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Abstract 

Electrochemical impedance spectroscopy (EIS) is one of the most widely used experimental 

tools in electrochemistry and has applications ranging from energy storage and power 

generation to medicine. Considering the broad applicability of the EIS technique, it is critical 

to validate the EIS data against the Hilbert transform (HT) or, equivalently, the Kramers–

Kronig relations. These mathematical relations allow one to assess the self-consistency of 

obtained spectra. However, the use of validation tests is still uncommon. In the present article, 

we aim at bridging this gap by reformulating the HT under a Bayesian framework. In particular, 

we developed the Bayesian Hilbert transform (BHT) method. We also proposed several scores 

that can provide a quick metric for the evaluation of the EIS data quality. 

Keywords: Electrochemical Impedance Spectroscopy, Hilbert Transform, Kramers-Kronig 

Relations, Bayesian Methods, Quality scores 
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1 Introduction 

Electrochemical impedance spectroscopy (EIS) is one of the most important and versatile 

techniques of electrochemistry.[1] EIS has been used widely in the fields of energy storage, [2, 

3] solid-state ionics,[4, 5] fuel cells,[6, 7] electrolyzers,[8] solar cells,[9, 10] porous media,[11] 

sensors,[12] biology,[13] virological diagnostics,[14] and medicine.[15, 16] The EIS technique 

is particularly appreciated because it can be carried out for frequencies spanning several orders 

of magnitude, typically from 1 mHz to 10 MHz. Obtaining information across such a broad 

range of timescales allows one to gain insights from many disparate physicochemical 

phenomena.[17] 

The impedance measured by the EIS technique is a transfer function, and, as such, it needs to 

satisfy linearity, time-invariance, and causality.[1, 18] Compliance with these properties can 

be evaluated experimentally, for example, by varying the EIS measurement settings 

systematically[19] or by broadband excitation.[20] However, these testing procedures are not 

necessarily possible or may take an unnecessarily long time. Alternatively, one could assess 

whether the measured EIS spectrum satisfies the criteria mentioned above using the Kramers-

Kronig (KK) relations.[21, 22] Such relations, which can be obtained by manipulating the 

Hilbert transform (HT) of suitable even and odd functions, link the real and imaginary parts of 

the impedance to one another through integrals over frequencies from 0 to ∞. While the exact 

implementation of KK relations needs impedance data for all possible frequencies, the EIS 

spectra, in reality, are only discretely sampled over a finite interval of frequencies. Methods, 

including direct integration and regression of generalized circuit models,[18, 23-29] have been 

developed to overcome this limitation. Consequently, the KK relations have been available as 
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a tool to assess the validity of the EIS spectra. For an excellent review of the use of KK relations 

applied EIS, the reader is referred to the textbook of Orazem and Tribollet[1] and the 

monograph by Lasia.[30] We should remark that the EIS spectra are rarely benchmarked 

against the KK relations and therefore tested for their validity. 

In this article, we aim at overcoming this significant gap by taking a slightly different starting 

point compared to the ones of the KK relations. We are going to focus on the HT, which, in the 

context of the transfer functions and therefore, the EIS, is equivalent to the KK relations.[31] 

The HT is used in many applications, including fluid mechanics,[32] aerodynamics,[33] 

optics,[34] and geophysics.[35] Relative to the KK relations, the HT has far richer 

mathematical literature, with the availability of fast HT methods[36, 37] and many theoretical 

results.[31, 38, 39] In the context of analyzing the consistency of EIS data, we will set up a 

new framework, which is named as Bayesian Hilbert transform (BHT). As a first step, the BHT 

approach uses a linear approximation of the impedance, 𝑍(𝜔), with respect to a given basis. In 

other words, we will write 𝑍(𝜔) = ∑ 𝑥𝑛𝜓𝑛(𝜔)𝑛 , where the 𝜓𝑛(𝜔)’s are transfer functions and 

𝑥𝑛’s are random variables (RVs) endowed with a certain probability distribution function (pdf) 

that will need to be determined. Here, we will use the 𝜓𝑛(𝜔)’s originating from the distribution 

of relaxation times (DRT) and take the 𝑥𝑛’s to be normally distributed. After having regressed 

the 𝑥𝑛 ’s, we will be able to compute 𝑍H(𝜔), i.e., the HT of 𝑍(𝜔) using a simple matrix 

multiplication. An important point to note is that both 𝑍(𝜔) and 𝑍H(𝜔) will be understood as 

normally distributed RVs. Doing so will allow us to use analytical formulas and define a 

number of scores that quantify consistency of the real and imaginary parts of the regressed 

𝑍(𝜔) against experimental data and with themselves. 
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The scientific contributions of the paper are twofold. First, we reframed the HT of the EIS data 

in a general Bayesian context, where we leverage analytical matrix expressions. This allowed 

us to determine the hyperparameters used in the regression by maximizing the evidence rather 

than by an ad hoc guess. Second, we proposed new ways to score the compliance of 𝑍(𝜔) with 

the HT. These scores are based on residual plots, mean discrepancies, and “distances” between 

the pdfs of 𝑍(𝜔)  and 𝑍H(𝜔) . We have also shared our code and included some of the 

developed metrics in DRTtools.[40] We expect that doing so will promote the inclusion of the 

HT or KK test of EIS data in existing software packages. Lastly, we must point out that, despite 

their importance, the KK relations are not widely used in the electrochemistry field. This is 

perhaps due to the difficulty in understanding the theory and the availability of modern software. 

We hope that our contribution will be instrumental in overcoming these two challenges.  

2 Theory 

2.1 Hilbert Transform 

In this section, we define the HT and recall how to link HT to KK relations. For an authoritative 

review of the topic, interested readers are invited to consult King’s two-volume book.[31] The 

HT on the real line is defined as the operator that transforms a function 𝑓(𝜔) into another 

function 𝐻𝑓(𝑥) via the following integral: 

𝐻𝑓(𝜔) =
1

𝜋
𝑃∫

𝑓(�̂�)

𝜔 − �̂�
𝑑�̂�

∞

−∞

 (1) 

where the symbol 𝑃 ∫(⋅)𝑑�̂�  denotes the Cauchy principal value, which is formally defined as 



6 

 

 

𝑃∫
𝑓(�̂�)

𝜔 − �̂�
𝑑�̂�

∞

−∞

= lim
𝜀↓0
∫

𝑓(�̂�)

𝜔 − �̂�
𝑑�̂�

|𝜔−�̂�|>𝜀

 (2) 

Other variants of the HT exist, including the HT on the circle, the finite HT, the multi-

dimensional HT, and the discrete HT.[31] In this article, we will only use (1). 

