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Abstract 

 

The recent pandemic of novel corona virus (nCoV) infections (COVID19) has put the world 

on serious alert. The main protease of nCov (nCov-MP) cleaves the long polyprotein chains to 

release functional proteins required for replication of the virus and thus is a potential drug target 

to design new chemical entities in order to inhibit the viral replication in human cells. The 

current study employs state of art computational methods to design novel molecules by linking 

molecular fragments which specifically bind to different constituent sub-pockets of the nCov-

MP binding site. A huge library of 191678 fragments was screened against the binding cavity 

of nCov-MP and high affinity fragments binding to adjacent sub-pockets were tailored to 

generate new molecules. These newly formed molecules were further subjected to molecular 

docking, ADMET property filters and MM-GBSA binding free energy calculations to select 

17 best molecules (named as MP-In1 to Mp-In17), which showed comparable binding affinities 

and interactions with the key binding site residues as the reference ligand. The complexes of 

these 17 molecules and the reference molecule with nCov-MP, were subjected to molecular 

dynamics simulations, which assessed the stabilities of their binding with nCov-MP. Fifteen 

molecules were found to form stable complexes with nCov-MP. These novel chemical entities 

designed specifically according to the pharmacophoric requirements of nCov-MP binding 

pockets showed good synthetic feasibility and returned no exact match when searched against 

chemical databases. Considering their interactions, binding efficiencies and novel chemotypes, 

they can be further evaluated as potential starting points for nCov drug discovery.   
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Introduction 

The recent pandemic of novel corona virus infections (COVID19) has put the world on alert. 

This is caused by a positive sense RNA virus of coronaviridae family and nidovirales order 

which is known to cause respiratory tract infections in mammals including humans. A recent 

form of the virus, the novel coronavirus (nCoV) has emerged in china and has been named as 

SARS-CoV-2 because of the acute respiratory distress syndrome developing with these cases 

in infections which become severe with course of time. This is a zoonotic corona virus mediated 

disease which is third incidence after SARS and MERS [1] The source has later been shown to 

have sequence homology as high as 96% with SARS-CoV of bats [2]. According to the latest 

WHO reports [3], 1773084 confirmed cases has been reported with 111652 deaths around a 

total of 166 countries which includes 9152 confirmed cases and 308 deaths in India. This 

pandemic is spreading exponentially and has become an issue of serious concern for the whole 

world. In the absence of any specific drugs and treatment measures, WHO is emphasizing on 

hand washing, personal protection, use of hand sanitizers and social distancing and isolation 

for prevention of spread of disease and contamination. This has proven effective in some 

countries to curtail the spread and they are still in phase 1 and 2 of the epidemic spread. 

However, in certain parts of the world it has become an issue of major and immediate concern 

due to advanced phases of epidemic [3]. Possible treatment strategies and methods have 

become urgent needs for the world. Various possible drug treatments have been used with some 

success and some negative studies. Repurposing the existing drugs as low hanging fruits is 

being used as the first strategy in search of a possible treatment for the disease. The various 

drugs tried so far are oseltamivir [4], systemic steroids in severe respiratory involvement which 

is still inconclusive [5], Lopinavir/Ritonavir with both positive [6] and equivocal results [7],  

chloroquine [8] phosphate/ Hydroxychloroquine [9]. Also some results have been seen with 

Ramdesivir [10, 11], Tocilizumab, RNA polymerase inhibitors like Favipiravir [11] and JAK-
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STAT inhibitors like Baricitinib, Fedratinib and ruxolitinib [12]. Spike protein of the virus has 

been also been identified for vaccine development and studies are under process to develop a 

vaccine for the virus [13, 14]. The 32 kb long RNA genome of nCoV [15] codes for its 

structural proteins such as spike glycoprotein which facilitates  the entry of the virus into the 

host cells through interaction with the host enzyme ACE2 [16], the nucleocapsid, envelope and 

other membrane proteins and the non-structural proteins such as the chymotrypsin like main 

protease [17] which cleaves the long polyprotein chains to release functional proteins required 

for replication. Thus, these proteins can be exploited as potential drug targets and hunting for 

new chemical entities (NCEs) with fewer side effects is the need of the hour to combat 

COVID19 [18]. However, successful discovery of NCEs will hugely depend on proper 

understanding of the structure, interactions and dynamics of validated targets and the 

unexplored potential of their binding sites to bind new chemotypes. Computational methods 

have become indispensable for infectious disease drug discovery in last few decades [19] not 

only to understand the drug-target interactions [19-21] and delineate the structure activity 

relationship of small druglike molecules [22-23], but also for screening huge chemical libraries 

providing a fast and less expensive alternative to the traditional high throughput screening [24-

