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Abstract 

There is great interest in solid state lithium electrolytes to replace the flammable organic electrolyte 

for an all solid state battery. Previous efforts trying to understand the structure-function 

relationships resulting in high ionic conductivity materials have mainly relied on ab initio 

molecular dynamics. Such simulations, however, are computationally demanding and cannot be 

reasonably applied to large systems containing more than a few hundred atoms. Herein, we 

investigate using artificial neural networks (ANN) to accelerate the calculation of high accuracy 

atomic forces and energies used during molecular dynamics (MD) simulations, to eliminate the 

need for costly ab initio force and energy evaluation methods, such as density functional theory 

(DFT). After carefully training a robust ANN for four and five element systems, we obtain nearly 

identical lithium ion diffusivities for Li10GeP2S12 (LGPS) when benchmarking the ANN-MD 
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results with DFT-MD. To demonstrate the power of the outlined ANN-MD approach we apply it 

to a doped LGPS system to calculate the effect of concentrations of chlorine on the lithium 

diffusivity at a resolution that would be unrealistic to model with DFT-MD. We find that ANN-

MD simulations can provide the framework to study systems that require a large number of atoms 

more efficiently while maintaining high accuracy. 
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1. Introduction 

In the pursuit of higher energy dense batteries, the use of solid state electrolytes (SSE) has 

gained much attention recently to develop an all solid state battery. This electrolyte is not only 

safer than the conventional flammable organic electrolyte in a lithium-ion battery, but could enable 

the use of metallic lithium as the anode which would increase both specific energy and capacity of 

the battery.[1–6] One well studied superionic conductor, Li10GeP2S12 (LGPS), has an ionic 

conductivity of 1.2 mS cm-1, which approaches the conductivity of traditional ether based organic 

liquid electrolytes.[7] Understanding the underlying mechanisms of the high conductivity could 

enable the design of even higher conductivity materials that could be used in commercial 

applications. 

The first mechanistic analysis of diffusion In LGPS showed through ab initio density 

functional theory (DFT) molecular dynamics (MD) simulations that LGPS is a three-dimensional 

superionic conductor with lithium primarily diffusing along the c-axis and minimal (but non-zero) 

diffusion in the ab plane.[8]  Similar first principle studies have been performed on other superionic 

lithium conductors, and electrolytes to study diffusion mechanisms.[9–14] The main limitation of 

these DFT based studies is that simulations are run at high temperatures to reduce the MD 

simulation times and are usually performed on one unit cell due to the expense of the DFT based 

force calculations. Although useful, DFT-MD simulations cannot be used to probe effects that 

require simulating several hundred atoms. 

One possible method to accelerate MD simulations and reduce the associated 

computational cost is to replace the DFT based force calculation with a force field generated from 

an artificial neural network (ANN). The first ANN was described mathematically in 1960 and has 

since been used extensively in many tasks such as image recognition, data mining and other 



 

 4 

complex tasks.[15] In material science, ANNs and other machine learning models are also applied 

to further data-mining of DFT data and to more efficiently predict material properties.[16–18] 

Comprehensive overviews of the implementation of ANNs used to calculate atomic energies and 

forces are available in the literature[19–22], and only a brief summary will be presented here.  

The goal of an ANN trained in an ‘atom centered’ mode is to model the potential energy 

surface of a structure by estimating the energy contributions from each atom. Given a training 

image of atomic coordinates the energy is predicted by Equation 1[23]: 

𝐸 = 	$𝐸!% (𝑮𝒊(𝑹𝒊))
#

$%&

	 (1) 

where N is the number of atoms in the image and Gi(Ri) represents a feature vector of the given 

input atomic coordinates. This feature vector (or fingerprint) is a map of the coordinates based on 

a neighbor list of each atoms within a cutoff radius. Fingerprints are passed to the ANN of several 

hidden layers and nodes to determine the atom contribution to the total energy, 𝐸!%  (Figure 1) and 

Figure 1. Artificial Neural Network diagram. From left to right, the atomic coordinates 
uniquely determine the input (fingerprint) node. Input node values are then passed through 
several hidden layers which are combined to determine the atomic contribution to the energy. 
The topology shown is (5,5): two layers, each with 5 nodes. 
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forces on each atom that are consistent with the gradient of the potential energy surface. It is 

important to state that hidden nodes in the artificial neural network may have no physical meaning. 