Let us recall a few fundamental properties of the HT applied to the EIS. If 𝑓(𝑧) is an EIS 

transfer function with 𝑓(𝑧) → 0 as 𝑧 → ∞, then 

𝑓re(𝜔) = −𝐻 𝑓im(𝜔) (3a) 

𝑓im(𝜔) = 𝐻 𝑓re(𝜔) (3b) 

where 𝑓re(𝜔) = Re(𝑓(𝜔)) and 𝑓im(𝜔) = Im(𝑓(𝜔)) are the real and imaginary parts of 𝑓(𝜔), 

respectively. We also note that, in the context of EIS, 𝑓re(𝜔) and 𝑓im(𝜔) are even and odd, 

respectively.[1] Enforcing one of the two equations in (3) implies that the other is satisfied.[31] 

Therefore, meeting (3) is equivalent to fulfilling the KK relations, which are the even and odd 

HTs.[1, 31] 

Lastly, we wish to stress on a notational point. When we have a function 𝑔(𝜔, 𝜽) depending 

on multiple variables and want to take the HT of 𝑔(𝜔, 𝜽) with respect to 𝜔, we will explicitly 

indicate the variable used in the transformation by adding a subscript under the 𝐻 symbol. For 

example, for 𝑔(𝜔, 𝜽), we will designate with 𝐻𝜔𝑔(𝜔, 𝜽) the following: 

𝐻𝜔𝑔(𝜔, 𝜽) =
1

𝜋
𝑃∫

𝑔(�̂�, 𝜽)

𝜔 − �̂�
𝑑�̂�

∞

−∞

 (4) 
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2.2 The Bayesian Hilbert Transform of Impedance Data 

In this section, we describe how the BHT of EIS data is formulated. The BHT methodology is 

schematically illustrated in Figure 1. The cornerstone of the method is to approximate the 

impedance using a finite expansion over a latent vector 𝒙. Then, from 𝒙, we compute the HT 

by matrix multiplication. Throughout, we will use Bayesian statistics. That is, we will attach a 

Gaussian probability distribution to the regressed impedance and the predicted HT by assuming 

that the latent 𝒙 follows some prior pdf. Most importantly, we provide a set of scores that gauge 

how experimental, regressed, and HT EIS spectra compare to one another. 

2.2.1 Approximation 

As outlined in the introduction, we will leverage an expansion of the impedance on some basis 

set {𝜓(𝜔, 𝜆)}, where the 𝜓(𝜔, 𝜆)’s are complex-valued transfer functions dependent on a 

parameter 𝜆 such that lim
𝜔→∞

𝜓(𝜔, 𝜆) = 0. Explicitly, we will model the impedance to be 

𝑍(𝜔) = 𝑖𝜔𝐿0 + 𝑅∞ +∫ 𝜓(𝜔, 𝜆) 𝛾(𝜆)𝑑𝜆
ℝ

 (5) 

where 𝛾(𝜆) is some other latent function to be determined. Here, we will take 𝜓(𝜔, 𝜏) =
1

1+𝑖 𝜔𝜏
 

and 𝜆 = log 𝜏 to obtain a DRT-like approximation of the following type: [41] 

𝑍(𝜔) = 𝑖𝜔𝐿0 + 𝑅∞ +∫ 𝜓(𝜔, 𝜏) 𝛾(log 𝜏)𝑑log𝜏
∞

−∞

 (6) 

If the term 𝑖𝜔𝐿0 is discarded, the HTs of the real or imaginary parts of the impedance can be 

obtained using 𝐻𝜔𝜓(𝜔, 𝜏) = 𝑖 𝜓(𝜔, 𝜏) as 
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𝐻𝑍(𝜔) = ∫ 𝐻𝜔(𝜓(𝜔, 𝜏))𝛾(log 𝜏)𝑑log𝜏
∞

−∞

 

= 𝑖 ∫ 𝜓(𝜔, 𝜏) 𝛾(log 𝜏)𝑑log𝜏
∞

−∞

 

(7) 

Explicitly, if we define 𝜓re(𝜔, 𝜏) = Re(𝜓(𝜔, 𝜏)) =
1

1+(𝜔𝜏)2
 and 𝜓im(𝜔, 𝜏) = Im(𝜓(𝜔, 𝜏)) =

−
𝜔𝜏

1+(𝜔𝜏)2
, we can write that 

𝑍re(𝜔) = −𝐻𝑍im(𝜔) 

= ∫ 𝜓re(𝜔, 𝜏) 𝛾(log 𝜏)𝑑log𝜏
∞

−∞

 
(8a) 

𝑍im(𝜔) = 𝐻𝑍re(𝜔) 

= ∫ 𝜓im(𝜔, 𝜏) 𝛾(log 𝜏)𝑑log𝜏
∞

−∞

 
(8b) 

Therefore, if we can estimate 𝛾(log 𝜏) from 𝑍re(𝜔) or 𝑍im(𝜔), then we will be able to obtain 

𝑍im(𝜔) or 𝑍re(𝜔), respectively, thanks to (8). We must stress that, in the context of this article, 

we will not aim to assign any physical meaning to the (latent) function 𝛾(log 𝜏). Also, if we 

choose 𝛾(log 𝜏) = ∑ 𝑅𝑛 𝜏 𝛿(𝜏 − 𝜏𝑛)
𝑁
𝑛=1 , where 𝑅𝑛 is some parameter and 𝛿(𝜏 − 𝜏𝑛) is a Dirac 

distribution centered at 𝜏𝑛, we retrieve the Voigt expansion used elsewhere in the context of 

the KK tests.[23, 25, 29] 

To approximate 𝛾(log 𝜏)  numerically, we expand it over a finite set of functions ℬ =

{𝜙1(log 𝜏), 𝜙2(log 𝜏),… , 𝜙𝑁(log 𝜏)} as 

𝛾(log 𝜏) = ∑𝛾𝑛𝜙𝑛(log 𝜏) 

𝑁

𝑛=1

 (9) 
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where the 𝛾𝑛’s are scalars. By plugging (9) into (6), we can write the following two vector 

equations 

𝒁re = 𝑅∞𝟏 + 𝑨γ,re𝜸 
(10a) 

𝒁im = 𝐿0𝝎+ 𝑨γ,im𝜸 
(10b) 

where 𝜸 = (𝛾1, 𝛾2, … , 𝛾𝑁)
⊤ ∈ ℝ𝑁  and the 𝒁re, 𝒁im, 𝟏, 𝝎 ∈ ℝ𝑀  are vectors such that, for 1 ≤

𝑚 ≤ 𝑀, (𝒁re)𝑚 = 𝑍re(𝑓𝑚), (𝒁im)𝑚 = 𝑍im(𝑓𝑚), (𝟏)𝑚 = 1, and (𝝎)𝑚 =  𝜔𝑚. Explicitly, the 

entries of the matrices 𝑨γ,re, 𝑨γ,im ∈ ℝ
𝑀×𝑁 are defined as 

(𝑨γ,re)𝑚𝑛
= ∫  𝜓re(𝜔, 𝜏) 𝜙𝑛(log 𝜏)𝑑log𝜏

∞

−∞

 (11a) 

(𝑨γ,im)𝑚𝑛
= ∫ 𝜓im(𝜔, 𝜏) 𝜙𝑛(log 𝜏) 𝑑log𝜏

∞

−∞

 (11b) 

We note that these two matrices may be obtained with any of the methods described 

elsewhere.[40, 42] 

For notational convenience, we will define the following two matrices: 

𝑨re = (𝟏, 𝑨γ,re) (12a) 

𝑨im = (𝝎,𝑨γ,im) (12b) 

which allow us to rewrite (10) more compactly in the form 

𝒁re = 𝑨re𝒙 (13a) 

𝒁im = 𝑨im𝒙 (13b) 
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where the subscripts have been dropped, 𝒙 = (𝑅∞ 𝜸⊤)⊤ for (13a), and 𝒙 = (𝐿0 𝜸⊤)⊤ for 

(13b). 

We will suppose that a given EIS experiment is a realization of the following stochastic process: 

𝒁exp,re = 𝑨re𝒙 + 𝜺re  (14a) 

𝒁exp,im = 𝑨im𝒙 + 𝜺im (14b) 

where the “errors”, 𝜺re  and 𝜺im , are two independent Gaussian RVs, such that 

𝜺re, 𝜺im~𝒩(𝟎, 𝜎𝑛 
2 𝐈 ) with 𝐈 being the 𝑀 ×𝑀 identity matrix. In the ensuing derivation, we 

will drop the subscripts “re” and “im” from (14) as the two are notationally identical. 

