so-called anammox; yellow) both under autotrophic conditions (i.e., carbon source from CO2), while pathways of nitrite 
oxidation into nitrate (NO3

-) (so-called nitratation; green) and heterotrophic (i.e., using organic carbon) reduction of nitrate and 
nitrite into dinitrogen via nitric and nitrous oxide (N2O) should be prevented (so-called denitrification; white). 
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Figure 3. Comparison of bacterial community compositions of bioaggregates sampled from sidestream and mainstream PN/A 
processes operated at the Eawag experimental hall (Dübendorf, Switzerland) as sequencing batch reactors with high N-loaded 
anaerobic digester supernatant and with low N-loaded pre-treated municipal wastewater (i.e. organic matter removed before-
hand), respectively. In both sidestream and mainstream systems, the AMO genus “Ca. Brocadia” was mainly detected in the 
biofilms, whereas the AOO genus Nitrosomonas displayed higher relative abundances in the flocs. The NOO genus Nitrospira 
was mainly detected in flocs at mainstream. The DHO genus Denitratisoma was present in both types of aggregates at sidestream 
and mainstream. A diversity of heterotrophic organisms and candidate taxa was accompanying the traditional PN/A populations. 
Saprospiraceae affiliates were abundant, notably in the flocs, and are known to hydrolyse complex carbonaceous substrates. In 
term of diversity, ca. 30 and 110 operational taxonomic units (OTUs) formed the 75% of the 16S rRNA gene-based amplicon 
sequencing datasets generated with adaptation to the MiDAS field guide 94 targeting the v4 hypervariable region (Table 1: primer 
pair 515F / 806R). Taxonomic cutoffs: kingdom (k) > phylum (p) > class (c) > order (o) > family (f) > genus (g) > species (s). 
 
At metabolic scale, nitrogen conversions should be 
controlled across the microbial catabolic network 
along gradients of electron donors and acceptors. 
Engineering measures should balance flows of dis-
solved oxygen and nitrogen from ammonium 
(NH4+) to dinitrogen (N2) via central intermediates 
of nitrite (NO2-) and nitric oxide (NO), and prevent 
the unfavorable emission of nitric (NO) and nitrous 
oxides (N2O) greenhouse gases along PN/A 95-102. 
Operational control should embrace a detailed ex-
perimental and mathematical understanding of 
physical-chemical and physiological phenomena 
100,103-105. In contrast to their aerobic counterparts 
106,107, AMOs have not yet been isolated and culti-
vated in pure cultures. Tackling their ecophysiol-
ogy is challenging. To date, the anammox microbi-
ology has been thoroughly investigated in high-

grade enrichments and co-cultures 42,108,109. Meta-
bolic elucidations in combined PN/A processes can 
be performed via in situ and ex situ measurements 
29,110,111.  
 
At molecular scale, critical open questions cover 
multiple levels beyond the microbial and functional 
ecology of PN/A systems to unravel cellular mech-
anisms of metabolic regulation (Fig. 4). On the 
ecological perspective, molecular biology analyses 
target microbial community compositions 29,32,112-

114, guild and population differentiation and strati-
fication inside bioaggregates 59,89,115-117, population 
selection, dynamics and regime shifts 118,119, and 
functional genetic potential 120 and expressed me-
tabolisms 109. 
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Figure 4. Molecular investigations of PN/A processes involve the examination of community compositions, microbial selection, 
functional activation, and metabolic regulation phenomena in the vicinity of the ecosystem. Community systems microbiology 
targets the microbial and functional ecology of the mixed-culture biosystem toward the formulation of conceptual ecosystem 
models 49. The impacts of environmental and operational conditions are studied possibly using multifactorial experimental de-
signs 121 are studied on the selection of bacterial populations of functional interest e.g. within the AOO, AMO, NOO and DHO 
guilds. Systems biology approaches subsequently aim for the use of single-lineage genomes that can be recovered from the 
metagenome sequenced from the community genome schemes taken from 43 in order to subsequently study the metabolic 
regulation behaviors of these specific populations under operational variations: this involve complex multi-level processes trig-
gered from gene transcription to mRNA, its translation to proteins, post-translational processes for enzymes activation, and 
metabolite flux regulation 122. The analysis of single regulation processes (e.g. transcriptional pattern or translational pattern 
only) is not solely sufficient to unravel the metabolic states of the organisms. Measuring metabolic fluxes on top of genomic 
information provides excellent insights, prior to examining the challenging intermediate transcriptional, translational, and post-
translational patterns. Consistent experimental and sampling designs are required since regulation processes perform at differ-
ent rates and may occur independently. 
 
Examination of metabolic regulation in microor-
ganisms and communities is challenging since this 
involves a multitude of transcriptional (i.e., mRNA 
level), translational (proteins), post-translational 
(enzyme activation), and metabolite-flux-based 
regulatory mechanisms 122-130. Regulatory controls 
underlying the biochemical performance of PN/A 
are mostly unexplored. Transcriptional patterns us-
ing gene expression assays or metatranscriptomics 
provide a proxy for functional activation 131-136. 
Thorough insights in the metabolism of popula-
tions of interests at the microbiome level will re-
quire a combination of molecular approaches along 

regulation processes. Measurements of fluxes of 
selected metabolites 109 should validate the func-
tional potential displayed by their single-lineage 
genomes recovered from metagenomes 43 of PN/A 
communities. 
 
2.2 Good practices to engineer PN/A microbial com-

munities 
 
In contrast to axenic biological systems operating 
with one single organism, good practices of micro-
bial resource management (MRM) 137,138 and mi-
crobial community engineering (MCE) 139,140 are 
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needed to handle mixed cultures as complex as ac-
tivated sludge 141. While the two terminologies 
stand for the same outcome, MCE provides the di-
mension of engineering the conditions to achieve 
MRM. MCE is essentially a deterministic approach 
that largely relies on either empirical stoichio-
metric, kinetic, and thermodynamic characteriza-
tions from bulk measures of total and active bio-
mass. The abundance of coarsely defined popula-

tions is at most considered. Probabilistic phenom-
ena need to get considered as well 142. MRM and 
MCE strategies helped to manage, engineer and 
control the performance of the microbial commu-
nities of one-stage anammox-based processes 79,143. 
A further illustration of MRM in PN/A is discussed 
in Text box 2 based on research efforts that have 
been made to prevent the proliferation of NOOs in 
PN/A systems. 

 
Text box 2 

 

Preventing proliferation of NOOs: a leading illustration of bacterial resource management 
 
Considerable efforts have been undertaken from bench to pilot to full scale to optimize PN/A under the scope of suppressing 
NOOs. Conditions have been widely tested to suppress NOOs such as displayed by the diversity of studies reported in literature 
on this particular research question 23,29,32,38,60,65,81,96,144-158.  

Among the different reports available in literature and cited above, most proposed strategies aim at limiting the energetic cata-
bolic activity of NOOs. A recipe aggregating different parameters of these different alternatives has interestingly been formu-
lated for plug-flow mainstream systems 153,154,159. Models have been formulated and used to delineate optimal operational win-
dows 81,83,160. The concentration of their electron donor  and acceptor should be limiting, typically below 3-8 mgN-NO2·L-1 and 1-
1.5 mgO2·L-1, respectively. These endpoints request the mastering of the oxygenation of the bulk liquid phase, either by using a 
control loop on dissolved oxygen or by stoichiometric control to meet with the minimum aeration rate required for a partial 
aerobic oxidation of the ammonium load. Transient anoxia via intermittent aeration by rapidly transitioning from aerobic to 
anoxic conditions has been reported to possibly de-activate and efficiently out-select NOOs, but may lead to substantial N2O 
emission. Besides, these studies also point out that high bicarbonate (1200-2350 mgHCO3·L-1) and residual ammonium concen-
trations of 10-40 and 2-4 mgN-NH4·L-1 have also been beneficial for the efficiency of sidestream and mainstream systems, respec-
tively. The ratio between ammonium and dissolved oxygen in the bulk 81 has notably been shown to be manageable for maxim-
izing AOB growth relative to NOB. So-called “aggressive” control on aerobic sludge retention times 159 are applied based on 
affinity constants and maximum specific growth rates of AOB and NOB. Low temperature which occurs on seasonal variations 
encountered in municipal WWTPs can further result in lower nitrogen removal rates and in the proliferation of NOOs, so that 
mesophilic conditions are expected to sustain PN/A. Overall, strategies can either target inhibition and/or non-ideal conditions 
for NOB or beneficial conditions for NOB competitors, or ideally both. 

Various effects have been studied by step-wise elucidation and control of operational conditions at process scale, and act as 
strong basis for the development of wider strategies for implementing microbial resource management (MRM) into PN/A sys-
tems 79. A good practice of MRM should definitely go via consideration of the ecophysiological and metabolic traits within the 
microbial guilds and underlying populations involved in the process, as an opportunity to improve bioprocess designs and con-
trol. Suppressing NOOs from the system is one aspect, but strategies should target microbial community engineering as a whole 
over the microbiome of PN/A systems. 
 
 
To be useful, MRM and MCE should account for 
ecological principles of microbial selection that are 
primarily linked to fundamentals of enrichment 
cultures developed in the early 1900’s by Bei-
jerinck and revisited by De Wit and Bouvier 161. 
Predicting microbial community function and dy-
namics is a grand challenge of microbial ecology 
162. Deterministic and stochastic factors shape the 
microbial compositions and functional perfor-
mances of communities 121,142,163-167. Environmen-
tal and operational factors can be engineered to 
reach and switch between performance steady 
states, that also link to selection-driven community 

assembly. Stochastic (or probabilistic) effects gov-
ern neutral community assembly and variations, 
and should not be forgotten when managing micro-
bial communities under pseudo steady-state condi-
tions on the long run 164. The latter seem less man-
ageable in engineering, but request full attention 
because of the predictable propensity of stochastic 
developments in shaping community compositions 
and functioning, and therefore their impact on pro-
cess performance. Theoretical ecological princi-
ples or “laws” that target questions of, e.g., diver-
sity-stability relationships, disturbance theory, net-
work stability and importance of neutral processes 
118,142,168,169 can provide a foundation upon which 
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the more practical engineering (that always target 
the particular system being worked on) can be built. 
Modeling the risk of failure of the biological sys-
tem using rather simple mathematical-statistical 
models can aid to integrate probabilistic patterns 
into the engineering rationale 170,171. Reliability en-
gineering and modelling allow for analyzing the 
stability, redundancy and resilience of complex 
networks of microbial populations, metabolic func-
tionalities, and interactions. It leads to identifying 
failure-prone biochemical pathways that require 
closer look and surveillance. It fills the gap be-
tween ecosystem assessment, design and manage-
ment in mixed-culture environmental biotechnolo-
gies like PN/A processes. 
 