The optimal weights for the ANN are found by training, or a regression of the weights to minimize 

errors from energies and forces predicted by the ANN and those calculated from other sources, 

such as DFT. 

Implementation of ANNs for modeling atomistic simulations have only recently been 

explored as increased computational capacity has enabled the generation of a large, consistent, sets 

of training data. ANN based force fields for crystalline and other periodic systems have largely 

been limited to two or three atomic species[24] and are used mainly to predict the energy of 

structures rather than forces on individual atoms.[25–27] As far as the authors are aware, there have 

been no neural networks trained to five element systems and have only been sparsely used to 

directly study kinetic phenomena.[28,29] 

Herein we propose using ANNs to reduce the need for computationally expensive DFT 

methods to perform MD simulations. We train the machine learning algorithm by using a feed-

forward ANN to generate force fields for the elements in LGPS as a model system. After training 

a robust neural network we calculate nearly identical diffusivities when benchmarking ANN-MD 

compared to DFT-MD. We also compare the computational cost of a force calculation from the 

ANN versus ab initio DFT to highlight the benefit ANNs display in large systems. By taking 

advantage of linear ANN scaling we extended the use of these networks to study doping in a related 

LGPS material (Li9.54Si1.74P1.44S11.7Cl0.3) by using a trained ANN to predict optimal dopant 

concentrations that could not have previously been studied using traditional DFT methods. 

2. Methods 

2.1 DFT Simulations 
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 Spin paired DFT calculations were performed using the Vienna ab initio Simulation 

Package (VASP).[30–33] The projector augmented wave (PAW) method with the Perdew-Burke-

Ernzerhof (PBE) functional were used to solve the Kohn-Sham equations. All calculations were 

performed with a planewave cutoff energy of 600 eV to ensure high accuracy force and dielectric 

constant calculations. Partial occupancies near the Fermi level were determined by Gaussian 

smearing[34] with a Femi temperature of kbT = 0.2 eV. The Brillion zone sampling was Gamma 

centered with a k-point mesh for LGPS and the doped-LGPS of 2×2×3 for one unit cell. A 1×1×1 

k-point mesh was used for all larger supercell calculations. Initial crystal structures were obtained 

from the materials project database and are shown in Figure 2.[35]  

2.2 Molecular dynamics 

 Diffusion characteristics in all simulated materials were predicted using molecular 

dynamics simulations in the canonical NVT ensemble.[8] Ab initio molecular dynamics simulations 

were performed in VASP, while the molecular dynamics using neural networks for force 

calculations were performed with the Atomic Simulation Environment (ASE).[36] The temperature 

Figure 2. Crystal structures of (A) LGPS and (B) Li20Si3P3S23Cl. Green, yellow, and red are 
lithium, sulfur and chlorine, respectively, and purple, blue, and grey represent PS4, GeS4, and 
SiS4 tetrahedra, respectively. The total number of sulfur tetrahedra in both materials is the same, 
as is the number of lithium atoms in each unit cell. 
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of the canonical ensemble was controlled using the Nosé-Hoover thermostat implemented in the 

Parrinello-Rohman methods.[37–39] The simulation flow was as follows: 

1. Assign all atoms random initial velocities at T = 100 K according to a Maxwell-Boltzmann 

distribution 

2. Raise the temperature to the target by linear velocity scaling over 4 ps 

3. Allow the system to equilibrate at the final temperature for 1 ps 

4. Run the NVT ensemble using the Nosé-Hoover thermostat for 20 ps  

The time step chosen for all simulations was 2 fs. All molecular dynamics simulation trajectories 

were analyzed using the diffusion analyzer module in the Pymatgen library,[40] and pair distribution 

functions were calculated using VMD.[41] 