2.2.2 Bayesian Hilbert Transform 

Bayesian methods leverage conditional probabilities. In particular, we can write that [43-45] 

𝑝(𝒙|𝝎, 𝒁exp)𝑝(𝒁exp|𝝎) = 𝑝(𝒙)𝑝(𝒁exp|𝝎, 𝒙) (15) 

where 𝑝(⋅) is the pdf of the RV in the brackets, the symbol “|” indicates “conditioned to”, and, 

again, 𝒁exp  is the experimentally measured real or imaginary part of the impedance. The 

𝑝(𝒁exp|𝝎, 𝒙) can be obtained from (14) as 

𝑝(𝒁exp|𝝎, 𝒙) = 𝑝(𝜺) ∝ exp (−
1

2𝜎𝑛2
‖𝑨𝒙 − 𝒁exp ‖

2
) (16) 

If we specify a prior on 𝒙 (i.e. we assume 𝑝(𝒙)), then we can obtain 𝑝(𝒙|𝝎, 𝒁exp). We will 

take 𝒙~𝒩(0,𝑾−1), i.e., 

𝑝(𝒙) ∝ exp (−
1

2
𝒙⊤𝑾𝒙) (17) 
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with the matrix 𝑾 defined as 

𝑾 =
1

𝜎𝛽
2 𝑰 +

1

𝜎𝜆
2 (
0 0
0 𝑫𝑞

⊤𝑫𝑞 
) 

(18) 

where 𝜎𝛽
2 and 𝜎𝜆

2 are two real numbers and 𝑫𝑞 is the qth differentiation matrix.[40, 42] 

Plugging (16) and (17) into (15) gives the posterior 

𝑝(𝒙|𝝎, 𝒁exp) ∝ exp (−
1

2𝜎𝑛2
‖𝑨𝒙 − 𝒁exp ‖

2
−
1

2
𝒙⊤𝑾𝒙) (19) 

From the latter, it follows that 

𝒙|𝝎,𝒁exp~𝒩(𝝁𝑥, 𝚺𝑥) (20) 

where 

𝝁𝑥 =
1

𝜎𝑛2
𝚺𝑥𝑨

⊤𝒁 (21a) 

𝚺𝑥 = (
1

𝜎𝑛2
𝑨⊤𝑨 +𝑾)

−1

 (21b) 

We note that 𝝁𝑥 and 𝚺𝑥 are functions of the scalars 𝜎𝑛
2, 𝜎𝛽

2, and 𝜎𝜆
2, which we will collect in 

the vector 𝜽 = (𝜎𝑛
2, 𝜎𝛽

2, 𝜎𝜆
2)
⊤

. 

Once the 𝒙|𝒁exp  is estimated, we can use (8) to compute 𝑍H(𝜔⋆) , either −𝐻𝑍im(𝜔⋆)  or 

𝐻𝑍re(𝜔⋆), at a new angular frequency 𝜔⋆ as 

𝑍H(𝜔⋆) = 𝒉 𝒙~𝒩(𝒉 𝝁𝑥,  𝒉 𝚺𝑥𝒉
⊤) (22) 
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where the column vector 𝒉 ∈ ℝ𝑁+1 is either 𝒉re or 𝒉im defined next. We note that (𝒉re)1 =

(𝒉im)1 = 0, while all other entries (for 𝑛 = 1, 2, 3, … , 𝑁) are 

(𝒉re)𝑛+1 = ∫ 𝜓re(𝜔⋆, 𝜏)𝜙𝑛(log 𝜏)𝑑log𝜏
∞

−∞

 (23a) 

(𝒉im)𝑛+1 = ∫ 𝜓im(𝜔⋆, 𝜏)𝜙𝑛(log 𝜏) 𝑑log𝜏
∞

−∞

 (23b) 

More precisely, for the HT of the imaginary part of the data (𝒁exp = 𝒁exp,im & 𝒁H = 𝒁H,re) 

we need to take 𝒉 = 𝒉re. Instead, for the HT of the real part of the data (𝒁exp = 𝒁exp,re & 

𝒁H = 𝒁H,im) we need to set 𝒉 = 𝒉im. 

We can rewrite (22) in matrix form as 

𝒁H(𝝎⋆) = 𝑯𝒙~𝒩(𝝁H, ΣH) (24) 

where the angular frequency vector is defined as 𝝎⋆ = (𝜔⋆,1, 𝜔⋆,2, … , 𝜔⋆,𝐾)
⊤
∈ ℝ𝐾and the 

𝒁H(𝝎⋆) = (𝑍H(𝜔⋆,1), 𝑍H(𝜔⋆,2),… , 𝑍H(𝜔⋆,𝐾))
⊤

∈ ℝ𝐾. Further to that, 

𝝁𝐻 = 𝑯𝝁𝑥 (25a) 

ΣH = 𝑯 𝚺𝑥𝑯
⊤ (25b) 

with the following definition of the matrix 𝑯 ∈ ℝ𝐾×(𝑁+1) 

𝑯(𝝎⋆) =

(

 
 

𝒉(𝜔⋆,1)

𝒉(𝜔⋆,2)

⋮
𝒉(𝜔⋆,𝐾))

 
 

 (26) 
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The DRT-only part of the EIS spectrum, i.e., 𝑍DRT, for which the resistance and inductance 

contributions are not considered, can be obtained at 𝝎⋆ using  

𝒁DRT(𝝎⋆) = 𝑨DRT 𝒙 (27) 

where the  𝑨DRT ∈ ℝ
𝐾×(𝑁+1)  is defined following an analogous reasoning and notation behind 

(23) and (26). In particular, we will define the entries of 𝑨DRT,re or 𝑨DRT,im to be 0 in the first 

column, i.e. (𝑨DRT,re)𝑘,1 = (𝑨DRT,im)𝑘,1 = 0, and 

(𝑨DRT,re)𝑘,𝑛+1 = ∫  𝜓re((𝝎⋆)𝑘, 𝜏) 𝜙𝑛(log 𝜏)𝑑log𝜏
∞

−∞

 (28a) 

(𝑨DRT,im)𝑘,𝑛+1 = ∫ 𝜓im((𝝎⋆)𝑘, 𝜏) 𝜙𝑛(log 𝜏) 𝑑log𝜏
∞

−∞

 (11b) 

for 𝑘 = 1,2, … , 𝐾 and 𝑛 = 1,2, … ,𝑁. As above 𝒁DRT(𝝎⋆) is a multivariate gamma, i.e., 

𝒁DRT(𝝎⋆)~𝒩(𝝁DRT, ΣDRT) (29) 

 where 𝝁DRT and 𝚺DRT are defined as  

𝝁DRT = 𝑨DRT 𝝁𝑥 (30a) 

𝚺DRT = 𝑨DRT 𝚺𝑥 𝑨DRT
⊤  (29b) 

 

2.2.3 Choosing the Hyperparameters 

The analysis described in the previous subsection can be carried out only if the hyperparameter 

vector 𝜽 = (𝜎𝑛
2, 𝜎𝛽

2, 𝜎𝜆
2)
⊤

 is set.[43, 44] To determine it, we will maximize the marginal 
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likelihood (or evidence),[46] obtained by integrating (or marginalizing) the likelihood, (16), 

with respect to the prior: 

𝑝(𝒁exp|𝝎, 𝜽) = ∫ 𝑝(𝒁exp|𝒙, 𝜎𝑛
2)𝑝(𝒙|𝜎𝛽

2, 𝜎𝜆
2) 

ℝ𝑁+1
𝑑𝒙 (31) 