26]. Among a plethora of computational drug design strategies, fragment based de novo design 

of molecules has gained immense popularity [27-30]. Usually, fragment hits show very high 

binding affinity with the receptors pertaining to their size. As starting points, they provide 

profound opportunity for subsequent optimization leading to chemical entities with improved 

pharmacokinetic properties compared to molecules obtained as hits from high throughput 

screenings [27, 28]. Another major plus point of fragments is the low molecular complexity as 

compared to that of drug-like molecules, and thus reducing the search space to be explored 

[28]. Further, possibility of an exponentially huge number of combinatorial molecules by 

linking high affinity fragments ensures novel drug like chemotypes. So, with experimental high 
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throughput screenings, simultaneous development of new computational fragment screening 

strategies would surely prove useful to significantly reduce the number of molecules to be 

tested experimentally [31]. In this study, we have considered the main protease of the nCov 

(nCov-MP) as our target of interest for fragment-based design of new inhibitors [32]. As the 

protease binding pocket is a large cavity with three to four prominent sub pockets, it provides 

an interesting scope for screening fragments for these sub pockets and then linking them to 

design new molecules with optimal binding with the protease. With the  arrival of the very first 

structure (6LU7) of this protein in PDB  [32], several groups have come up with interesting 

strategies such as artificial intelligence based de novo design [33], repurposing existing drugs 

that can bind this protein [34] or virtually screening large chemical databases against this 

protein [35] to mention a few. Till date RCSB protein data bank (PDB) reports more than 80 

structures of the SARS-Cov-2 MP binding more than 80 different fragment like molecules [36]. 

These fragments bind to a particular sub-pocket of the large binding pocket of SARS-Cov-2 

main protease. These recent additions in PDB have further strengthened our idea of designing 

inhibitors through fragment linking. 

Materials and Methods 

Preparation of datasets 

Crystal structure of nCov-MP:  More than 80 different crystal structures of the nCov-MP 

bound to diverse ligands have been deposited in PDB till date. For this study, we have 

considered one 6LU7, the first one to be deposited in PDB which binds a potential peptide-

based inhibitor N3 [32]. The Protein Preparation Wizard (PPW) module [37] of Schrödinger 

software package, version 2019-2 was used to pre-process the macromolecular structure 

downloaded from PDB. Missing hydrogens were added, water molecules beyond 5 Å of the 

active site were removed and appropriate bond orders were assigned to the structure. The 
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residues/side chains unresolved in some of the crystal structures were repaired with prime [38] 

module in the PPW the protonation states of the polar residues were optimized with the 

protassign module of PPW, which uses PROPKA to predict pKa values (pH 7.0±2.0) and side 

chain functional group orientations. The structure was then subjected to restrained 

minimization (cutoff RMSD 0.3 Å) with impref to avoid steric clashes. The prepared structure 

was further used for preparation of grids, molecular docking and molecular dynamics (MD) 

simulations.  

Fragment libraries: Fragment structures were downloaded in the form of .sdf files from 4 

different publicly available libraries, viz., Asinex fragments and building blocks [39], FCH 

group’s [40] ‘all purpose’ fragment library, fluorine fragment library, fragment like acids, 

fragment like amines, fragment like amino acids, high fsp3 fragment library, spiro fragments 

and FCH special selection of fragment library and ChemDiv [41] fragment library and. A 

consolidated set of 191678 unique fragments were verified for the ‘rule of 3’ [42] agreement 

and considered for fragment-based design. All the fragments were subjected to preparation in 

LigPrep [43], generating their ionization states at pH 7.0 (± 2.0) using Epik ionizer. 