2.3 Artificial Neural Networks 

 Training and construction of an artificial neural network and fingerprint analysis was done 

using the Atomistic Machine Learning Package (AMP).[42] The descriptors, and neural network 

topology were varied and tested to optimize the ANN (see Results section), but all networks used 

a cutoff radius of 6.5 Å, and employed default cosine cutoff functions, tanh activation functions, 

and loss function weights. Regression was done for each neural network training using the 

Broyden–Fletcher–Goldfarb–Shanno algorithm.[43] 

3. Results and Discussion 

3.1 Training 

The most intensive task in using an ANN is the training, which, if done properly, will create 

a well-conditioned model that can predict the same forces and energies as found in DFT. Training 

data was generated by running a DFT-MD simulation of LGPS as described in the Methods 



 

 8 

section, but allowing for large temperature fluctuations to provide a wide space of atomic 

structures for training. This simulation generated 12,000 training images of which 80% were 

randomly selected for training the ANN, and the other 20% were used to measure the test error. 

The training data was further split with 10% assigned to the validation set. 

 

The selection of descriptors is crucial in developing a robust neural network model and to 

determine which interactions are relevant.[44] Both the Zernike and Gaussian descriptors are 

sensitive to 2 and 3 atom interactions, while only the Zernike descriptor depends on 4 atom 

dihedral angles.[42] The network topology used to compare descriptors was a (5,5) structure with 

two hidden layers each with 5 nodes. We compare the root mean squared error for forces across 

all training images (Training Force RMSE) while varying the number of symmetry functions. The 

Gaussian methodology of describing the atomistic neighborhood with 76 symmetry function 

resulted in the lowest error (Table 1) but takes double the time to compute due to the exponential 

scaling of calculating descriptors. Increasing the number of symmetry functions in either the 

Zernike or Gaussian descriptors will continue to decrease errors, but at diminished utility and with 

Table 1. Descriptor/fingerprint comparison between Zernike and Gaussian descriptors with 
varying number of symmetry functions. The number of functions corresponds to the value of 
m in the Gm vector of Figure 1. Distribution of outputs for (A) and (B) are given in Figure 
S1. 
 
Descriptor Number of Symmetry Functions Topology Force RMSE 

Zernike (A) 12 (5,5) 0.4410 

Zernike 20 (5,5) 0.2100 

Zernike 49 (5,5) 0.1933 

Gaussian (B) 56 (5,5) 0.0742 

Gaussian 72 (5,5) 0.0822 
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increasing computational cost to calculate the increased number of symmetry functions. Individual 

node analysis for each descriptor component showed a wide variety of outputs, with minimal 

redundancies between nodes (Figure S1). 

Although the universal approximation theorem states that an arbitrary large hidden layer 

structure can fit any data to arbitrary accuracy,[45] increasing the complexity of the topology 

increases both the computational expense of training and increases the probability of overfitting. 

Initially, a Gaussian-56 descriptor was used and two hidden layers while varying the number of 

nodes per layer. By systematically increasing the number of nodes per layer, we find for the LGPS 

system, 5 nodes per layer to be the optimal where increasing the number of nodes beyond 5 yields 

little to no further decrease in the overall training error (Figure 3). We subsequently increase the 

number of layers fixing the number of nodes per layer and find that 2 hidden layers sufficiently 

minimizes the training error.  