As the prior is Gaussian, we can follow classical manipulations (see Appendix A) and obtain[45] 

log 𝑝(𝒁exp|𝝎, 𝜽) =
1

2
log|𝑾| −

1

2
log|𝚺𝑥

−1| −
𝑀

2
log(𝜎𝑛

2) − 𝐸(𝝁𝑥) −
𝑀

2
log(2𝜋) (32) 

In the implementation of the BHT method, the 𝜽 maximizing the experimental evidence is 

found by minimizing the negative log-likelihood defined as 

ℒ(𝜽,𝝎, 𝒁exp) = − log 𝑝(𝒁exp|𝝎, 𝜽) (33) 

in other words 

𝜽 = argmin
𝜽′

ℒ(𝜽′, 𝝎, 𝒁exp) 
(34) 

2.3 Scoring the EIS Data 

In the scientific literature, there are no metrics that can be used to score the compliance of the 

EIS data with the KK relations. In this section, we develop four new metrics based on residuals, 

mean predictions, and distances between estimated distributions. All the scores were defined 

so that their outcomes are real numbers between 0 and 1. An HT-consistent EIS spectrum will 

score near 1. Instead, an HT-inconsistent EIS spectrum will score close to 0. 

In the literature about KK relations applied to EIS, the quality of the impedance data is typically 

assessed by examining the residuals. Such residuals are obtained by subtracting (up to a 

constant or a linear function of the angular frequency) the experimental real/imaginary data 
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from the HT estimate obtained using the imaginary/real part of the EIS data. One metric could 

leverage the residuals by computing the number of experimental points that lie within 𝑘 

standard deviations of the HT prediction. Such a score can be formally defined as  

𝑠 𝑘𝜎,re =
1

𝑀
∑ 1(|𝑅∞ + 𝑍H,re(𝜔𝑚) − 𝑍exp,re(𝜔𝑚)| ≤ 𝑘 𝜎(𝜔𝑚))

𝑀

𝑚=1

 (35a) 

𝑠 𝑘𝜎,im =
1

𝑀
∑ 1(|𝜔𝑚𝐿0 + 𝑍H,re(𝜔𝑚) − 𝑍exp,im(𝜔𝑚)| ≤ 𝑘 𝜎(𝜔𝑚))

𝑀

𝑚=1

 (35b) 

where 1(⋅) is the indicator function, which is 1 if its argument is true and 0 otherwise, 𝜎(𝜔𝑚) 

is the standard deviation of the HT 𝜔𝑚, and 𝑅∞ and 𝐿0 are obtained by Bayesian regression 

from 𝑍exp,re and 𝑍exp,im, respectively. We note that 0 ≤ 𝑠 𝑘𝜎 ≤ 1 and 𝑠𝑘𝜎 ≤ 𝑠 (𝑘+1)𝜎 and that 

the smaller the residual the closer will the score be to 1. 

The 𝑠 𝑘𝜎,re and 𝑠𝑘𝜎,im metrics compare data, the realization of an RV, and predictions, other 

RVs. However, other useful scores could compare the two de facto analogous RVs, that can be 

obtained from different parts of the data, namely 𝒁H(𝝎)~𝒩(𝝁H, ΣH)  and 

𝒁DRT(𝝎)~𝒩(𝝁DRT, ΣDRT). One proposed score, which we call 𝑠𝜇, consists in summing 1 to 

the negative of the relative distance between the mean vectors 𝝁DRT and 𝝁H: 

𝑠𝜇,re = 1 −
‖𝝁DRT,re − 𝝁H,re‖

‖𝝁DRT,re‖ + ‖𝝁H,re‖
 (36a) 

𝑠𝜇,𝑖𝑚 = 1 −
‖𝝁DRT,im − 𝝁H,im‖

‖𝝁DRT,im‖ + ‖𝝁H,im‖
 (36b) 

From these last two formulas, it follows that 0 ≤ 𝑠𝜇 ≤ 1 and that the closer is 𝑠𝜇 to the 1,  the 

more similar will be the two means 𝝁DRT and 𝝁H.  
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Another sensible approach entails comparing the pdf’s of 𝒁H(𝝎) and 𝒁DRT(𝝎). This can be 

done using a number of metrics. One particularly convenient one is called Hellinger distance 

(HD).[47] The square of the HD, (HD(𝑓, 𝑔))
2

, between two pdfs 𝑓(𝑥)  and 𝑔(𝑥)  can be 

defined as 

(HD(𝑓, 𝑔))
2
= 1 −∫√𝑓(𝑥)𝑔(𝑥) 𝑑𝑥 (37) 

where 0 ≤ HD(𝑓, 𝑔) ≤ 1 and HD(𝑓, 𝑔) = 0 if and only if 𝑓(𝑥) = 𝑔(𝑥). Therefore, a viable 

score could use[47] 

(HD(𝑝𝑍DRT , 𝑝𝑍H)(𝜔⋆) )
2
= 1 − √

2𝜎DRT𝜎H

𝜎DRT
2 +𝜎H

2 𝑒
−
1
4
(𝜇DRT−𝜇H)

2

𝜎DRT
2 +𝜎H

2
 (38) 

where 𝑝𝑍DRT and 𝑝𝑍H are the pdfs of 𝑍DRT(𝜔⋆) and 𝑍H(𝜔⋆) at the scalar angular frequency 𝜔⋆. 

We must point out that in (38) the dependence of 𝜇DRT, 𝜎DRT , 𝜇H, and 𝜎H  on 𝜔⋆ has been 

omitted for the sake of keeping the equation compact. Similar to what we did for the residuals, 

we can define an average HD as follows 

HD̅̅ ̅̅ =
1

𝑀
∑ HD(𝑝𝑍DRT , 𝑝𝑍H)(𝜔𝑚) 

𝑀

𝑚=1

 (39) 

which allows us to compute two HD scores, 𝑠HD,re and 𝑠HD,im 

𝑠HD,re = 1 − HD̅̅ ̅̅ re (40a) 

𝑠HD,im = 1 − HD̅̅ ̅̅ im (40b) 

where HD̅̅ ̅̅ re is the average Hellinger distance between 𝑍DRT,re and 𝑍H,re over 𝜔⋆ and HD̅̅ ̅̅ imis 

the average Hellinger distance between 𝑍DRT,im and 𝑍H,im over 𝜔⋆. We should stress that while 
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𝑍DRT,re and 𝑍H,im are obtained from the sole real part of the EIS spectrum, 𝑍DRT,im and 𝑍H,re 

are calculated using only the imaginary portion of the EIS. Therefore, both HD̅̅ ̅̅ reand HD̅̅ ̅̅ im 

compare the real with the imaginary part of the EIS data. 