2.3 Microbial guilds of engineering interest for PN/A 
 
The AMO guild comprises five known candidate 
genera of the phylum Planctomycetes affiliating 
with “Ca. Brocadia”, “Ca. Kuenenia”, “Ca. Anam-
moxoglobus”, “Ca. Jettenia” and “Ca. Scalindua”, 
enriched and characterized from fresh and saline 
water environments and full-scale anammox sys-
tems 6,120,172. “Ca. Brocadia” populates systems fed 
with digester supernatants 173,174, source-separated 
urine 27, and municipal wastewater 29,32. “Ca. 
Kuenenia” displays higher affinity for nitrite, and 
dominates at low concentrations of this terminal 
electron acceptor 72,113,175. This genus outcompetes 
“Ca. Brocadia” under shorter hydraulic retention 
time (HRT) 176.   
 
The AOO guild comprises populations ranging 
from ammonium-oxidizing bacteria (AOB; e.g., 
Nitrosomonas, Nitrosospira, Nitrosococcus, etc.) 
177 to archaea (AOA; e.g., Nitrosoarchaeum, Nitro-
sopumilus, Nitrosocaldus, etc.) 178. In PN/A sys-
tems, AOOs are uniformly dominated by the auto-
trophic β-proteobacterial Nitrosomonas-Nitro-
sospira AOB lineage that is established under neu-
tral or slightly alkaline wastewater conditions. 
AOA have mainly been not examined in high am-
monium-loaded PN/A processes 179,180. Hetero-
trophic bacterial lineages of Pseudomonas, Xan-
thomonadaceae, Rhodococcus, and Sphingomonas 
can contribute to ammonium oxidation in biologi-
cal systems operated at low dissolved oxygen con-
centration (<0.3 mgO2·L-1) 181. This is the typical 
oxygenation level imposed to PN/A flocculent 
sludges or experienced inside the PN/A biofilms. 
 

Populations of the undesired NOO guild mainly re-
late to Nitrobacter or Nitrospira depending on con-
ditions 115,119,158. Nitrobacter is abundant at higher 
concentration of nitrite 145. Latest metabolic high-
lights on Nitrospira sub-lineages that can perform 
a complete oxidation of ammonium to nitrate 8,182 
may lead to reconsideration of the competitive 
mechanisms between AOOs and NOOs in PN/A 
systems. The involvement of non-canonical NOOs 
such as the genus Nitrolancea inside the phylum of 
Chloroflexi 183 should also be elucidated along 
competitive interactions within PN/A processes. 
 
3 Driving bioanalytical targets using microbial 

and functional ecology questions 
 
The microbial ecology science takes advantage of 
a broad set of analytical methods 184 that the engi-
neering field is not yet fully acquainted with. Guid-
ance should now be provided in a rational context 
of engineering. Training of process ecologists is re-
quired as novel educational and professional spe-
cialization. The diversity of methods with their set 
of applicability and limitations make their choice 
not straightforward. Method selection should be 
carefully driven by research questions and hypoth-
eses formulated upfront to designs of experiments. 
 
3.1 Investigating microbial lineages of PN/A ecosys-

tems: how far to go? 
 
From lineage differentiation, the next question ad-
dresses the need, or lack thereof, to understand the 
microbial system with higher resolution. PN/A pro-
cesses and biological wastewater treatment in gen-
eral are primarily engineered and controlled for mi-
crobial selection and nutrient conversions at guild 
level without much concern about the phylotypes 
involved. Microbial community analysis has none-
theless been addressed as the key to an optimized 
design based on critical biocatalysts (i.e., the mi-
croorganisms) rather than on black or grey-box de-
sign principles 185. An integration of both concepts 
addressing that ecological conditions and microor-
ganisms drive process design is needed. 
 
It can be questioned whether phylogenetic differ-
entiation does impact operation schemes. In other 
words: 

• Does PN/A perform differently in the presence 
of one or the other bacterial and archaeal genus 
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of the AOO guild and population of the AMO 
guild? 

• Does the prevalence of either Nitrobacter or Ni-
trospira affiliated NOOs make a significant dif-
ference to engineer strategies for their suppres-
sion? 

• Do accompanying populations of lower engi-
neering interest impact the distributed efficiency 
of the PN/A microbiome? 

 
Flanking populations of the guild of ordinary het-
erotrophic organisms (OHOs) have been essen-
tially ignored and not characterized in detail. Their 
putative effect on PN/A performance have not yet 
been made evident in the rational engineering con-
text. OHOs and DHOs may enter the competition 
for dissolved oxygen and nitrite if readily biode-
gradable organic matter is present in sufficient re-
sidual concentrations in the PN/A tank 75,145,186. 
This can occur at sidestream if anaerobic digestion 
is incomplete or at mainstream when organics are 
not fully removed beforehand in a high-rate acti-
vated sludge process 153,187. These faster-growing 
heterotrophic organisms may also physically struc-
ture the bioaggregates by producing extracellular 
polymeric substances 87,116,188-191. Synergetic rela-
tionships can also underlie the proliferation of 
OHOs in PN/A systems 192, by thriving on soluble 
microbial products produced in the ecosystem 193-

196. 
 
Future investigations should also elucidate impacts 
from predation by bacteriophages and protists 197-

204 on the performance of the PN/A community 
12,85,205. 
 
Experimental research and mathematical model-
ling needs to be combined to better understand in-
teractions inside PN/A microbiomes, and environ-
mental factors that trigger them. Fine-scale line-
ages may exhibit metabolic and physiological fea-
tures that induce niche segregation and impacts on 
process behavior. This has been exemplified by 
modelling of microbial and aggregate heterogene-
ity in nitrifying biofilms after in silico seeding of 
60 artificial populations of each of the AOO and 
NOO guilds 86. 

 
The ecosystem performance relies on the “health 
state” of the microbial community 141,164,206. Ac-
cording to the low number of predominant popula-
tions present, PN/A biomass may display lower 
richness and diversity than activated sludge from 
processes designed for full biological nutrient re-
moval (BNR). If true, this feature may indicate 
lower functional redundancy and lower robustness 
to operational and environmental variations 164. 
While biosystem robustness can be investigated at 
the level of overall bacterial community composi-
tion, microbial and functional diversity at guild and 
lineage level should also be considered. Even a 
highly diverse community may involve function-
ally key microbial guilds, like AMOs, that are 
made up of only a few lineages. If out-competed, 
the process will never achieve the desired PN/A 
performance.  
 
This is illustrated here by multivariate numerical 
analyses of process failure followed over three 
months in a sidestream sequencing batch reactor 
operated under suspended-growth regime for PN/A 
(Fig. 5a). Unfavorable high accumulation of nitrite 
was correlated to higher richness and diversity of 
the amplicon sequencing dataset (Fig. 5b). This 
may look at first sight counter-intuitive. However, 
while a highly stable equilibrium was reached un-
der nitrite accumulation, insight on functional 
guilds revealed outselection of the AMO genus 
“Ca. Brocadia” and proliferation of the AOO genus 
Nitrosomonas under these conditions (Fig. 6).  
An attached-growth system operating in parallel on 
the same anaerobic digester supernatant performed 
PN/A adequately at negligible nitrite accumulation 
(<5 mgN·L-1) with a bacterial community domi-
nated by “Ca. Brocadia” and exhibiting higher 
richness and diversity than the initially well-func-
tioning flocculent sludge system. Deterministic se-
lection and probabilistic phenomena (such as ex-
tinction or invasion events) should be considered 
jointly when investigating microbial community 
assemblies. This is an excellent example where 
concepts of engineering and theoretical ecology 
meet. More research is needed to better bridge the 
two approaches. 
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Figure 5. Multivariate numerical analysis of dynamics in bacterial community compositions  in stable attached-growth (i.e., bio-
film-based; circles) and failing suspended-growth (i.e., floc-based; triangles) PN/A systems operated in parallel on the same di-
gester supernatant under sequencing-batch conditions; see Fig. 6 for community patterns measured by v4 16S rRNA gene-based 
amplicon sequencing analysis at a median sequencing depth of 39’000 reads and processed using the MiDAS field guide to the 
microbes of activated sludge 94. The non-metric multidimensional scaling (NMDS) and principal component analysis (PCA) (a) 
jointly reveal a significant change in bacterial community composition during the transition from favorable process performance 
on period 1 (i.e., no nitrite accumulation < 5 mgN·L-1) to process failure on period 2 (i.e., unfavorable nitrite accumulation up to 
more than 200 mgN·L-1) in the floc-based PN/A process. This PN/A-wise unfavorable transition was surprisingly accompanied by 
an increase in the richness and Shannon H’ diversity indices of the amplicon sequencing datasets (b): this is actually not an 
apparent counter-example to theoretical ecology axioms considering system robustness proportional to microbial richness and 
diversity since the unfavorable process of nitrite accumulation reached a more stable equilibrium and performance than the 
desired PN/A process. One should consider that a desired robust engineered performance may fall into a different referential 
than a true robust microbial system. 
 
3.2 Which taxonomic molecular method to choose: 

is this the research question? 
 
Molecular measurements conducted during process 
engineering investigations are mainly limited to 
fingerprinting techniques targeting the 16S rRNA 
gene or 16S-23S intergenic spacer 113,118,131,207,208, 
and, increasingly, to amplicon sequencing to ana-
lyze bacterial community compositions 
29,32,118,132,209. Methods of 16S rRNA targeted fluo-
rescence in situ hybridization (FISH) are combined 
with epifluorescence or laser-scanning microscopy 
to detect, localize and quantify the relative abun-
dances of guilds or populations of interest 59,115. 