Fragment screening 

The prepared structure of 6LU7.pdb was directly used for receptor grid generation. ‘Receptor 

Grid Generation’ module of Schrödinger was utilized to define interaction grids for molecular 

docking keeping the centroid of the peptide like cocrystal-ligand as grid the centre. The size of 

the interaction grid was fixed to 14 Å for inner box and 20Å as outer box. The fragment library 

with 191678 fragments was subjected to docking calculations. Molecular docking calculations 

were performed using the Glide module of Schrödinger software [44] package with standard 

precision (SP) mode.  3 best poses were generated for each fragment. OPLS_2005 force field 

[45] was used for docking with all default parameters.  
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Fragment joining and de novo compound design 

Top fragment hits with docking score < -7.00 were retained from each SP fragment-docking 

calculations for further design. The ‘combine fragments’ panel from the library design module 

was used for direct joining of the fragments prepositioned at different regions of the nCov-MP 

binding site to design new compounds. The panel joins the fragments by identifying feasible 

bonds that can be formed between the fragments. The angle between the bond directions were 

set to be 15º. The maximum distances between the two bonding atoms from different fragments 

were set to be 1Å, while the minimum distance between the centroids two fragments was set 

to be 2 Å. All bonds attached to hydrogen or halogens in a fragment were chosen for breaking 

and re-joining to another fragment. All atoms of the newly built molecule were subjected to 

minimization. 3 rounds of such fragment joining were performed where, in the first-round pairs 

of fragments were joined and in the next round the resultants of the first round were used as 

inputs to combine up to 4 fragments and so on.  

Molecular docking and binding energy estimation 

All the newly formed molecules were docked to the binding site of nCov-MP using Glide 

module of Schrodinger Suite. The same grid that was used for fragment screening was used for 

this docking too.  Docking was performed in two sub-steps i.e., the SP docking and an extra 

precision (XP) docking [46]. 5 best docked poses were generated for each newly designed 

molecule and OPLS_2005 force field was used for docking with all default parameters. The 

resultant complexes of the molecules with nCov-MP were further submitted for binding energy 

estimation, where Molecular Mechanics-Generalized Born Surface Area (MM/GBSA) based 

binding free energy (∆Gbind) were computed for the complexes using Prime module [38]. 

Evaluation of physicochemical and pharmacokinetic properties and synthetic 

accessibility 
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QuickProp module [47] of Schrodinger were employed to calculate the drug like properties and 

predict the physicochemical and pharmacokinetic (absorption, distribution, metabolism, 

excretion and toxicity) properties of all the new molecule hits selected in the previous section. 

A synthetic accessibility score was also predicted for each molecule from SwissADME server 

[48]. All the molecules which violate no drug likeliness rules were identified and then, 17 best 

molecules were selected based on their ∆Gbind and ligand efficiency. 

Molecular dynamics (MD) simulations 

MD simulations were carried out on the complexes of nCov-MP with 17 selected molecules 

and the crystal structure 6LU7 binding the reference molecule N3, using the Desmond MD 

simulation package (release 2018) of Schrodinger [49]. The OPLS_2005 [45] force field was 

employed for the protein-ligand complexes. Using the system builder tool of Desmond, the 

complexes were solvated in a cubical water box (TIP3P water model) keeping 12 Å buffer 

space in x, y and z dimensions. Each system was neutralized by adding appropriate counter 

ions and an ionic concentration of 0.15 M was maintained by adding Na+ and Cl− ions. The 

systems were minimized with 10000 steepest descent steps followed by gradual heating from 

0 to 300 K, under NVT ensemble. The systems were thermally relaxed before the production 

run using Nose-Hoover Chain thermostat method for 5 ns and 5 ns of pressure relaxation with 

Martyna-Tobias-Klein barostat method. Finally, 50 ns production run under NPT ensemble 

was carried out for each system using a cutoff distance of 12 Å for non-bonded interactions. 

Coordinates were saved at each 10 ps to generate trajectories of 5000 frames each. Simulation 

interaction diagrams were used for trajectory analyses. Figure 1 shows the overall workflow 

of the study.  
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Figure 1. Overall workflow of the study  

Results and discussion 

Binding site of nCov-MP and the experimental structures 

Crystal structure of nCov-MP reveals that the overall structure of nCov-MP is a combination 

of three domains [32]. The first and second domains (DI and DII) have an antiparallel β-barrel 

structure, where residue 8-100 comprise the DⅠ and residues 102 to 184 form the DII. Residues 

201 to 303 form the third domain (DIII) which is a combination of 5 α-helices and the 

connecting link between DII and DIII is a long loop (L1) formed by residues 185 to 200. The 

substrate binding site of nCov-MP is situated at the junction between DI and DII, which also 
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extents up to L1. Figure S1 shows the domains and the overall secondary structure of the 

protein. Figure 2 shows the binding site sub-pockets and interactions of N3 with nCov-MP.  

 

Figure 2. Positioning of N3 in the binding site sub-pockets and molecular interactions of N3 

with nCov-MP, from the structure 6LU7. 