A final metric leverages the Kullback-Leibler (KL) discrepancy or relative entropy, 

𝑑KL(⋅ || ⋅), which is often used to measure the degree of similarity between the two pdfs.[45] 

Unfortunately, we were not able to produce a consistent score using the KL divergence alone, 

because 𝑑KL(⋅ || ⋅) is neither symmetric nor bounded. Instead, we will use the Jensen-Shannon 

divergence (JSD), which is based on the KL but is symmetric and bounded between 0 and 

log 2.[48] If we define 

𝑍M(𝜔⋆) =
1

2
(𝑍DRT(𝜔⋆) + 𝑍H(𝜔⋆)) (41a) 

the JSD between 𝑍DRT(𝜔⋆) and 𝑍H(𝜔⋆) is the following symmetrized KL divergence: 

JSD(𝑍DRT(𝜔⋆), 𝑍H(𝜔⋆)) =
1

2
(𝑑KL(𝑍DRT(𝜔⋆)||𝑍M(𝜔⋆)) + 𝑑KL(𝑍H(𝜔⋆)||𝑍M(𝜔⋆))) (42a) 

As we did above for residuals and HD, the average JSD will be averaged over the experiment 

as follows: 

JSD̅̅ ̅̅̅(𝑍DRT, 𝑍H) =
1

2𝑀
∑ (𝑑KL(𝑍DRT(𝜔𝑚)||𝑍M(𝜔𝑚)) + 𝑑KL(𝑍H(𝜔𝑚)||𝑍M(𝜔𝑚)))

𝑀

𝑚=1

 (43a) 

Therefore, we can develop two JSD scores 

𝑠JSD,re =
log 2 − JSD̅̅̅̅̅re

log 2
 (44a) 
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𝑠JSD,im =
log 2 − JSD̅̅̅̅̅im

log 2
 (44b) 

where JSD̅̅ ̅̅̅re  is the average JSD between 𝑍DRT,re  and 𝑍H,re  and JSD̅̅ ̅̅̅im is the average JSD 

between 𝑍DRT,im  and 𝑍H,im . Consistently with what we did for other scores, the 𝑠JSD’s are 

bounded between 0 and 1 and a 𝑠JSD close to 1 implies that 𝑍DRT and 𝑍H are consistent, while 

if the 𝑠JSD nears 0, the two are inconsistent. We must note that no close formula is known for 

the JSD, therefore the JSD̅̅ ̅̅̅  was obtained by Monte Carlo sampling. 

3 Results 

3.1 Synthetic Experiments 

To benchmark the performance of the BHT method, we tested it systematically against 

controlled synthetic experiments with known standard circuits. In this section, we will illustrate 

the BHT framework and the EIS data scoring. The BHT method follows the logical path shown 

in Figure 1. All circuits studied are reported in Table 1 with their parameters listed in Table 2. 

Consistently with our earlier articles, the frequency range of analysis was selected to be 

between 10−4 and 104 Hz with a resolution of 10 points per decade.[49, 50] We must stress 

that the experimental impedance is generated by adding white noise to the real and imaginary 

parts of the exact impedance, consistently with (14) and (16). That is, known the exact circuit 

impedance, 𝑍exact(𝜔), the experimental data 𝑍exp(𝜔) is obtained as follows: 

 𝑍exp(𝜔) = 𝑍exact(𝜔) + 𝜀re + 𝑖 𝜀im (45) 

where 𝜀re and 𝜀im are independent and identically distributed RVs with a Gaussian distribution 

of mean 0 and standard deviation 𝜎𝑛,exp, i.e.,  𝜀re, 𝜀im~𝒩(0, 𝜎𝑛,exp
2 ). We note that 𝜎𝑛,exp is 
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conceptually different from 𝜎𝑛 . While 𝜎𝑛,exp is a parameter used when drawing the synthetic 

experimental data, 𝜎𝑛  is one of the hyperparameters that need to be optimized by maximizing 

the evidence during the analysis. In all stochastic experiments, we will set 𝜎𝑛,exp = 0.8 √Ω, a 

relatively high value for the given circuit parameters. 

As a first step, we investigated how the BHT performs for a resistor in series with a ZARC 

element. The corresponding synthetic impedance spectrum obtained using (45) is shown in 

Figure 2. The real and imaginary parts can be separated and regressed separately using (20) to 

obtain the latent 𝒙. In turn, 𝒙 can be used to obtain 1) the regressed and smoothed impedance, 

𝑍; 2) the 𝑅0- and 𝐿0-subtracted  impedance, 𝑍DRT; and 3) the HT impedance, 𝑍H. The real and 

imaginary parts of the experimental EIS are shown in Figure 2 (b) and (c). In these two panels, 

the mean impedance (black line) and the 3𝜎 credible intervals (solid grey shading) are reported. 

By visual inspection, it appears that the stochastic experiments fall within the credible bands. 

As already outlined above, the hyperparameter vector 𝜽 = (𝜎𝑛
2, 𝜎𝛽

2, 𝜎𝜆
2)
⊤

 used to find these 

estimates was obtained by evidence maximization, which was achieved by finding the 

minimum of ℒ(𝜽,𝝎, 𝒁exp) with respect to 𝜽. We plotted in Figure 3 the ℒ(𝜽,𝝎, 𝒁exp,re), panel 

(a), and ℒ(𝜽,𝝎, 𝒁exp,im) as a function of 𝜎𝛽  and 𝜎𝜆 , where in both cases the 𝜎𝑛  was fixed, 

i.e., 𝜎𝑛 = 𝜎𝑛,exp. We can see that the minimum is rather sharp and elongated along the 𝜎𝜆  

direction, indicating a small penalty on the derivative. Interestingly, for both real and imaginary 

data, the minima are obtained for relatively small values of 
1

𝜎𝛽
2  and 

1

𝜎𝜆
2 (

1

𝜎𝛽
2 = 2.93×10−3 and 

7.36×10−3 and 
1

𝜎𝜆
2 = 1.36×10−3 and 1.36×10−3 for the real and imaginary parts, respectively), 

which correspond to a small smoothing penalty, as realized by the matrix 𝑾, on the priorless 

term 
1

𝜎𝑛
2 𝑨

⊤𝑨. After conducting the Bayesian regression, 𝑍H  and 𝑍DRT  can be predicted. In 
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particular, upon adding the 𝑅∞  or 𝜔𝐿0 , the 𝑍H  can be compared to the experiments. The 

comparison is reported in Figure 4 (a) and (b) for the real and imaginary parts of the EIS, 

respectively. It is apparent that 𝑍H as obtained from the imaginary (real) part can well recover 

the real (imaginary) part of the stochastic experiment. This is further confirmed by the 𝑠𝜇 

values, which are in the range of 0.95-0.98, see Table 3. An alternative view is given by the 

residuals, which are obtained by subtracting the experimental data from the mean HT’s 

impedance, 𝝁H, plus the offset 𝑅∞ or 𝜔𝐿0. Figure 4 (c) and (d) report the real and imaginary 

residuals, respectively, together with their 3𝜎 bands (solid gray region). We can observe that 

all points fall within the grey region, indicating that 𝑠3𝜎,re = 𝑠3𝜎,im = 1. From the scores 

reported in Table 3, the residual scores are high suggesting that the EIS spectrum is HT- (or 

KK-) consistent. However, we note that a visual inspection of the residuals does not yield any 

direct information about the distribution of the residuals. Therefore, we also reported the 

kernel-estimated densities of the residuals in Figure 4 (e) and (f). There, we observe that the 

densities are centered around 0 and endowed with a high degree of symmetry. Further, as one 

can see from Table 3, the 𝑠𝜇,  𝑠HD, and 𝑠JSD are closer to 1 rather than 0, suggesting that the 

estimated distributions of 𝑍H and 𝑍DRT also match one another. 

We then analyzed two sets of synthetic experiments based on two ZARCs in series, see Table 

1 and Table 2 for the exact impedance and parameter values, respectively. For these circuits, it 

is well known that the latent 𝛾 cannot be obtained easily, especially if the smoothing (i.e. 
1

𝜎𝜆
2) 

is too strong and the characteristic timescales are partially or fully overlapping.[43, 44] Figure 

5 (a) and (b) report the exact and stochastic EIS spectra of the two cases. Figure 5 (c) and (d) 

correspond to the regressed imaginary parts. We note that similar regression was also done for 

the real part, see Table 3, but is not shown for the sake of brevity. Before discussing Figure 6, 
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we must point out that the panels (a) & (c) and (b) & (d) of Figure 5 correspond to (a), (c) & 

(e) and (b), (d) & (f) in Figure 6. The obtained HT’s impedances, 𝑍H, are plotted in Figure 6 

(a) and (b). Both 𝑍H match well the synthetic experiment, leading to 𝑠𝜇 ≈ 1. Similarly, we 

plotted residuals and their distributions in Figure 6 (c) & (e) and (d) & (f). Unsurprisingly, the 

results are consistent with expectations that the residuals should fall within the 3𝜎 bands with 

rather symmetric distributions. As shown in Table 3, all scores confirm the built-in consistency 

of the EIS spectrum. 