Quantitative real-time polymerase chain reaction 
(qPCR) has been applied to some extent to provide 
quantitative information of population shifts and of 
expression levels of functional genetic biomarkers 
112,131,132,134,210.  
 
The problem of deciding on the most adequate mo-
lecular method to select arises in most of scientific 
discussions. Again, the selection should first rely 
on clearly formulated research questions prior to 
screening for analytical technologies to implement. 
Molecular biology research should rely on designs 
as consistent as and made in parallel to experi-
mental designs aimed at process level.  
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Community fingerprinting and amplicon sequenc-
ing provide similar information on microbial com-
munity structures (bacterial, archaeal, eukaryal de-
pending on primers used), with the advantage of 
amplicon sequencing to directly provide affilia-
tions to sequences forming operational taxonomic 
units (OTUs) or also increasingly referred to 
unique amplicon sequence variants (ASVs) 211. Dy-
namics of bacterial community compositions can 
be followed with high phylogenetic and temporal 
resolutions and can be efficiently correlated to re-
actor regimes using numerical ecology 50,87,118,212 
and linked by means of multifactorial experimental 
designs to identify the factors influencing popula-
tion selection and community assembly 121. In hy-
brid systems operated for PN/A by involving both 
attached-growth and suspended-growth regimes, 
the differences in microbial community composi-
tions of flocs and biofilms can be studied by sam-
pling the two fractions adequately 59,115.  
 
The method to extract and purify genomic DNA 
(gDNA), the quality of the purified gDNA template 
(which varies with the method of isolation), the 
choice of universal primers and hypervariable re-
gions targeting 16S (bacteria, archaea) and 18S 
(eukarya) rRNA gene pools, PCR conditions, se-
quencing workflow, and quality of the on-line da-
tabase used to map sequencing reads can signifi-
cantly impact the final measured community pat-
terns 213-221.  
 
The full power of amplicon sequencing datasets has 
frequently not been harnessed in contemporary 
studies. These data are often simplified back to sole 
identification of phylotypes of traditional guilds of 
interest, while long term microbial developments 
in terms of, e.g., community structure, diversity, 
and co-occurrence networks are rarely considered. 
Nonetheless this approach forms an excellent basis 
toward the establishment of applied systems micro-
biology in the engineering context 50,222,223. 
 
FISH and qPCR are used to target guilds and line-
ages of interest and to follow them over different 
spatial and time scales, while providing quantita-
tive information 224,225. FISH offers the advantage 
of visualizing cells and cell assemblages under the 
microscope, yielding a dimension of spatial infor-
mation that cannot be obtained with other methods. 
FISH is also considered to provide information on 

the state of activity of target organisms (related to 
ribosome content), but this assumption is not valid 
for AMOs 226. FISH is applicable mostly to abun-
dant targets, in typical implementations cells with 
an abundance below 1% are difficult to quantify. 
qPCR offers a much lower detection limit. qPCR is 
also not limited to ribosomal targets, allowing to 
target guilds based on functional gene targets. Such 
functional gene analysis can nicely be comple-
mented using the RING-FISH method combining 
FISH to recognition of individual genes (RING) in 
single cells 227,228.  
 
All hybridization methods have their degrees of 
confidence and mismatch. They rely on the design 
and specific binding of oligonucleotides to the ge-
nomic DNA (gDNA) or ribosomal RNA (rRNA) of 
microorganisms to be analyzed using PCR-based 
(e.g. fingerprinting, amplicon sequencing, qPCR) 
or FISH methods, respectively. Difficulties may 
arise both at the design stage (e.g., identification of 
primer sites of suitable specificity to discriminate 
against all or most non target sequences and gener-
ality toward inclusions of all or most target se-
quences) and during laboratory implementation. 
Field guides 94,224,229 have been proposed to inves-
tigate activated sludge biocoenoses. Guidelines 
should be adequately adapted to the function of the 
studied biosystem, biomass properties, targeted mi-
croorganisms, and molecular objectives. Quality 
assurance by preliminary testing of biomass matri-
ces, integration of reference samples of known 
compositions, and combination of different meth-
ods (e.g., amplicon sequencing and qFISH or 
qPCR) to cross-validate results and offset individ-
ual weaknesses of methods is essential for robust 
analyses of microbial communities. 
 
Table 1 shows the power of in silico analyses in the 
design of molecular methods for the preliminary 
testing and selection of oligonucleotide PCR pri-
mers and FISH probes adequate for analytical tar-
gets. In silico testing is recommended 221,230,231. 
This needs to be carefully included in the evalua-
tion of the toolset for new research project involv-
ing microbial community analyses, taking the spe-
cific requirements arising from the research ques-
tion and studied system into account (Text box 3). 
Optimization of PCR and FISH conditions and val-
idation at wet-lab using representative biological 
samples are required. 
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Table 1. Targeting the “universal”: in silico analysis of the impact of the choice of the pair of PCR primers along the hypervariable 
regions of the 16S rRNA gene on the bacterial diversity covered in PN/A systems against the Silva database of above 400,000 
reference sequences of 16S rRNA genes 232 following the procedure of Klindworth, et al. 231 with one mismatch allowed in the 
primer sequence. Universal primer pairs were considered, as well as specific and semi-specific ones to the guild of anammox 
organisms (AMOs) designed by combining an anammox-specific forward primer with a universal reverse primer. 
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Hypervariable region v1-v3 v3 v3-v4 v3-v4 v3-v5 v4 v4-v5 v6-v8 v3-v4 v3-v4 v3-v4 v3-v5 v3 v3 v3 v1 v3 v4 v5 v5 v6

K: Bacteria 28 93 94 89 95 95 95 89 0.01 0.05 0.05 0.05 95 2 2 1 0.05 0.01 0.01 4 0.01

Guild of AOB
G: Nitrosomonas 36 98 98 97 98 96 96 94 0 0 0 0 100 0 0 0 0 0 0 0 0
G: Nitrosospira 21 94 95 94 94 94 94 91 0 0 0 0 98 0 2 0 0 0 0 0 0
G: Nitrosococcus 42 98 97 96 98 96 97 91 0 0 0 0 100 0 0 0 0 0 0 0.9 0
(…)

Guild of NOB
G: Nitrospira 40 98 95 94 96 94 96 86 0 0 0 0 99 0 0.2 0 0 0 0 0.8 0
G: Nitrobacter 20 93 97 94 95 93 91 89 0 0 0 0 98 0 0 0 0 0 0 0 0
G: Nitrococcus 0 100 100 100 100 100 100 100 0 0 0 0 100 0 0 0 0 0 0 0 0
(…)

P: Planctomycetes 25 30 83 3 84 94 95 89 0.4 2 2 2 31 48 46 49 2 0.2 0.5 79 0.5

Guild of AMOs
O: Brocadiales 13 45 42 2 47 95 93 87 22 92 91 91 43 0 0 72 96 11 25 0.7 25
G: "Ca.  Brocadia" 15 93 97 7 96 93 93 83 86 86 86 90 97 0 0 66 90 45 97 0 45
G: "Ca.  Jettenia" 10 90 90 0 90 80 90 89 0 90 90 90 100 0 0 60 100 0 0 0 10
G: "Ca. Kuenenia" 0 80 100 0 100 100 60 20 80 80 80 40 80 0 0 40 80 80 100 0 20
G: "Ca.  Scalindua" 13 8 8 0 9 99 96 93 0 99 99 97 9 0 0 79 100 0 0 1 25
G: "Ca.  Anammoxoglobus" 0 100 100 0 100 100 100 100 0 100 100 100 100 0 0 100 100 0 0 0 0
G: clone Asashi BRW 0 100 100 0 100 100 100 100 100 100 100 100 100 0 0 100 100 0 100 0 0
G: clone PB79 50 0 50 50 50 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0
G: clone W4 22 100 100 0 100 100 100 100 0 89 89 89 100 0 0 44 90 0 0 0 11

Guild of non-AMOs
O: Planctomycetales 26 15 90 0.5 93 93 95 88 0 0.0 0 0 16 78 76 73 0 0 0 97 0

K: Archaea 0 0 62 83 0.4 92 85 69 0 0.3 0.3 0.3 0.01 0 0 0 0.3 0 0 7 0
Ancient archaeal group 0 0 0 0 93 100 0 0 0 0 0 0 0 0 0 0 0 0 0
P: Crenarchaeota 0 0 24 87 0.2 92 86 86 0 0 0 0 0 0 0 0 0 0 0 0.9 0
P: Euryarchaeota 0 0 82 88 0.1 93 85 64 0 0.1 0.1 0.1 0 0 0 0 0.1 0 0 8 0
P: Korarchaeota 0 0 31 36 11 94 92 86 0 42 42 40 0 0 0 0 43 0 0 0 0
P: MHVG-1 0 0 83 67 0 100 67 100 0 0 0 0 0 0 0 0 0 0 0 0 0
P: MHVG-2 0 0 0 0 0 50 50 100 0 0 0 0 0 0 0 0 0 0 0 100 0
P: Nanoarchaeota 0 0 3 85 0 3 0 100 0 0 0 0 0 0 0 0 0 0 0 19 0
(…)

Guild of AOA
P: Thaumarchaeota 0 0 35 74 0.05 92 85 82 0 0 0 0 0 0 0 0 0 0 0 3 0

The lineages are entered w ith indications of phylogenetic levels from: Kingdom > Phylum > Class > Order > Family > Genus > Species

Primer sequences 5’-3’: 8F: 518R: Probe sequences 5’-3’: EUB 338 I:

338F: 518R: EUB 338 II:

341F: 785R: EUB 338 III:

PRK 341F: PRK 806R: PLA 46:

341F: 907RM: AMX 368:

515F: 806R: BFU 613:

515F: 907R: AMX 820:

926F: 1392R: PLA 886:

AMX 368F: AMX 820R: AMX 1015:

AAAACCCCTCTACTTAGTGCCC

GCCTTGCGACCATACTCCC

GCTGCCACCCGTAGGTGT

TTCGCAATGCCCGAAAGG

GATACCGTTCGTCGCCCT

FISH probes

GCAGCCACCCGTAGGTGT

GCTGCCTCCCGTAGGAGT

GACTTGCATGCCTAATCC

GGATGCCGTTCTTCCGTTAAGCGG

"Universal" PCR primers (Semi-) specific PCR primers

TTCGCAATGCCCGAAAGG

AAACTYAAAKGAATTGRCGG ACGGGCGGTGTGTRC

AGAGTTTGATCMTGGCTCAG

ACTCCTACGGGAGGCAGCAG

CCTACGGGNGGCWGCAG

CCTAYGGGRBGCAACAG

CCTACGGGNGGCWGCAG

GTGCCAGCMGCCGCGGTAA

CCGTCAATTCMTTTRAGTTT

AAAACCCCTCTACTTAGTGCCC

GTGCCAGCMGCCGCGG

ATTACCGCGGCTGCTGG

ATTACCGCGGCTGCTGG

GACTACHVGGGTATCTAATCC

GGACTACNNGGGTATCTAAT

CCGTCAATTCMTTTGAGTTT

GGACTACHVGGGTWTCTAAT
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Text box 3 
 

In silico testing of oligonucleotides:  
a prerequisite to cover AMOs with the broader bacterial community 

 
One efficient way to integrate molecular methods in practice is to start with amplicon sequencing analysis of selected biological 
samples to screen populations composing the bacterial community of interest. Different sets of primer pairs should preliminarily 
be tested in silico along the hypervariable regions of the 16S rRNA gene pool  and PCR conditions optimized at wet lab. FISH 
probes or qPCR primers can then be selected or designed starting from the sequencing datasets in order to target specific phy-
lotypes along operation. 

Dry-lab analyses of oligonucleotide PCR primers and FISH probes were conducted here against the Silva database of 16S rRNA 
gene-based reference sequences 232 following Klindworth, et al. 231, and highlighted that some key populations of the PN/A 
ecosystem may indeed not be detected depending on the hypervariable region targeted (Table 1) and due to primer biases. This 
analysis highlighted that a pair of universal eubacterial primers such as the BACT 515F / BACT 806R targeting the v4 hypervariable 
region of the 16S rRNA gene should preferentially be selected for detecting anammox populations while covering the broader 
bacterial community composition in amplicon sequencing datasets, matching with earlier wet-lab reports 32 and that we previ-
ously reported in Laureni, et al. 29. On top of covering the bacterial guilds of AOOs and AMOs, this primer pair targeting the v4 
region is also interesting for simultaneous detection of ammonium-oxidizing archaea (AOA) with theoretical coverage of 96% of 
references sequences of the Silva database.  

As an important notice, the traditional primer pairs targeting the v1-v3 region (e.g., BACT 28F / BACT 518R) such as recom-
mended in the MiDAS field guide of activated sludge 94 are not suitable to these key analytical ends in the investigation of PN/A 
systems. Dry-lab and wet-lab analyses showed that they do not allow for catching anammox lineages, besides leading to a rather 
low theoretical coverage of all 400’000 references sequences reported in Silva for the kingdom of bacteria. 

Semi-specific pairs involving a forward primer specific to the AMO guild (namely AMX 368F) and a universal eubacterial reverse 
primer (e.g., BACT 785R, 806R or 907R) are further proposed in Table 1 for a specific theoretical detection of the diversity of 
known anammox lineages within the order Brocadiales using one single PCR run. The combination of the two specific primers 
AMX 368F and AMX 802R only leads to a poor coverage of anammox populations, the latter reverse primer being too specific 
for the “Ca. Brocadia” and “Ca. Kuenenia” genera. The theoretical coverage of the traditional oligonucleotide FISH probes used 
to detect AMOs are further displayed by Table 1, showing that the probe AMX 368 is the best currently available FISH probe for 
a theoretical coverage of 96% of the referenced Brocadiales affiliates. 

Molecular analyses on the 16S rRNA gene have over the last decade been described as laborious by requiring an indirect two-
step PCR to amplify genetic fragments from anammox lineages inside the phylum Planctomycetes 226. The in silico analysis con-
ducted here is powerful in the sense that primer pairs over the v4 hypervariable region were delineated for a direct PCR followed 
by amplicon sequencing analysis to obtain the relative abundance of a diversity of (known) anammox populations together with 
the broader composition of the bacterial community in one single run. 
 

 
3.3 Going for ecophysiologies and metabolic func-

tionalities in PN/A microbiomes 
 
Integrating molecular results with process perfor-
mance 50,212 and in situ or ex situ activity tests such 
as done for PN/A 29,59,110 is interesting to associate 
putative drivers of community assembly among en-
vironmental variables or process control settings on 
the one hand and measures of metabolism, activity 
or process performance on the other hand to phylo-
types. These associations are, however, correla-
tion-based, and therefore remain descriptive only. 
Additional effort is needed to obtain mechanistic 
insights into the metabolisms performed in the vi-
cinity of microbial communities or to establish 
causal links to environmental forcings. 
 

Much can be learned from studies of pure cultures 
and much is to be gained from studying microbial 
metabolisms in the “wilderness” 233 of the micro-
bial ecosystem using dedicated analytical ap-
proaches. Such as mentioned earlier, the microbial 
ecology science has strongly evolved together with 
wet-lab and dry-lab analytical breakthroughs. This 
allowed to progressively transition from a black-
box understanding of microbial systems to systems 
microbiology 49, and further possibly to predictive 
white-box modelling. 
 
As a proxy for microbial activity, the analysis of 
functional gene transcription into messenger RNA 
(mRNA) using reverse transcription (RT) and 
qPCR provides information on the current invest-
ment of the microbial community into the synthesis 
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of certain enzymatic systems. This method has 
been applied with success to PN/A systems 89,134.  
 
Ecophysiology measurements based on additions 
of isotope-labeled substrates provide ultimate clues 
on investigated metabolic functions of microorgan-
isms 234. The combined use of FISH and microau-
toradiography (MAR) allows for phylogenetic 
identification combined with determination of up-
take of a radioactively labeled substrate on the sin-
gle cell level 235-237. MAR-FISH has been recently 
used to examine whether AMOs could store radio-
labeled organics and thus possibly compete with 
DHOs under carbon-rich environments, while 
mostly non-anammox side populations have been 
detected to conduct this metabolism under the in-
cubation conditions used 29. Other studies however 
have indicated that some anammox candidate gen-
era may be capable of organotrophic growth 143,238. 
Additional techniques like bioorthogonal non-ca-
nonical amino acid tagging (BONCAT) coupled to 
FISH provide excellent possibilities for an in situ 
detection of physiological switches inside micro-
bial communities and environmental samples by 
fluorescent tracking of protein synthesis in individ-
ual microorganisms 239,240. Ecophysiology exami-
nations are needed to elucidate these interesting 
metabolic properties. The next question would ex-
amine whether such metabolism is significant or 
may be harnessed at process scale. 
 
DNA-, RNA-, protein-, and phospholipids-fatty-
acid-based stable isotope probing (SIP), stable iso-
tope fractionation and nanoscale secondary ion 
mass spectrometry (NanoSIMS) provide additional 
degrees of resolution to discriminate in situ and im-
age, respectively, the metabolic transformations 
conducted by community members 241-247. These 
methods rely on incubations with substrates en-
riched in stable isotopes of, e.g., 2H, 13C, 15N, or 32P 
that ends up in intracellular informational mole-
cules (i.e., DNA, RNA, proteins) of the active or-
ganisms. NanoSIMS has been used recently to re-
veal that some anammox populations can incorpo-
rate organics 248. As shown, molecular and eco-
physiology methods can effectively be applied for 
an enhanced understanding of metabolic capabili-
ties of the diverse populations in PN/A microbi-
omes. Substrate labelling methods nonetheless re-
main costly and applicable to enrichments with 
small sample volumes incubated under well-de-
fined in vitro conditions. NanoSIMS provides high 

degree of sensitivity and resolution on the different 
metabolic states of the different cells present in the 
specimen, while restricted to a narrow field of anal-
ysis of some micrometers thus requiring measure-
ment of numerous fields of view for statistical ro-
bustness 246. The next challenge will resides in 
translating high-resolution analytical results on the 
differentiated metabolisms of single cells across 
the sludge. 
 
3.4 Unravelling PN/A microbiome functioning using 

high-throughput molecular approaches 
 
The newly established sequencing technologies 
provide information on signature molecules from 
community members at high throughput 
47,120,128,133,249. Meta- (indicates a community) ge-
nomics, transcriptomics and proteomics allow for 
high-resolution investigation of genetic potential 
(gDNA), gene transcription (mRNA) and physio-
logical state (proteins), respectively, at the commu-
nity level. 
 
Analyses at mRNA or protein levels can be consid-
ered as a proxy for activity. From the biochemical 
point of view one has to consider that activity has 
not been factually proven until the activity of the 
enzyme has been verified in enzymatic assays. On 
the other hand however, results of in vitro enzy-
matic tests are not truly representative of the phys-
iological state of the organism under the environ-
mental conditions governing the reactor broth 41. 
Therefore, while the groundwork on the basic bio-
chemical functions needs to be laid first, studies on 
the transcriptome or proteome subsequently pro-
vide very powerful tools to elucidate activity and 
metabolic regulation in complex communities un-
der in-situ conditions. 
 