For a given topology there is an optimal training that minimizes both training and 

validation error.[23] When we carefully optimized the residual force and energy errors, we observed 

an initial exponential decrease as a function of training iteration with most of the minimization in 

Figure 3.  Impact of topology on training error. When increasing the number of nodes per layer 
there is a diminishing effect on error past five nodes. Additionally, there is no apparent 
correlation between number of layers and error. Lines added as a guide.  
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error occurring in the first 1,000 steps. After 1,000 steps, the rate of error minimization decreases 

(Figure 4a). We select different models along the regression and measure the validation error, that 

is, the error of the other 960 images in the validation set. The energy validation error decreased 

until reaching a minimum value of 0.0018 eV after the 5,000th iteration. The validation error 

increased slightly to 0.0019 eV after the 5,300th iteration suggesting that continued regression 

would have led to the ANN becoming over fit.  

The energy residuals of the validation set at different iterations of the regression also 

provide some additional insight into the quality of the training. With a well fit model, the residuals 

are expected to be normally distributed around the mean, whereas observed patterns suggest the 

model is biased or missing physically relevant descriptors. After 1,000 iterations, the energy error 

residuals are generally evenly distributed, but there appear to be points that form clear curves and 

patterns that occur at all ranges of energies (Figure 4b). After increased training (5,000 iterations), 

the residual errors of those same points decrease (i.e. the whole distribution is ‘squished’ down), 

but the curved patterns are still present, especially at the two energy value extremes (Figure 4c). 

Figure 4. (A) Training and validation errors during training of a (5,5) Gaussian neural network. 
The inset shows the validation error near the end of training with a slight increase after the 
5,000th iteration (B) and (C) show the residuals at iteration 1,000 and 5,000, respectively. One 
pattern is highlighted to show what images could be explicitly included in future training 
iterations. Dashed black lines show root mean squared error.   
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These patterns in the residuals may be explained as under sampled geometries in training since 

only a small fraction of the validation geometries (< 5%) form the residual patterns.   

For the LGPS system, we chose the optimum network at the 5,000th iteration because it 

had both the lowest validation energy and force errors of 0.0018 eV and 0.077 eV Å-1, respectively. 

The final testing error of the network was similar to that of the validation with energy and force 

errors of 0.0022 eV and 0.112 eV Å-1. The absolute magnitude of the error is lower than the 

uncertainty in the original DFT data, and are not expected to impact the calculation of 

thermodynamic properties which are averaged over the course of an MD simulation. 

3.2 Validation of ANN-MD Predicted Diffusivity 

To validate the applicability and accuracy of the trained ANN for calculating temperature 

dependent Li diffusivities in LGPS, we performed MD simulations at elevated temperatures with 

both DFT and ANN generated forces. High temperatures were selected to enable faster 

convergence. We extract the self-diffusivity coefficient from the averaged mean squared 

displacement of lithium atoms along the MD trajectory according to Equation 2: 

𝐷 =
1
2𝑑𝑡

1
𝑁
$[𝑟$(𝑡 + 𝑡') − 𝑟$(𝑡')](
$

(2) 

with errors calculated from the uncertainty of the linear fit to the averaged mean square 

displacement. The diffusivity in equation 2 is related to the conductivity by the Nernst-Einstein 

relationship in Equation 3: 

𝜎 =
𝐹(𝑐𝐷
𝑅𝑇

(3) 

The comparison between Arrhenius data from DFT and the ANN show remarkable 

agreement (Figure 5a) with similar predicted activation energies (0.28 eV from DFT, and 0.26 eV 

from the ANN), and extrapolated room temperature conductivities (10 mS cm-1 from DFT and 
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8.8mS cm-1 from ANN) supporting the use of the ANN model to replace DFT as the force 

calculator in MD simulations.  