We also applied the BHT method to the piecewise constant (PWC) element. This element is 

somewhat pathological because the exact 𝛾 is discontinuous and therefore requires ad hoc 

regularization.[43, 44] We report in Figure 7 (a) the exact and stochastic EIS of the PWC 

element and in Figure 7 (b) the regressed imaginary part. The 𝑍H,im, reported in Figure 7 (c), 

which was obtained with the data of Figure 7 (b), matches the experiment well. Furthermore, 

the residuals, shown in Figure 7 (d), appear to be well within the 3𝜎 credible interval with the 

underlying distribution being characterized by some degree of symmetry. The scores, see Table 

3, are also consistent with the visual analysis and indicate, as expected, that the data complies 

with the HT. 

The stochastic experiments illustrated above assumed the presence of only a resistor connected 

in series to the main elements. However, inductive features can also be present in the EIS data. 

These inductances can be modeled by adding a 𝜔𝐿0  term to the imaginary part of the 

impedance, see (5). While the HT of a constant is formally 0, the HT of 𝜔𝐿0 is infinite.[31] 

Therefore, the inductance component needs to be subtracted from the impedance data at the 

regression stage and added later. This is a delicate issue that the BHT method can handle. We 

show that in Figure 8 (a), where an inductor is added to the circuit of Figure 2 (a), see Table 2 
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for the parameter values. Our framework can not only recover the imaginary part of the 

impedance, as shown in Figure 8 (b), but also reliably retrieve an HT of the data that matches 

the experiments well. This consistency is shown in the prediction and residual plots in Figure 

8 (c) and (d), respectively, and in all computed scores, see Table 3. One may also wonder how 

well the BHT does in retrieving the mean values of the circuit parameters, i.e., 𝑅∞ and 𝐿0, as 

and in retrieving the 𝜎𝑛,exp from 𝜽 . We tested that by carrying out 2000 stochastic experiments, 

for which the 𝜽’s were obtained by maximizing the evidence. The resulting mean values of 𝑅∞ 

and 𝐿0 and the corresponding 𝜎𝑛 = (𝜽)1 are shown in Figure 9 as a joint distribution plot. The 

values obtained deviate little from their externally assigned values, see Table 2, showing little 

correlation to one another. One important point to note is that, while using these point estimates 

does not comply with the Bayesian philosophy, we think it is important to highlight that the 

BHT methodology developed here consistently retrieves the ground truth of the studied 

synthetic experiments. 

As a last stochastic experiment, we wish to determine if the BHT can detect inconsistent 

impedance data. To this end, we use a circuit composed of two slightly different transfer 

functions for the real and imaginary parts. The actual model is shown in the last row of Table 

1, and the parameters can be found in Table 2. The Nyquist plot of such an artificial impedance 

is shown in Figure 10 (a). In this specific case, the exact impedance is not a transfer function, 

and therefore, the HT is expected to detect that. In other words, if we perform HT on 𝑍re(𝜔), 

we will not be able to obtain 𝑍im(𝜔) and vice versa. The inconsistency of the data is not 

apparent if the real and imaginary parts of the EIS are regressed using the BHT, see Figure 10 

(a) and (b). On the other hand, the HTs in Figure 11 (a) and (b) show a significant deviation 

from the experimental data. This discrepancy is even more evident if one looks at the residuals, 

which are bimodally distributed, see Figure 11 (c) and (d). Further, all scores in Table 3 are 
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lower than that of the previous synthetic experiments, indicating a decreased reliability and 

inconsistency in the data.  

3.2 Real Experiments 

The analysis of the BHT method would be incomplete if real experiments were not analyzed.  

For this reason, we examined two sets of experimental data that had been used in our prior 

publications.[42-44] First, we tested the BHT against the data obtained from a commercial 

battery.[42, 44] The EIS spectrum was collected from a LiCoO2 battery (Ansmann 18650) at a 

25% state of charge from 5 mHz to 600 Hz with 10 points per decade. The impedance spectrum 

is drawn in Figure 12 (a). We first estimated the imaginary part of the spectrum using Bayesian 

regression. The estimated impedance data shows little deviation from the experimental 

measurement and falls within an extremely narrow credible band, see Figure 12 (b). For the 

obtained 𝑍H,re, the credible band only slightly enlarges to be observable and the deviations are 

still small, see Figure 12 (c). We further plotted the discrepancy between 𝑍H and 𝑍exp in Figure 

12 (d), where clear deviations appear only at low frequencies for 𝑓 ≤ 10−2  Hz. The 

distribution of residuals reflects this insight and is centered at the origin with small 

dissymmetric fringes around it. The scores in Table 3 also support the above assessment and 

suggest that the quality of the imaginary part of the spectrum is likely to be better than that of 

the real part. 

Lastly, we analyzed an EIS spectrum obtained from a symmetrical solid oxide fuel cell (SOFC) 

with 15% Sm-doped CeO2 (SDC) as the electrolyte and Ba0.95La0.05Fe0.95P0.05O3−δ (BLFP) as 

the electrode.[51] The impedance data were obtained at 700 °C under a synthetic air 

atmosphere (a mixture of N2:O2 in a 0.79:0.21 ratio) and a total pressure of 1 atm. The EIS 

measurement was conducted in a frequency ranging from  0.1 Hz to 2.47×104 Hz with 15 points 
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per decade, as reported in Figure 13 (a). While we performed BHT regression for both the real 

and imaginary part of the experimental data, we only show the analysis of 𝑍exp,im. As shown 

in Figure 13 (b), Bayesian regression is capable of capturing the imaginary part well with no 

notable discrepancy and a credible band too narrow to be observable. The high quality of the 

data is evident from Figure 13 (d), where a remarkably good match is observed between the 

𝑅∞ + 𝑍H,re and the 𝑍exp,im. We further show the residual between these two terms in Figure 

13 (d). One can notice that the residual points are unimodally distributed with the center of the 

distribution placed near the origin. The high quality of the impedance data is further confirmed 

by the scores listed in Table 3, which indicate strong compliance with the HT.  

4 Conclusions 

Compliance with the HT or the KK relations is a cornerstone of EIS analysis. While this is an 

important and generally appreciated fact, practitioners rarely test their data for that. In this 

article, we aim at bridging this gap by putting forward two innovations. First, we reframed the 

HT in a probabilistic Bayesian framework. Doing so allowed us to identify the credibility of 

the HT’d EIS data and, in turn, use the credibility to compare predictions. Second, we 

established several criteria to score the impedance data. We assigned the score value between 

0 and 1, where the higher the score is, the better is the experimental impedance 𝑍(𝜔) 

compliance with the HT. The scores were developed leveraging residuals, distances between 

means, as well as probabilistic discrepancies between predictions.  

Looking forward, various research topics could expand on this work. The basis set used here 

could be further extended to include spectral and pseudo-spectral elements, e.g., radial-basis 

functions, to improve accuracy.  Also, more metrics may be developed to score the quality of 

EIS against the KK relation or HT. Furthermore, new standardized test cases and procedures 
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may be proposed to benchmark algorithms that assess the compliance of EIS data with the HT 

or KK relations. 