Investigating meta-omes relates to the considera-
tion of the microbial community as one “super-or-
ganism”. This has strong synergies with the classi-
cal community ecology conflict between the com-
munity as a superorganism or as an assemblage of 
individual species. In systems microbiology, one 
should aim to go beyond the “meta-” concept of the 
community level. The genetic and metabolic signa-
tures of single lineages are targeted and linked in 
the community network. Obtaining single-lineage 
genomic information out of metagenomes is of par-
amount importance, using bioinformatics and bio-
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statistics workflows 43,129,250,251. Tentative meta-
bolic models are constructed on a genomic basis, 
prior to wet-lab validation of key metabolic fea-
tures with isolates or highly enriched communities, 
such as has been done to elucidate novel metabolic 
pathways (e.g., catabolic versatility, full nitrifica-
tion pathway) of ammonium-oxidizing sub-line-
ages of the genus Nitrospira 182,252,253. Metabolom-
ics and fluxomics can efficiently overarch func-
tional analyses to map and track metabolic dynam-
ics and fluxes under transient regimes in the mixed-
culture biosystem 254,255. Nonetheless, relating 
fluxes to specific microorganisms in microbial 
communities is hardly possible, and new develop-
ments are needed to this end 52. Fluxomics is 
mainly applicable to pure cultures (if the organism 
can be isolated; but less than 0.1% and 25% of or-
ganisms can be isolated from surface water and ac-
tivated sludge environments, respectively) or en-
richment cultures, where it is assumed that the 
dominant population is conducting the examined 
metabolic conversion.  
 
In the wastewater field, omics have been applied to 
investigate dynamic BNR biosystems 256-263, and 
are on their way to establish on the field of PN/A 
120,264,265. Genomic features of anammox lineages 
have been retrieved from enrichment cultures, nat-
ural environments, and engineered settings 266-269.  
 
The combination of modern and classical bioana-
lytical and numerical methods can support a ra-
tional investigation of microbial communities in 
engineered environments 50,212,220,270,271. A compro-
mise can be reached between a high-resolution and 
rapid analysis of microbial responses, to provide 
meaningful information for process design and op-
timization. 
 
3.5 A manifesto for systems-level investigations in 

PN/A biotechnological research 
 
Only few studies have addressed multi-level inter-
actions across the biological complexity of PN/A 
systems 134,272. Systems-level approaches are pow-
erful to solve the biological complexity of mixed-
culture processes 41,50,51,87,181,212. Investigations can 
start from conceptual ecosystem models 
49,50,222,223,273 as illustrated here for PN/A (Fig. 6). 
A deep fundamental understanding of biosystem 
responses across all scales in association with the 

relevant controlling factors is a necessary founda-
tion to strengthen strategies of microbial resource 
management. The latest advances in single-lineage 
genome-based microbial ecology can provide high 
resolution information on PN/A microbiomes 
120,264. Metabolic models from phylotype to micro-
biome level can be built from the identified phylo-
genetic and genotypic signatures 91. Functional val-
idation becomes essential using ecophysiology, se-
quencing, and mass spectrometry methods. This re-
quires the formulation of well-defined research 
questions and experimental plans. 
 
More studies on the phylogenetic and metabolic 
complexity of engineered microbial communities 
are needed to develop a deeper understanding of 
PN/A and translate systems microbiology findings 
into biotechnological concepts. The advent of mi-
crobial ecology along with continuous analytical 
breakthroughs in molecular biology and ecophysi-
ology methods has led to remarkable possibilities 
to investigate microbial communities in 
wastewater treatment systems with high resolution 
184,274. The power these methods give for tracing the 
phylogenetic and metabolic signatures of PN/A mi-
crobial systems should be harnessed to understand 
how the community ecology and metabolic net-
works underpin functional performance, with con-
sideration that the engineering goal is to design an 
ecosystem service 275-277.  
 
Implementation of microbial ecology principles at 
process level remains a challenge from an engi-
neer’s perspective. The ambition to manage micro-
bial community compositions, to consider impacts 
of both predominant and less-abundant flanking 
populations, and to anticipate the performance of 
the distributed metabolic network for controllable 
and quantitative PN/A performance outputs 162,278 
elevates the problem to a much higher degree of 
complexity. Substantial fundamental and techno-
logical advances are required, before it becomes 
manageable. Basic science is active to find ways to 
handle such complexity with the advent of high-
throughput wet-lab and dry-lab approaches 262. The 
complex networks of populations and metabolisms 
of PN/A systems can be deciphered and a systems 
biology framework established at community level.  
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Figure 6. A systems microbiology framework in PN/A process engineering. Multi-level relationships from process boundaries to 
microbiome, bioaggregate, functional features, and metabolic features in PN/A systems. In the systems microbiology approach, 
the bacterial microbiome is considered as the heart of the biosystem, responding to environmental and operational triggers in 
terms of microbial selection, and functional and metabolic activation or repression. Predominant populations and their under-
lying physiologies also determine the architecture of the bioaggregates that they generate, in conjunction with process condi-
tions (Weissbrodt, et al., 2013). Molecular and numerical methods need to be adapted to the specific system of interest, whereas 
replicated processes provide additional power in the assessment of correlative responses. The signatures identified out of well-
defined experimental designs can sustain the elaboration of feed-back and/or feed-forward operational and microbial commu-
nity engineering strategies for the sake of more performant, resistant, and resilient open mixed-culture biological processes. 
 
 
One should nonetheless realize that high-through-
put and high-resolution analyses should not be sold 
as new promises for new engineering. They are 
meant for a detailed analysis and scientific investi-
gation of microbiomes. Design and control of envi-
ronmental biotechnologies will always mainly rely 
on stoichiometry and kinetics, simply. Break-
through will be specifically made by systems mi-
crobiology if enabling to provide key information 
for process engineering that is not already covered 
by stoichiometry and kinetics. 
 
 
 

4 A systems-level guidance in 10 milestones to 
solve engineered microbiomes  

 
Systems microbiology and systems biology are 
unilaterally driven by research questions and hy-
potheses. The two fields slightly differ semanti-
cally and on their analytical targets. Systems mi-
crobiology aims to crack microbial communities 
beyond their meta-level to extract information of 
single microorganisms and their genomic entities. 
It raises questions on the populations present, their 
activities, the respective location of their activities, 
the impacts of the community on its environment, 
and the effects of a disturbance on the community 
279. Systems biology studies biological systems by 
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perturbing them systematically, tracking informa-
tional pathway responses, and integrating quantita-
tive data toward the formulation of mathematical 
models to describe the distributed biosystem struc-
ture and quantitatively predict responses to pertur-
bations 280.  
 
A framework is elaborated here in 10 milestones to 
guide the collection of detailed information from 
engineered biological systems like PN/A at differ-
ent metrics from macro to meso, micro, genetic, 
and metabolic scales, and to translate them into en-
gineering concepts. This roadmap is formulated in 
a broader context to be applicable to any microbial 
ecosystem and environmental biotechnology appli-
cation of interest. It can be used in education link-
ing environmental biotechnology to systems mi-
crobiology 223,281.  
 
4.1 Secure resources for systems microbiology and 

engineering investigations  
 
Combining systems microbiology and engineering 
requires equal allocation of funding, personnel and 
time resources for wet-lab and dry-lab molecular 
analyses and for bioreactor infrastructure and oper-
ation 220,282. On genomics per se, sequencing costs 
decreased more rapidly than Moore’s law down to 
as low as 0.02 $ MB-1 of DNA sequence, but the 
computational infrastructure required to store, 
maintain, transfer, mine, analyze, and interpret the 
data accounts for principal expenses 283. The selec-
tion for the adequate wet-lab and dry-lab methods 
is made with a research question in mind. Since 
data collection is not the endpoint, dry-lab re-
sources and workflows (computing clusters, ex-
perts, web-sharing) are anticipated on early basis to 
store, process, analyze and interpret datasets such 
as sequencing reads or microscopy digital images, 
prior to, e.g., multivariate numerical analyses and 
mathematical modelling.  
 
4.2 Conceptualize the biological system to formu-

late the multi-level question 
 
Systems-level investigations efficiently start by 
sketching the targeted microbial system. A simpli-
fied overview of functional guilds, key microbial 
populations, and metabolic conversions can be 
drawn by integrating background knowledge from 
literature. The ecosystem sketch provides a frame-
work to formulate the multi-level research question 

and hypothesis (Fig. 2c). One challenge consists of 
converging the diversity of aforementioned factors 
within the optimal range: conditions such as micro-
bial composition, biomass matrix or influent char-
acteristics vary from report to report on top of the 
intrinsic complexity of the mixed-culture microbial 
processes.  
 
4.3 Measure the biosystem performance by quanti-

tative biotechnology  
 
Quantitative biotechnological measurements of 
growth and turnovers are performed to capture the 
stoichiometry, thermodynamics and kinetics of the 
bioprocess. The system configuration is chosen ac-
cording to research objectives from bench to pilot 
and full scales, with suspended, attached, or hybrid 
biomass, with synthetic or real feeds, and under de-
fined or varying environmental conditions. Repli-
cating biological systems is highly desirable for 
statistical power. Reactor start-up phases are of 
particular interest since this provides information 
on  deterministic mechanisms of microbial selec-
tion, activation, and aggregation. The baseline met-
abolic performance under (pseudo) steady-state 
conditions is monitored in situ and ex situ from the 
liquid, off-gas, and solid (biomass) phases of the 
biosystem over several hydraulic and biomass re-
tention times. Such quantitative information is ef-
ficiently integrated in and used to calibrate compu-
tational mathematical models to predict the perfor-
mance of the biosystem under different process 
scenarii. 
 
4.4 Analyze the microbial community composition 

at high resolution 
 
Field guides 94,224,225 have been made available to 
sample biomass and analyze the microbial commu-
nity compositions in environmental engineering 
systems. Analytical awareness should be raised 
throughout protocols. Well-designed modifications 
of workflows are frequently required depending on 
specific experimental conditions, biological sys-
tems, bioaggregates, and microorganisms investi-
gated.  
 
Dual use of methods and cross-validation of ana-
lytical outputs is important to obtain a representa-
tive information from the biosystem. Each method 
is impacted by an own set of biases. The methods 
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must be tested and validated upfront with the bio-
logical matrices of interest, before analyzing the 
full set of samples collected for time and/or geo-
graphical series over the system. Similar to analyt-
ical chemistry, quality control is crucial in all mo-
lecular and computational workflows. Careful at-
tention should be allocated to sampling conditions 
and frequency, biological sample replication, pre-
treatment (e.g., without or with homogenization if 
spatial distribution across bioaggregates or solely 
relative abundances are meant to be measured) and 
storage depending on process studied and analyti-
cal targets, and all subsequent steps of the analyti-
cal procedure.  
 