3.3 Computational Cost Advantage of Neural Networks 

 Increasing the number of atoms in the simulation reveals the overall calculation of forces 

in the ANN scales linearly with the number of atoms in the system (Figure 5b). The scaling of the 

ANN is approximately linear because the cutoff radius used is of the same size as a unit cell of 

LGPS and will therefore show a significant time advantage over standard DFT based approaches 

which scale O(n3).[46] On a single Intel E5-2660v3 node with 20 cores and 128 GB memory, the 

time required for a single force calculations for 50 atoms is about 60 seconds for both DFT and 

Figure 5. (A) Arrhenius plot comparing the diffusivity behavior predicted between DFT-MD 
(VASP) and ANN-MD (AMP). (B) Time per force calculation as a function of system size. (C) 
Arrhenius plot for Li20Si3P3S23Cl system at various atomic concentrations of chlorine. 
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the ANN, so any efficiency gains of the ANN are only apparent when studying larger systems. 

ANN-MD simulations become much more useful tools when studying large systems where the 

physics studied cannot be accurately modeled with less than 100 atoms such as low dopant 

concentrations, grain boundaries[47], or low vacancy concentrations. As a proof of concept, we 

study the diffusion characteristics in a related doped-LGPS material with ANN-MD which takes 

advantage of this scaling behavior compared to DFT-MD. 

3.4 Substituted system 

 Recently, a new material, Li9.54Si1.74P1.44S11.7Cl0.3 has been reported showing similar and 

slightly higher conductivity to that of LGPS. The doped-LGPS crystal structure has Si substitution 

in the Ge positions, and a Cl (8g) site in the P(2b)X4 tetrahedra.[48] The exact reason why Si and 

Cl doping yield higher conductivity is unknown, and it is possible that varying degrees of chlorine 

substitution will result in different conductivity. Simulating this material would require a 

calculation of 100 atoms which begins to reach the limit of DFT-MD. To demonstrate the power 

of the outlined ANN-MD approach we apply it to this doped LGPS system to calculate the effect 

of concentrations of chlorine on the lithium diffusivity at a resolution that would be unrealistic to 

model with DFT-MD. Because this material contains different elements than LGPS, the previously 

trained forcefield is not transferrable and we must train a different ANN to model this material.  

We ran a DFT-MD simulation of one unit cell of Li20Si3P3S23Cl from 300 – 1000 K in 

VASP to create 10,000 images, of which 6,000 were randomly selected to perform the training, 

and 4,000 were used for testing. The neural network was trained following a similar procedure 

outlined above, where the final ANN was defined with a Gaussian-56 descriptor with a (5,5) 

hidden layer topology, resulting in a final training force RMSE of 0.052 eV Å-1, and testing error 

of 0.0422 eV Å-1. With a single unit cell, there are 50 simulated atoms allowing chlorine 
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concentration changes only in 2% intervals. Increasing the number of atoms in the simulation box 

increases the dopant resolution we can simulate. 

After training the artificial neural network model for this system, we ran ANN-MD 

simulations at multiple temperatures on Li20Si3P3S23Cl with decreasing concentrations of chlorine: 

2%, 1.3%, and 0.67%. These concentrations correspond to three, two and one chlorine atom 

respectively each in a 3×1×1 supercell. The unit cell was repeated along the c-axis during 

simulations because it is the dominant axis of diffusion. Each chlorine removed was substituted 

with a sulfur atom to complete the tetrahedral arrangements, and one silicon was substituted with 

phosphorous for each chlorine to maintain charge neutrality. From the ANN-MD simulations, we 

similarly constructed Arrhenius plots for lithium ions (Figure 5c) to extract activation energy and 

extrapolated conductivities. We found that 1.3% chlorine substitution had the lowest activation 

energy (0.24 eV) and highest predicted room temperature conductivity of 24.22 mS cm-1 (range of 

9 – 53 mS cm-1) which is in remarkable agreement with the experimental value of 25 mS cm-1. 

Both 2% and 0.67% chlorine substitution had similar activation energies of 0.32 eV and 0.29 eV, 

respectively, corresponding to lower extrapolated room temperature conductivities of 14.35 and 

20.04 mS cm-1, respectively (Table 2).  