Sharing our source code may prove to be useful to researchers and speed up innovations in this 

area. We also added related code to the DRTtools with the intent of releasing an easy-to-use 

HT package to the entire electrochemical community. Lastly, we wish to emphasize that by 

formalizing a BHT method, this article will likely revive research in the area and promote the 

benchmarking of the EIS data consistency by HT or KK relations.  
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List of abbreviations and symbols 

BHT Bayesian Hilbert transform  

DRT Distribution of relaxation times 

EIS Electrochemical impedance spectroscopy 

HT Hilbert transform 

HD Hellinger distance 

JSD Jensen-Shannon divergence 

KK Kramers-Kronig 

KL Kullback-Leibler 

pdf Probability distribution function 

RV Random variable 

SOFC Solid oxide fuel cell 

𝑨 Matrix used to regress the experimental data, 𝒁exp 

𝑨DRT Matrix used to calculate 𝒁DRT 

𝑫𝑞 Differentiation matrix (qth order) 

𝑓 Frequency 

𝒉 Column vector used to compute 𝑍H 

𝑯 Matrix used to compute 𝒁H 

𝐈 Identity matrix 

𝐿0 Inductance 

ℒ(𝜽,𝝎, 𝒁exp) Negative log-likelihood 

𝑝(⋅) Probability distribution function 

𝑅∞ Ohmic resistance 

𝑠 𝑘𝜎 Score based on the residuals  

𝑠𝜇 Score based on the estimated means 

𝑠HD Score based on the Hellinger distance score 

𝑠JSD Score based on the Jensen-Shannon divergence 
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𝑾 Inverse of covariance matrix of the prior on 𝒙 

𝒙 Latent vector 

𝒁exp Vector of experimental EIS data 

𝒁H Vector of HT’d impedance 

𝒁DRT Vector of impedance (DRT part only - i.e., 𝑅∞ and 𝑖𝜔𝐿0 terms excluded) 

𝛾(log 𝜏) Latent function 

𝜸 Vector of 𝛾(log 𝜏)’s 

𝜀 Experimental error 

𝜽 Vector of hyper-parameters, i.e., 𝜽 = (𝜎𝑛
2, 𝜎𝛽

2, 𝜎𝜆
2)
⊤

 

𝝁𝑥 Mean of 𝒙 

𝝁H Mean of 𝒁H 

𝝁DRT Mean of 𝒁DRT 

𝜎𝑛,exp Standard deviation of the synthetic impedance error 

𝜎𝑛 Hyperparameter (standard deviation of the experimental error) 

𝜎𝛽 Hyperparameter (norm penalty) 

𝜎𝜆 Hyperparameter (norm of the derivative penalty) 

𝚺𝑥 Covariance of 𝒙 

𝚺H Covariance of 𝒁H 

𝚺DRT Covariance of 𝒁DRT 

𝜙𝑛(log 𝜏) Basis function 

𝜓(𝜔, log 𝜏) Complex transfer function 

𝜔 Angular frequency (𝜔 = 2𝜋𝑓) 

𝜔⋆ Angular frequency at which one predicts 𝑍H 

𝝎 Vector of angular frequencies 

𝝎⋆ Vector of 𝜔⋆’s 
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Algorithm 

Input: 𝒁exp,re and 𝒁exp,im 

Output: 𝒁re, 𝒁im, 𝒁H,re, 𝒁H,im, 𝒁DRT,re, and 𝒁DRT,im 

for 𝒁exp in {𝒁exp,re, 𝒁exp,im}: 

 1. Compute optimal 𝜽 = (𝜎𝑛
2, 𝜎𝛽

2, 𝜎𝜆
2)
⊤

using (33) 

 2. Compute optimal 𝜽 = (𝜎𝑛
2, 𝜎𝛽

2, 𝜎𝜆
2)
⊤

using (33) 

 3. Estimate 𝝁𝑥 and 𝚺𝑥 using (21) 

 4. Compute 𝝁H and 𝚺H using (25), 𝝁DRT and 𝚺DRT using (29) 

end 

compute the scores 𝑠𝑘𝜎, 𝑠𝜇, 𝑠HD, and 𝑠JSD. 

plot: a. 𝒁H,re + 𝑅∞ and 𝒁H,im + 𝑖𝜔𝐿0 against 𝒁exp,re and 𝒁exp,im, respectively 

 b. residuals and density distribution 
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Table 1 – Exact EIS responses used for the stochastic experiments. 

Model 𝑍(𝑓) Reference Ref. 

Figures 

ZARC 𝑅∞ +
𝑅ct

1 + (𝑖2𝜋𝑓𝜏0)𝜙
 [30] 

2-4 

2×ZARC 𝑅∞ +
𝑅ct,1

1 + (𝑖2𝜋𝑓𝜏1)𝜙1
+

𝑅ct,2
1 + (𝑖2𝜋𝑓𝜏2)𝜙2

 [30] 
5-6 

Piece-wise 

Constant 

(PWC) 

𝑅∞ +
𝑅ct

ln
𝜏2
𝜏1

(ln (1 −
𝑖

2𝜋𝑓𝜏1
) − ln (1 −

𝑖

2𝜋𝑓𝜏2
)) [43] 

7 

L0+ZARC 
𝑖𝜔𝐿0 + 𝑅∞ +

𝑅ct
1 + (𝑖2𝜋𝑓𝜏0)𝜙

  
8-9 

Failed 

experiment 

𝑅∞ + Re (
𝑅ct

1 + (𝑖2𝜋𝑓𝜏0)𝜙1
) + Im(

𝑅ct
1 + (𝑖2𝜋𝑓𝜏0)𝜙2

)  
10-11 
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Table 2 – Values of the circuit parameters utilized in the stochastic experiments. 

 

Model 𝑅∞ (Ω) 𝑅ct (Ω) 𝜏0 (s) 𝜙 𝐿0 (H) 
Ref. 

Figures 

ZARC 10 50 1.0 0.8  2-4 

2×ZARC 20 [50, 50] [0.1, 10] [0.8, 0.8]  5&6 LHS 

2×ZARC 20 [50, 50] [0.1, 1.0] [0.8, 0.8]  5&6 RHS 

PWC 10 50 [10, 0.1]   7 

L0+ZARC 10 50 1.0 0.8 5.0×10-4 8 

L0+ZARC 10 50 1.0 [0.8, 1.0] 5.0×10-4 10-11 
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Table 3 – Scores obtained for synthetic and real experiments.  

 Residual Mean 
Hellinger 

Distance 
 

Jensen-Shannon 

Discrepancy 
 

Ref. 