The combination of untargeted amplicon sequenc-
ing and targeted qFISH is efficient to obtain the 
community fingerprint, identify the predominant 
and low-abundance populations, and measure the 
relative abundance of populations. Amplicon se-
quencing is powerful to delineate overall microbial 
community compositions (bacteria, archaea, eu-
karya), using sets of universal primers along the 
16S (Table 1 for bacteria) and/or 18S rRNA gene 
pools. Guilds or phylotypes of interest are targeted 
with specific probes accordingly. Preliminary in-
formation gained from marker-gene surveys on 
phylotypes composing the community guides the 
more quantitative detection of ribotypes of interest 
with qFISH and/or qPCR depending on required 
analytical sensitivities. Oligonucleotides are vali-
dated in silico and at wet lab for amplification 
(PCR) or hybridization (FISH) efficiencies and 
phylogenetic specificities (Table 1). The corre-
spondence of results obtained by PCR-based and 
FISH-based is not always straightforward since 
these methods rely on different analytical princi-
ples targeting gDNA and rRNA, respectively.  
 
Numerical ecology analyses involving multivariate 
and statistical methods can be used to structure, vis-
ualize and compare the microbial community da-
tasets and draw correlations between population 
dynamics and regime shifts 50,118,214,284-288. Collec-
tion of metadata on process conditions, operations, 
and performance parallel to sampling is crucial.  
 
In the PN/A context, questions can be solved, e.g., 
on which populations form the core community of 
sidestream and mainstream PN/A processes, 
whether system configurations share a common 
microbiome, whether the PN/A microbiome differ 

from traditional BNR ecosystems, whether com-
munities are composed of a highly diverse consor-
tium or a low number of phylotypes, and which en-
vironmental and operational factors seem to impact 
microbial selection.  
 
4.5 Localize populations of interest at biosystem and 

bioaggregate scales 
 
Environmental biosystems are seldom composed 
of a uniform biomass. While under labs-cale con-
dition specific types of bioaggregates can be tai-
lored, pilot and full-scale systems are mostly hy-
brid. Differences in community compositions are 
displayed between the biofilms, granules and/or 
flocs present in the bioreactor 58,64,67,289-291. These 
differences can be highlighted by molecular anal-
yses after pragmatic collection of these different bi-
oaggregate fractions from the biosystem. FISH can 
be combined with either epifluorescence micros-
copy (EFM) or confocal laser scanning microscopy 
(CLSM) to hybridize and visualize the microbial 
populations in the architecture of bioaggregates 
and biofilms. Cryosectioning provides a way to an-
alyze the distribution of microbial populations 
across biofilm or granule cross-sections 87,115,292. 
Different stainings and fluorescence lectin-binding 
analysis (FLBA) can be used to map the extracel-
lular polymeric substances (EPS) surrounding the 
microorganisms 87,293. Microbial niche establish-
ment in bioaggregates and biofilms can be analyzed 
along chemical gradients of substrates and redox 
conditions measured with microsensors 294,295. 
 
In the context of PN/A, one can elucidate which bi-
omass fractions are colonized by AOOs, AMOs, 
NOOs and DHOs, how deep do their populations 
sit within biological architectures, and whether bio-
films and flocs display phylogenetic differentiation 
in hybrid systems. 
 
4.6 Elaborate a conceptual ecosystem model to pre-

pare functional analyses 
 
Conceptual ecosystem models are efficient to ra-
tionalize microbiome signatures 50,223,273,296. Am-
plicon sequencing datasets are meant to be used at 
high resolution to delineate the core microbiome of 
the biological system, and to identify the predomi-
nant and accompanying phylotypes forming func-
tional guilds. The predominant phylotypes are rap-
idly attributed to major functional guilds according 
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to general microbiology, biochemistry, and process 
knowledge. Metabolic information on flanking 
populations is gained from reference manuals and 
databases, while their function within microbiomes 
is seldom understood. Verstraete 297 conceptualizes 
that the essential function of rare taxa 298 is to con-
nect the set of main metabolizing populations in the 
microbiome. Analytical methods to investigate 
such connectivity are needed. 
 
The high sequencing resolution is harnessed to un-
derstand most of the architecture of the microbial 
network along guilds and populations identified to-
gether with their predicted function. Such a quali-
tative model provides an improved understanding 
of the structure of the biosystem. It provides a 
strong basis to further drive research questions and 
hypotheses at functional levels from community 
scale to single lineages. The structure can be en-
hanced by spatial localization over flocs and bio-
films, and inside these bioaggregates. It supports 
validation of physiological and metabolic proper-
ties. The conceptual model of the PN/A ecosystem 
drafted here from bacterial and archaeal popula-
tions detected from sidestream and mainstream 
processes suggests a distributed network of micro-
bial populations and metabolisms (e.g., nitrogen 
and carbon conversions) more complex than tradi-
tionally considered at engineering level (Fig. 7).  
 
Numerous populations harbor putative genetic ca-
pabilities for nitrite reduction to nitric and nitrous 
oxides and dinitrogen. Pathways leading to unde-
sirable NO and N2O intermediates should be inves-
tigated in these denitrifying populations 101, besides 
AOOs and AMOs. Accompanying populations 
may also be involved in dissimilatory (DNRA) and 
assimilatory (ANRA) pathways of nitrate and ni-
trite reduction to ammonium, nitrogen fixation, and 
other nitrogen conversions.  
 
4.7 Use genome-centric metagenomics to genet-

ically fingerprint the microbiome 
 
Higher resolution on the metabolic potentials of the 
main metabolizing populations and flanking popu-
lations can be retrieved from single-lineage ge-
nomes binned from metagenomes 43,299,300. With 
the democratization of sequencing and bioinfor-
matics, genome-based microbial and functional 
ecology becomes a key discipline to investigate mi-

crobial communities 120,265. Metagenomes of the bi-
omasses are sequenced at different time and/or ge-
ographical points. Genomic DNA (gDNA) is ex-
tracted. Different methods of DNA extraction can 
be used on the same samples to generate a synthetic 
shift in community compositions, that is useful to 
isolate the single-lineage genomes by differential-
coverage binning 43. The single-lineage genomes 
retrieved for populations of interest are annotated 
for their functional genetic signatures 299. They can 
used to formulate genome-scale or genome-based 
metabolic models from single populations 301,302. 
The individual genome-based models of different 
populations can be aggregated to predict the inter-
actions between populations in the metabolic net-
work of the microbiome 91,303. 
In the PN/A context, genomes from AOOs, AMOs, 
NOOs, DHOs and accompanying rare taxa can be 
retrieved from the metagenome, annotated and 
mapped to identify their metabolic traits and inter-
action potential. These genetic fingerprints form 
also important references for the mapping of func-
tional multi-omics datasets. 
 
4.8 Emphasize the core metabolic functions of pop-

ulations of interest by ecophysiology 
 
Functional and metabolic traits can be validated 
with ecophysiology methods 29,246,304,305. MAR-
FISH and SIP techniques can be applied at an early 
stage in parallel to amplicon sequencing to detect if 
metabolisms of interest are present in the commu-
nity. Sequencing following SIP and MAR-FISH 
help to elucidate specific activities together with 
taxonomic information. Such functional infor-
mation can be used to delineate whether these pop-
ulations exert an activity that may impact the pro-
cess efficiency and stability. After collection from 
the bioreactor, biomass can be incubated with la-
belled substrates (either stable isotopes in SIP or 
radiolabeled in MAR) to track their assimilation 
into informational cellular macromolecules like 
nucleic acids (DNA, RNA), proteins, polysaccha-
rides, lipids or other storage polymers like poly-β-
hydroxyalkanoates. Higher-resolution analyses by 
SIMS or NanoSIMS can be used to track metabolic 
features of individual populations in situ 246,306. 
In the PN/A context, the specific metabolic func-
tions and side metabolisms of predominant popula-
tions of AOOs, AMOs, NOOs and DHOs and 
flanking phylotypes can be unraveled beyond the 
overall functional potential of the biomass. 
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Figure 7. The conceptual model of the PN/A ecosystems along the underlying nitrogen (yellow) and carbon (blue) cycles as basis 
for functional analyses. This qualitative model was built based on the predominant phylotypes detected by 16S rRNA gene-based 
amplicon sequencing in the bacterial and archaeal community datasets of sidestream and mainstream systems. It provides 
higher resolution on the tentative phylogenetic and metabolic networks inside PN/A microbiomes. Ammonium (NH4

+) enters the 
biosystem with the wastewater (thick black arrow). It gets partially oxidized aerobically into nitrite (NO2

-) via hydroxylamine 
(NH2OH) by the guild of aerobic ammonium oxidizing-organisms (AOOs) that comprises bacteria and archaea (thick red arrows). 
The second half of the ammonium load gets oxidized by nitrite via nitric oxide (NO) into dinitrogen (N2) by the guild of anaerobic 
ammonium-oxidizing organisms (AMOs). If an excess of oxygen is transferred into the bulk liquid phase, then aerobic nitrite-
oxidizing (NOOs) competitors unfavorably kick in the system at the expense of AMOs (green arrow). AMOs are also known to 
partly produce nitrate (NO3

-) according to their stoichiometry of microbial growth. Denitrifying heterotrophic organisms (DHOs) 
may compete for nitrite with AMOs in the presence of a substantial amount of readily biodegradable organic matter (>> 0.5 
gCOD·gN

-1). The denitrification pathway goes from nitrite to nitric oxide, nitrous oxide (N2O) and dinitrogen. In the presence of a 
limiting amounts of COD, denitrifiers only achieve a partial pathway leading to emission of NO and N2O in the off-gas. AOOs and 
putatively AMOs may contribute to the formation of these unfavorable greenhouse compounds. NO is the central intermediate. 
The conceptual ecosystem model displays that the network of the nitrogen and carbon cycles of PN/A microbial systems is more 
complex that traditionally considered at process level. Other populations that may harbor functional potential for nitrogen dis-
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similatory (DNRA) and assimilatory (ANRA) nitrate and nitrite reduction to ammonium fixation, as well as nitrogen fixation. Pop-
ulations that may harbor nitrite-driven anaerobic methane oxidative (N-DAMO) properties were not detected here, but have 
been in some other studies. The carbon cycle can be triggered by readily biodegradable organic solutes present in the feed (e.g., 
in main stream if no or inefficient A-stage) or by the presence of residual complex organic matter (e.g., in side stream after 
anaerobic digestion) or by the decay of biomass. Hydrolytic, fermentative, and methanogenic pathways may occur depending 
on biomass configurations (e.g., biofilms) and oxygenation levels. Dissolved methane formed or originating from the anaerobic 
digester centrate may then be oxidized by N-DAMO organisms in the presence of nitrite, with NO as central intermediate; oxygen 
is produced. The metabolic pathways are oriented along the oxidation states of the dissolved substrates (scale on left hand side). 
The catabolic enzymes involved are displayed along with the guilds of sequenced microbial populations. 
 