To begin understanding the observed optima in conductivity as a function of doping 

concentration, we calculated an estimated activation energy of lithium site hopping using a 

modified Anderson-Stuart model.[49,50] The electrostatic binding energy of the transition state 

relative to the initial state can be estimated as Equation 4: 

Δ𝐸) = <−1 +
2(𝑟*+,$'- + 𝑟+-$'-)

𝜆*+,$'- + 2(𝑟*+,$'- + 𝑟+-$'-)
>
𝑍+-$'-𝑍*+,$'-𝑒(

4	𝜋𝜖'𝜖.
D

1
𝑟*+,$'- + 𝑟+-$'-

E	 (4)	 

where 𝑍+-$'-	and 𝑍*+,$'- are the partial charges on the lithium and chlorine atoms (+1 and -1 

respectively), 𝜖'and 𝜖. are the permittivity of free space and dielectric constant, and 𝑒 is the  
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elementary charge. The effective ionic radii of the lithium and chlorine atoms , 𝑟*+,$'- and 𝑟+-$'-, 

are estimated from the total molar volume in Equation 5: 

𝑟/ = 2D
3𝑉0
4𝜋

𝑁/
𝑁1
E
&
2

(5) 

where 𝑉0 is the cell simulation volume, 𝑁1 is the total number of atoms in the cell, and 𝑁/ is the 

number of 𝛼 atoms (either number of lithium or chlorine atoms). Finally, 𝜆*+,$'- is the average 

distance between stable lithium sites. The activation energy is equal to the electrostatic binding 

energy difference plus the strain energy of the transition state. In this analysis, we neglect the strain 

energy contribution which is generally an order of magnitude lower than the electrostatic binding 

energy.[51]  

 The ANN-MD simulations at each Cl doping concentration revealed similar average 

distances between stable sites at 3.25 Å, and were calculated from the first peak of the Li-Li pair 

Table 2. Summary and comparison of calculated diffusion parameters for Cl-doped LSiPS and 
LGPS. Conductivities in brackets represent 95% error intervals from error in fitting the Arrhenius 
slope and uncertainty in temperature measurements. 

Material Method Activation 
Energy 
[eV] 

Conductivity  
[mS cm-1 @ 300K] 

Diffusivity  
[cm-2 s-1 @ 300K] 

LSiPS – 2% Cl ANN-MD 0.32 14.35 [8 - 23] 3.6 ´10-8 

LSiPS – 1.3% Cl ANN-MD 0.24 24.22 [9 - 53] 2.55´10-7 

LSiPS – 0.67% Cl ANN-MD 0.29 20.04 [14 - 32] 8.00´10-8 

Li9.54Si1.74P1.44S11.7Cl0.3 
(1.2% Cl) 

Experimental  25[48]   

LGPS DFT-MD 0.28 10 [2 - 38] 7.88´10-8 

LGPS  ANN-MD 0.26 8.8 [2 - 40] 6.82´10-8 

LGPS[8] DFT-MD 0.21 9 [2 - 40] 7.10´10-8 
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correlation function[52] averaged over the simulation (Figure S2). The similar distance between 

stable sites at all concentrations may be expected due to the equal concentrations of lithium and 

similar overall geometry in each case. Therefore, the different chlorine concentrations influence 

equation 4 only by changing the values of 𝑟+-$'-and 𝜖.. From equation 4, increasing both 𝑟+-$'-	 

and the dielectric constant decrease the activation energy barrier. As the chlorine concentration 

increases, 𝑟+-$'- increases from 0.63 to 0.79 to 0.91 Å at 0.67% 1.3% and 2% Cl, respectively. 

However, the DFT-calculated dielectric constants were 5.13, 5.24, and 4.92 at 0.67%, 1.3%, and 

2% Cl, respectively, and do not follow a clear trend. Using these calculated values, the electrostatic 

activation energies were found to be 0.32, 0.28, and 0.29 eV, which are in good agreement with 

the observed diffusion activation energies calculated from the Arrhenius plot of the ANN-MD 

simulation and are summarized in Table 3. The competing effects of changes in the dielectric 

constant and increasing effective anion radius at different doping levels result in an optimal 

concentration in which the transition state energy is minimized and conductivity is maximized. 