Figures 

 Element 𝑠1𝜎,re 𝑠2𝜎,re 𝑠3𝜎,re 𝑠1𝜎,im 𝑠2𝜎,im 𝑠3𝜎,im 𝑠μ,re 𝑠μ,im 𝑠HD,re 𝑠HD,im 𝑠JSD,re 𝑠JSD,im 

ZARC 0.877 1.000 1.000 0.605 0.914 1.000 0.991 0.976 0.571 0.636 0.768 0.796 2-4 

2×ZARC 0.741 1.000 1.000 0.667 0.951 1.000 0.995 0.972 0.626 0.606 0.793 0.744 5&6 LHS 

2×ZARC 0.765 1.000 1.000 0.617 0.938 1.000 0.996 0.976 0.619 0.573 0.788 0.711 5&6 RHS 

PWC 0.716 1.000 1.000 0.642 0.938 1.000 0.991 0.962 0.591 0.562 0.771 0.705 7 

L0+ZARC 0.877 1.000 1.000 0.605 0.914 1.000 0.991 0.976 0.571 0.636 0.768 0.796 8 

Failed exp 0.543 0.778 0.864 0.395 0.753 0.852 0.959 0.873 0.351 0.316 0.480 0.422 10-11 

LIB 0.941 0.980 1.000 0.471 0.804 1.000 0.993 0.952 0.810 0.362 0.931 0.460 12 

SOFC 1.000 1.000 1.000 0.840 0.988 1.000 0.997 0.989 0.674 0.522 0.865 0.673 13 
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Figure 1 - Schematic illustration of the Bayesian Hilbert transform method as applied to 

electrochemical impedance spectroscopy data. 
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(a) 

 
(b) (c) 

  
Figure 2 – (a) Nyquist plot of the synthetic experimental and exact impedance. (a) real and (b) 

imaginary parts of the impedance and Bayesian regression. Mean and 3𝜎 credible intervals are 

shown as a black line and a solid grey region, respectively. 
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(a) (b) 

  
Figure 3 – Negative of the log-likelihood, ℒ(𝜽,𝝎, 𝒁exp) = − log 𝑝(𝒁exp|𝝎, 𝜽), computed for 

the (a) real and (b) imaginary of the impedance data of Figure 2. The 𝜎𝑛  was set to be equal to 

𝜎𝑛,exp and the minimum is indicated with the star symbol. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
Figure 4 – (a) real and (b) imaginary part of the HT’s data from Figure 2 with (c) & (d) residuals 

and (e) & (f) their distributions also shown. 
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(a) (b) 

  
(c) (d) 

  
Figure 5 – Nyquist plot of the impedance response of two ZARC elements in series with (a) 

partially and (b) fully overlapping features. (c) and (d) imaginary part of the EIS spectrum as a 

function of the frequency and corresponding to the Nyquist plots in panels (a) and (b), 

respectively. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
Figure 6 – (a) and (b) imaginary part of the HT’s data with (c) & (d) residuals and (e) & (f) their 

distributions also shown. The left-hand and right-hand sides in this Figure correspond to the 

left-hand and right-hand sides of Figure 5. 
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(a) (b) 

  
(c) (d) 

  
Figure 7 – (a) Nyquist plot of the EIS response of a PWC element. (b) The imaginary part of 

the EIS spectrum with Bayesian regression. (c) BHT of the 𝑍exp,im  and (d) corresponding 

residuals vs. frequency. 
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(a) (b) 

  
(c) (d) 

  
Figure 8 – (a) Nyquist plot of the EIS response of a ZARC element in series with a resistor and 

an inductor and (b) its regressed imaginary. (c) BHT of the 𝑍exp,im  and (d) corresponding 

residuals vs. frequency. 
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(a) (b) 

  
Figure 9 – Distribution of the optimal 𝜎𝑛 as obtained by evidence maximization and regressed 

𝑅∞ and 𝐿0, the (a) imaginary and (b) real parts of the EIS spectrum were used to obtain these 

plots. 
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(a) 

 
(b) (c) 

  
Figure 10 – (a) Nyquist plot of the synthetic experimental and exact impedance. (b) real and (c) 

imaginary parts of the impedance and Bayesian regression. Mean and 3𝜎 credible intervals are 

shown as a black line and a solid grey region, respectively.   
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(a) (b) 

  
(c) (d) 

  
Figure 11 – (a) real and (b) imaginary part of the HT’s data from Figure 10 with their (c) & (d) 

residuals and distributions also shown.   
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(a) (b) 

 
 

(c) (d) 

  
Figure 12 – (a) Nyquist plot of the EIS response of battery and (b) its regressed imaginary part. 

(c) BHT of  𝑍exp,im and (d) corresponding residuals vs. frequency with their distribution. 
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(a) (b) 

 
 

(c) (d) 

  
Figure 13 – (a) Nyquist plot of the BLFP|SDC|BLFP SOFC and (b) its regressed imaginary part. 

(c) BHT of  𝑍exp,im and (d) corresponding residuals vs. frequency with their distribution. 
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Appendix A Derivation of the Marginal Likelihood 

We start the derivation by recalling that the error model, (16), can be written as 

𝑝(𝒁exp|𝝎, 𝒙, 𝜎𝑛
2) =

1

(2𝜋𝜎𝑛2)
𝑀
2

exp (−
1

2𝜎𝑛2
‖𝑨𝒙 − 𝒁exp ‖

2
) 

(46) 

and the prior, (17), is 

𝑝(𝒙|𝜎𝛽
2, 𝜎𝜆

2) =
|𝑾|

1
2

(2𝜋)
𝑁+1
2

exp (−
1

2
𝒙⊤𝑾𝒙) (47) 

where 𝑾  depends on 𝜎𝛽
2  and 𝜎𝜆

2 . Therefore, the marginal likelihood can be obtained by 

integrating with respect to 𝒙 the product of (46) and (47): 

𝑝(𝒁exp|𝝎, 𝜽𝐵 ) = ∫ 𝑝(𝒁exp|𝒙, 𝜎𝑛
2)𝑝(𝒙|𝜎𝛽

2, 𝜎𝜆
2) 

ℝ𝑁+1
𝑑𝒙 

=
1

(2𝜋𝜎𝑛2)
𝑀
2

|𝑾|
1
2

(2𝜋)
𝑁+1
2

∫ exp(−𝐸(𝒙))
ℝ𝑁+1

𝑑𝒙 

(48) 

where 

𝐸(𝒙) =
1

2𝜎𝑛2
‖𝑨𝒙 − 𝒁exp ‖

2
+
1

2
𝒙⊤𝑾𝒙 (49) 

In order to integrate ∫ exp(−𝐸(𝒙))
ℝ𝑁+1

𝑑𝒙, we can “complete the square”. This is done by 

grouping all terms with 𝒙 in (49) and rewriting 𝐸(𝒙) as 

𝐸(𝒙) = 𝐸(𝝁𝑥) +
1

2
(𝒙 − 𝝁𝑥)

⊤𝚺𝑥
−1(𝒙 − 𝝁𝑥) (50) 
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with 𝐸(𝝁𝑥) as 

𝐸(𝝁𝑥) =
1

2𝜎𝑛2
‖𝑨𝝁𝑥 − 𝒁exp ‖

2
+
1

2
𝝁𝑥
⊤𝑾𝝁𝑥 (51) 

It follows that 

∫ exp(−𝐸(𝒙))
ℝ𝑁+1

𝑑𝒙

= exp(−𝐸(𝝁𝑥)) ∫ exp(−
1

2
(𝒙 − 𝝁𝑥)

⊤𝚺𝑥
−1(𝒙 − 𝝁𝑥))

ℝ𝑁+1
𝑑𝒙 

(52) 

where the last integral can be computed exactly as 

∫ exp(−
1

2
(𝒙 − 𝝁𝑥)

⊤𝚺𝑥
−1(𝒙 − 𝝁𝑥))

ℝ𝑁+1
𝑑𝒙 = (2𝜋)

𝑁+1
2 |𝚺𝑥|

1
2 (53) 

Using (52) and (53) in (48) allows us to write that 

𝑝(𝒁exp|𝜽) =
1

(2𝜋𝜎𝑛2)
𝑀
2

|𝑾|
1
2|𝚺𝑥|

1
2  exp(−𝐸(𝝁𝑥)) 

(54) 

We take the log of (54) to obtain the log-likelihood as 

log 𝑝(𝒁exp|𝜽) =
1

2
log|𝑾| +

1

2
log|𝚺𝑥| −

𝑀

2
log(𝜎𝑛

2) − 𝐸(𝝁𝑥) −
𝑀

2
log(2𝜋) (55) 

 