4.9 Analyze the expressed metabolic functions and 

regulation with high throughput 
 
Given that such analytical resources are accessible 
and affordable for the project, engineered biologi-
cal systems should be investigated by starting out 
broad using shotgun methods at the nucleotide 
level using gDNA-based genome-centric meta-
genomics and mRNA-based metatranscriptomics, 
and zooming into the community to narrow down 
the research questions toward elucidation of spe-
cific metabolic pathways of interest using metapro-
teomics and metabolomics 128,133,262,307,308.  
 
Experiments are designed carefully according to 
research questions. Multi-factorial designs and nu-
merical ecology methods 50,121 can be implemented 
to screen for factors in a limited number of runs. 
This can lead to an unprecedented understanding of 
microbiome responses to varying conditions along 
the system performance.  
 
After having sequenced the metagenome and re-
trieved single-lineage genome references from the 
ecosystems, the metatranscriptome and metaprote-
ome of the biomass can be sequenced 133,309-314 un-
der baseline conditions to provide the distribution 
of the normally-expressed metabolic functions 
over the community prior to analyzing the tran-
scriptional and enzymic regulation of the commu-
nity and of the populations under transient, dy-
namic and disturbed conditions by switching from 
equilibrium states. Metabolomics and fluxomics 
using labelled substrates and mass spectrometry 
can track and quantitatively validate switches in 
metabolic pathways 109,315,316.  
 
Depending on the depth and quality of mapping da-
tabases, multiple questions can be solved in the 
PN/A context, e.g., on whether metabolic functions 
are distributed over the populations and the guild 
of the microbiome, whether certain organisms har-

bor potential for the metabolism of organic sub-
strates or xenobiotics, whether exotic metabolisms 
such as detoxification pathways can be predicted, 
whether the bacterial community responds to oper-
ational and environmental variations, whether pop-
ulations of interest are sensitive to specific factors, 
and whether NO and N2O formation pathways can 
be related to phylotypes.  
 
4.10 Rationalize biosystem signatures and ecological 

principles into biotechnology 
 
Systems-level signatures obtained from PN/A bio-
coenoses need to be consistently integrated into 
meaningful concepts for engineering. This can go 
via their translation into applied methodologies for 
their management via the control of operational pa-
rameters. Systems microbiology will seldom solve 
the engineering per se. Design of bioprocesses is 
mainly driven by stoichiometry and kinetics. How-
ever, systems microbiology provides key insights 
into the microbial composition, metabolic func-
tionalities, and balance of interaction within the mi-
crobiome.  
 
By adopting experimental and on-site investigation 
designs that embrace both quantitative process en-
gineering and systems microbiology analyses one 
will be able to correlate yields and rates to more 
detailed insights onto the distributed metabolic 
functionalities across key microbial populations 
present in the process microbiome. Under the event 
of process disturbances, one will be able to identify 
which microbial populations and functionalities 
have been unfavorably impacted. This can cover, 
e.g., conditions that select and activate, or repress 
and outcompete, populations of interest for the pro-
cess and that are required to maintain an active and 
cooperative microbial community. Deterministic 
and probabilistic constraints are needed to maintain 
a balance between predominant and flanking pop-
ulations for a stable performance of the biological 
system.  
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Systems microbiology analyses can run by: (i) col-
lecting and initial sample of biomass from the sys-
tem of interest, extracting gDNA, characterizing 
the microbial compositions by amplicon sequenc-
ing and the genetic fingerprints of the key microor-
ganisms present in the biomass by genome-centric 
metagenomics; (ii) sampling the biosystem on reg-
ular basis for either mRNA or protein extractions 
and metatranscriptomics and/or metaproteomic 
measurements of the variations in abundances of 
transcripts and/or enzymes involved in the conver-
sions of interest. The single-lineage genomes re-
trieved from the metagenomes form important ba-
ses for the annotations of the metatranscriptomes 
and metaproteomes. These data can (iii) be con-
fronted to process operation and environmental 
conditions and the quantitative measurements of 
conversions, yields and rates. 
 
Multifactorial experimental/investigation designs 
will be efficient to aggregate process and higher 
resolution molecular datasets to identify which fac-
tor exert the main effect on the measured responses 
across scales 121. The reunion of data will be pow-
erful to derive theories on the microbial system 
functionality toward the delineation of concepts for 
robust process operation to, e.g., overcome unfa-
vorable emission of, e.g., N2O, or to preferentially 
select besides PN/A for an active guild of denitrifi-
ers specialized in N2O reduction 101. Factors should 
be mastered to prevent shunts in metabolic path-
ways in specific populations that lead to unfavora-
ble emission of NO and N2O. System loading strat-
egies to prevent inhibitory effects, and parameter 
variations should be minimized to allow for a reli-
able performance of the microbial system. 
 
5 Outlook: Generating consensus between sys-

tems (micro)biology and engineering 
 
The discovery from engineered environments of 
novel microorganisms performing anammox me-
tabolisms has revolutionized concepts of nitrogen 
removal toward the achievement of improved en-
ergy efficiency at plant level. The field of PN/A is 
booming from sidestream to mainstream applica-
tions. The achievement of reliable treatment perfor-
mances nonetheless remains a challenge for both 
high-strength and low-strength nitrogenous 
wastewaters. After the early warnings on process 
failures made over the last decade, it is now time to 
recognize – and to put into application – that the 

efficiency of open mixed-culture environmental bi-
otechnology systems such as PN/A requires good 
practices of microbial resource management by a 
full consideration of the intrinsic features of the un-
derlying complex microbial communities. The mi-
crobial ecology science offers an arsenal of molec-
ular methods that can be applied to characterize mi-
crobiomes with different degrees of resolution, 
thus following on the research questions defined 
upfront. In a crystal ball vision, a pragmatic ap-
proach of systems microbiology is required to di-
agnose and squeeze most of the informational sig-
natures from the population and metabolic net-
works of PN/A microbial ecosystems and to ration-
alize it in their engineering context. This sustains 
an improved understanding of their behavior and 
delineation of applied strategies for enhanced per-
formance and remedial action. The here elaborated 
“process ecogenomics” framework sustain rational 
investigations at the essence of the biosystem by 
thinking beyond the guild level.  
 
In this article we addressed most of open aspects 
related to PN/A studies. However, one aspect is 
still missing: generating the consensus between 
process engineering and systems (micro)biology. A 
consensus cannot be generated, if one of the pri-
mary goals of any new study is to make a point that 
authors understand PNA systems better than previ-
ous research studies. Our “process ecogenomics 
framework” emphasize on the need for (i) being 
meticulous about experimental design and (ii) inte-
grating microbial ecology into process engineering. 
This becomes possible only when the research 
community starts considering the inherent differ-
ences between studies and performing direct com-
parison only if carried out on the same biological 
system. Whether it is process engineering or micro-
bial ecological studies, one thing that is still diffi-
cult to attain is a consensus, since the majority of 
PN/A studies compare results with one another, but 
not systematically. This framework can also lay 
ground to establish a consensus of systematic and 
comparable reactor operations and analytical meth-
ods to include all phases in process ecogenomics.  
 
We stress here that there is still a long way to go, 
which means that we need to perform research that 
complements each other group foci. In other words, 
it becomes essential that, as soon as different re-
sults are obtained between works, we focus on an-
swer “Why?” beyond solely stating differences and 
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concluding with general remarks. The different 
labs own extremely different experiences, but can-
not find reasons for most of reported differences. 
 
Hence, we advocate the need to establish research 
& application consortia for the integration of a mul-
tidisciplinary framework of process ecogenomics. 
This provides a forum to address questions that re-
quire more resources than one organization alone 
could handle and to engage many research groups 
and practitioners from different disciplines. Such 
consortium‐based research is well suited for tack-
ling some of the questions encountered in process 
ecogenomics. The most significant difference com-
pared to other environmental biotechnology pro-
cesses such as conventional nitrification and deni-
trification is, that PN/A systems encompass a mi-
crobial interaction which includes competition. 
PN/A is an attempt to establish a fine‐scale biolog-
ical process with maximum efficiency in an open 
environment. Integrating ecological data with pro-
cess engineering at individual labs do not provide 
enough confidence in PN/A process.  
 
High-level achievements will soon result from 
close scientific assembly from PN/A to mixed-cul-
ture microbial systems in general. The advent of 
novel workflows in process engineering science 
and environmental systems (micro)biology deliver 
new ways for high-resolution investigation of mi-
crobial ecosystems. Reuniting specialists into con-
sortia will lead to higher-level and reproducible 
achievements. It is about reproducibility, which 
leads to sustainability. 
 
6 Conclusion 
 
Environmental biotechnologies rely on the under-
standing, engineering and management of micro-
bial communities. Collectively, from this in-depth 
critical review across the engineering and systems 
microbiology of PN/A mixed-culture processes, we 
conclude that: 
1. A detailed systems-level understanding of mi-

crobial networks, such as propelled by our 
“process ecogenomics” approach, can drive 

the definition of ecosystem models and func-
tional analyses. 

2. Community systems microbiology fosters the 
collection of scientific information at high res-
olution from populations to metabolic func-
tions and their distributed interactions across 
complex and sensitive, engineered microbi-
omes like PN/A. 