Although the effect of concentration on the overall conductivity behavior is small in this 

studied system, it nonetheless demonstrates the need to consider a wide range of concentrations of 

doping when modeling and designing electrolytes. Studying defects and doped systems with 

sufficiently fine resolution requires simulations in larger simulations cells that are not amenable to 
Table 3. Calculated theoretical electrostatic energy barriers for Li3 hopping in the doped 
LSiPS system obtained from Eq. 4. 

Material 𝜆*+,$'-(Å) 𝑟+-$'- (Å) 𝜖. Δ𝐸4 (eV) 

LSiPS – 2% Cl 3.35 0.63 5.14 0.31 

LSiPS – 1.3% Cl 3.35 0.79 5.24 0.28 

LSiPS – 0.67% Cl 3.35 0.91 4.92 0.29 
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standard DFT-MD approaches and yet these atomic scale modifications that impact the ionic 

conductivity require DFT level accuracy to accurately simulate. For example, it has been shown 

in other lithium superionic conductors that defects and vacancies[53,54] play an important role in the 

energetics of lithium site hopping and can significantly decrease activation energy barriers to 

diffusion and increase the concentration of ion carriers.[55] Probing the diffusion characteristics 

with the accuracy of DFT-MD calculations on such low Cl concentrations and for other atomic 

scale modifications would not have been feasible for so many atoms but are now becoming 

accessible using ANN-based force fields. 

4. Conclusion 

We demonstrate a methodology for training robust artificial neural networks to probe 

diffusion coefficients in solid state electrolytes to reduce the computational expense of running ab 

initio techniques. To the best of our knowledge we report the first ANN trained to accurately 

predict a transport property from force training in a 5-element system which speaks to the high 

adaptability and future possibilities of the ANNs. Diffusion coefficients calculated from molecular 

dynamics simulations with forces generated from the ANN are consistent with those calculated 

from DFT-derived forces and are in good agreement with experimentally obtained diffusion 

coefficients. The overall force error between the ANN and DFT was measured to be ~0.07 eV Å-1, 

and further optimization and training can allow for even lower errors, if required. Additionally, we 

demonstrate that ANNs can be used to find optimal dopant concentrations in concentration regimes 

inaccessible to conventional DFT-MD. 

The main limitation of this ANN approach is that each trained model is system specific. 

Trained ANNs cannot accurately predict energies and forces for geometries significantly different 

from the training data, nor can it work with elements not included in the training data. Therefore, 
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ANNs are not currently good tools for predicting new structures or testing the effects of elements 

substitutions or doping with different elements. Training ANNs also require large data sets, but as 

computational resources continue to increase and considering that training the ANN is a one-time 

computational cost, it may soon become feasible to train with a larger cutoff radius to enable even 

higher accuracy calculations. 

We expect this methodology to be particularly useful when probing effects that can only 

be measured or simulated with more atoms such as effects at grain boundaries[47], higher resolution 

of doping (for elements already present in the system), or viscosity.[56] Another advantage of the 

ability to simulate larger systems is that the simulation temperature does not need to be artificially 

increased to sample rare events. Although ANNs in MD simulations remain a relatively new 

technique, they promise to be highly computationally efficient while maintaining good accuracy. 

Especially as more data becomes available, it is natural to expect these ANNs to become more 

accurate and versatile in their applications. 
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Supporting Information 

Figure S1. (A) and (B) show the fingerprint outputs for the Zernike, and the Gaussian descriptors 
corresponding to Table 1, respectively. The input vectors have length 12 and 56, respectively. 
There are no nodes with a constant output nor any acting as switches. 
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Figure S2.  Li-Li radial distribution function from ANN-MD from 2 to 6 Å. The first peak for all 
Cl concentrations occurs at 3.25 Å. 

 