3. A specific interaction should be shaped be-
tween process engineering and systems micro-
biology to drive the definition of common in-
vestigation lines. 

4. While new-generation methods are often sold 
as new promises for engineering, engineering 
practice will only embrace them if generating 
new knowledge and concepts that are not al-
ready caught by stoichiometry and kinetics. 

5. Managing open mixed-culture systems like 
PN/A is not just about big data, but definitely 
about good data that can be transformed into 
theory and designs.  

 
Targeted analyses of systems microbiology pro-
vide detailed insights on the microorganisms, their 
functionalities, and regulations of their metabo-
lisms distributed across the microbiome and that 
should then be confronted to process metadata and 
quantitative measurements of yields and rates to 
identify key operational and environmental factors 
that primarily impact the selection and activation of 
populations as well as the balance of their interac-
tion in the microbiome. Definitely, systems micro-
biology cannot be sold as new promise for design. 
It provides all the necessary, detailed scientific and 
mechanistic understanding of the metabolisms dis-
tributed across the microbial populations of the 
community. Confrontation of process and molecu-
lar data will lead to an informed management of 
identified factors and process variations that impact 
the metabolic functionality of the microbial sys-
tem. On a continuum from life and physical sci-
ence, this is how systems microbiology under-
standing can be translated to make an impact to en-
gineer microbial communities and manage them 
via process design and operation. 
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Glossary 
 

Key terminology used in systems microbiology and engineering 
 
Amplicon sequencing: Molecular method that is progressively becoming established for the profiling of microbial communities. 

Hypervariable regions of the 16S rRNA gene are amplified by PCR using a combination of two oligonucleotides (also called 
primers) that bind to the double strand of DNA. The resulting pools of amplicons are sequenced with high throughput. Am-
plicons sequencing allows for the screening of full bacterial community compositions. “Universal” primers are used for the 
broadest possible coverage of the bacterial community. This method can also be used to cover the other kingdoms of ar-
chaea and eukarya; other primer pairs are needed to these ends. 

Bioinformatics: Computational discipline used to develop algorithms, to process and to investigate the essence of the infor-
mation comprised in big digital datasets gained from molecular measurements of biological systems (here, microbial com-
munities). 

Community systems microbiology (also termed ecogenomics): Science of microbial communities that arose from molecular biol-
ogy and environmental genomics advances made in the field of microbial ecology, and that targets the investigation of mi-
crobial interactions in microbial communities. This science aims microorganisms and their genomes as critical units of or-
ganization of the microbial community. It aims to go beyond the meta-feature (i.e., community as a whole) of microbial 
communities toward the obtaining of single-lineage genomes and (functionally validated) metabolic models. Genomic, 
metabolic, and ecophysiology information gained from the individual populations composing the microbial community are 
then re-aggregated toward elucidation of the overall functioning and performance of the community. 

Conceptual ecosystem model: Conceptual representation of the microbial and functional ecology of the microbial ecosystem of 
an environmental biotechnology process, and in which populations and their putative (or validated) metabolic functions 
are displayed. 

Candidatus organism: Microbial populations that have not yet been isolated, cultivated and metabolically characterized in pure 
culture but  that differ in genetic information from reference isolates are denominated was candidate genera or species. 
Microbiology systematics impose their denomination as “Candidatus …” such as for the candidate anammox specie “Candi-
datus Brocadia fulgida” (note the only official writing). 

Database: Reference sequences obtained from the sequencing of genes (or gene fragments) and genomes of known organisms 
are compiled in on-line databases that can be used in computational algorithms for the mapping of sequences obtained by 
from the biological samples of interest. 

Ecophysiology methods: Microbial ecology methods that are used to examine the metabolic functionality of microorganisms of 
interest. 

Fluorescence in situ hybridization (FISH): Molecular method that is widespread for the specific detection of target microorgan-
isms in microbial communities using an oligonucleotide that binds to the single-stranded ribosomal RNA (rRNA), by combi-
nation with a fluorescence microscopy method (e.g., epifluorescence microscope, confocal laser scanning microscope).  

Functional ecology: Study of the metabolic diversity of microorganisms present inside microbial communities, and the interre-
lationship between environmental factors and phenomena of metabolic activation. 

Genome-centric metagenomics: Retrieving, assembly and annotation of genomes of single population out of metagenomes of 
sludges and biomasses. The individual genomes are the central functional units of the microbiomes. They serve as refer-
ences for mapping of functional meta-omics datasets and for the development of genome-scale or genome-based meta-
bolic models to predict metabolic functions of populations. Genomic information of individual populations can be re-aggre-
gated at microbiome level. 

Informational molecules: Biological molecules that carry the genetic and metabolic information of microbial cells, namely DNA, 
RNA, proteins, and that are targeted in ecogenomic approaches. 

Macro-, meso-, micro-, molecular, and metabolic scales: The five different scales that are investigated and aimed to be associ-
ated in process ecogenomic approaches to understand, anticipate and control the response and performance of the biolog-
ical system of interest. 

Metabolic methods: Analytical methods for the characterization of the metabolism of microorganism. Metabolic analyses are 
primarily performed by following the evolutions of the concentrations of substrates, metabolites, and products involved in 
the microbial metabolisms. 

Meta-omics: New-generation methods based on high-throughput sequencing of informational molecules (metagenomics: 
gDNA, metatranscriptomics: mRNA, metaproteomics: proteins, metabolomics: metabolites) that can be extracted from 
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microbial cells forming the microbial community. The molecular information contained in the microbial community is con-
sidered as hole in a first step, prior to isolation of molecular information specific to single lineages of interest using bioin-
formatics. 

Microbial community (also termed microbiome): Set of microbial guilds. 

Microbial community engineering: Discipline at the frontier of microbial ecology, environmental biotechnology and process 
engineering that aim to engineer the characteristics of microbial communities by engineering operational conditions that 
select for sets of microorganisms of interest useful for the biotechnology service within the broader microbial community 
continuum. 

Microbial diversity: Range of different kinds of microorganisms within the kingdoms of bacteria, archaea, and eukarya, and that 
differ by their morphologies, physiologies, and cellular metabolisms, by their ecological distributions and activities, and by 
their genomic characteristics. 

Microbial ecology: Study of the interrelationships between microorganisms and their environments. 

Microbial ecosystem: Microbial communities form ecosystems in which the individual populations develop interactions (e.g. 
symbiotic, competitive, etc.). These interactions can lead to modifications of the characteristics of the ecosystem.  

Microbial guild: Group of metabolically-related populations that share the same functions.  

Microbial population: Functional unit of an individual microorganism with unique metabolic properties. 

Microbial resource management: Discipline close to or complementary to microbial community engineering that aim to define 
strategies to manage the microbial resource (i.e., by analogy to human resource management) inside microbial communi-
ties of engineered processes. 

Microbial selection: Engineering process that aim to apply specific conditions that select and enrich for the microorganism of 
interest inside the microbial community. 

Molecular methods: Molecular biology methods target informational molecules originating from the functioning of microor-
ganisms (i.e. DNA-, RNA-, protein-based). 

Neutral effects: Stochastic/probabilistic phenomena of invasion and extinction that govern variations in microbial community 
compositions under pseudo steady-state conditions on the long run of environmental biotechnology processes, and that 
oppose to deterministic phenomena of microbial selection. 

Open mixed-culture microbial processes: Environmental biotechnology process that functions with a complex microbial com-
munity under non-axenic conditions (i.e., by opposition to sterile pure-culture processes). 

Partial nitritation and anammox: Engineering terminology for the combination of microbial processes of aerobic and anaerobic 
ammonium oxidation. One half of the ammonium load is converted aerobically into nitrite by the guild of aerobic ammo-
nium-oxidizing organisms (AOOs), and the second half of the ammonium load get oxidized anaerobically (or anoxically in 
the engineering terminology) into dinitrogen by the guild of anaerobic ammonium-oxidizing organisms (AMOs) that use 
nitrite as terminal electron acceptor. 

Physical models: Experimental system used to study research questions and test hypotheses on the metabolism of microorgan-
isms. Namely bioreactors in the field of environmental biotechnology. 

Process ecogenomics: Integrative discipline and terminology proposed here for the association of process engineering and 
ecogenomics in scientific investigations conducted in the field of environmental biotechnology. 

Process ecologists: Professional discipline from educational program of environmental sciences and engineering and whose 
duty target the design of environmentally safe and healthy industrial processes. This discipline can be translated for the 
field of environmental biotechnology for professionals who will master the health state and performance of mixed-culture 
microbial processes using process ecogenomics approaches. 
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	Abstract: Aerobic and anaerobic oxidations of ammonium are core biological processes driving the nitrogen cycle in natural and engineered microbial ecosystems. These conversions are tailored in mixed-culture biotechnology to propel partial nitritation and anammox (PN/A) for a complete chemolithoautotrophic removal of nitrogen from wastewater at low resource and energey expenditures. Good practices of microbiome science and engineering are needed to design microbial PN/A systems and translate them to a spectrum of wastewater environments. Inter-disciplinary investigations of systems microbiology and engineering are paramount to harness the microbial compositions and metabolic performance of complex microbiomes. We propose “process ecogenomics” as an integration ground to combine community systems microbiology and microbial systems engineering by establishing a synergy between the life and physical sciences. It drives a high-resolution analysis, engineering and management of microbial communities and their metabolic performance in mixed-culture systems. While addressing the key underpinnings of the science and engineering of aerobic-anaerobic ammonium oxidations, we advocate the need to formulate targeted research questions in order to elucidate and manage microbial ecosystems in wastewater environments. We propose a systems-level roadmap to investigate and functional engineer technical microbiomes like PN/A, via: (i) quantitative biotechnological measurement of stoichiometry and kinetics of nitrogen turnovers; (ii) genome-centric metagenomic fingerprinting of the microbiome; (ii) ecophysiological examination of the main metabolizing lineages; (iii) multi-omics elucidation of expressed metabolic functionalities across the microbial network; and (iv) translation of microbial and functional ecology principles into physical designs. 
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