 As of now 88 different crystal structures of nCov-MP have been reported to PDB, most of 

which are from the PanDDA analysis group depositions [36], where each of the structures binds 

a unique ligand at different cavities all over the protein structure. Some of these small fragment-

like ligands binding to the substrate binding site, mostly occupy one or two sub-pockets of the 

huge substrate binding cavity. A quick look at the positioning of the peptide-based ligand N3 

in 6LU7.pdb reveals that, different constituent fragments of N3 comfortably occupy almost all 

sub-pockets of the huge binding site exploiting the potential of the binding cavity to bind bigger 

molecules. N3 makes H-bonds with G143, H164, E166 and Q189. The initial MMGBSA 

binding energy of N3 was calculated to be -77.36 kcal/mol. Our study is inspired by these 

crystal structures as we attempt to computationally screen a huge fragment library against the 

crystal structure 6LU7 and then combine the best fragment hits from different sub-pockets to 

design new molecules.  
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Fragment screening and linking 

A huge fragment library consisting of 191678 fragments was constructed from the publicly 

available Asinex, FCH and ChemDiv fragment libraries. These fragments were then screened 

against the energy grid created by keeping the N3 molecule as the grid centre and the 

dimensions of the inner and outer grid boxes were kept as large as 14 Å and 20 Å to cover all 

the sub-pockets inside and adjacent to the main binding pocket. Glide SP protocol was applied 

initially for fast screening of the fragments, which returned 40805 fragment hits with docking 

scores ranging from -9.79 to -5.55. 1974 top hits with SP docking score < -7 were chosen for 

further study.  The nearest atoms of two fragments binding to different sub-pockets and are that 

are pre-positioned with respect to each other were joined to form a new molecule. The potential 

bonds that can be formed between two fragments placed in the adjacent sub-pockets were 

identified. These potential new bonds were identified by based on i) the distance between the 

atom that remains in one fragment and the atom that leaves in the other fragment must be less 

than 1 Å after adjustment of the bond lengths in each fragment to the ideal bond length for the 

new bond, ensuring the right alignment of fragments, ii) the angle between the bond directions 

should be less than 15° for a right rotational alignment of the fragments  and iii) the distance 

between the fragment centroids should be below 2 Å to make sure that the fragments do not 

occupy the same location in the receptor cavities (Figure 1). However, the fragments can have 

some overlapping regions and both internal and peripheral (H and halogen) bonds were 

considered for breaking to form a bond with another fragment. Once such potential new bonds 

are identified, the fragments were linked in three rounds. In the first round, pairs of fragments 

were joined and in the next rounds of joining, the resultant molecules from the first round are 

considered for joining based on the above criteria and so on. The fragments, having no atoms 

as close as 1 Å, but are lying in adjacent binding pockets are still considered for linking by 

introducing methylene groups to each fragment, and then if the bond formation criteria are 



12 
 

satisfied, the two fragments were joined by maximum two methylene linkers. The minimum 

and maximum fragments to be joined were set to be 2 and 4 respectively. The fragments were 

randomly sampled in several non-redundant trials in order to manage the huge number of 

combinations. The number of such trials were set to be 20 for this study. Once the fragments 

are joined, the resultant structures are subjected to energy minimization restraining all heavy 

atoms in the fragments except for the linker atoms with a restraint of 100 kcal/mol. The 

fragment linking process taking 1974 selected high scoring fragments pre-positioned in 

different subpackets generated 487 novel molecules which were further screened using several 

levels of screening filters.  

Screening of newly designed molecules 

The 487 newly formed molecules were subjected to further screening using four different levels 

of filters. XP docking scores were used as the first level of screening. XP docking of 

calculations were performed using the same huge interaction grid generated for fragment 

docking in order to provide enough space for several conformers of the newly formed 

molecules to access all the sub-pockets and place themselves in binding site in a conformation 

that is energetically most favourable. The XP docking scores ranged from -14.13 to -6.997 for 

these molecules. The top scoring 172 molecules with Glide XP docking score < -10 were then 

subjected to the second level of filter i.e., calculation of ADMET properties with QuickProp 

module of Schrodinger which predicts many significant and pharmacologically relevant 

properties to estimate the drug likeliness of a given molecules. One can compare certain 

properties of a particular molecule with the given ranges of those of 95% of known drugs. Also, 

QuickProp can identify the presence of 30 types of reactive functional groups that may cause 

false positives during virtual screening studies. The important properties that are calculated and 

can be compared with the ranges of known drugs are MW, dipole, IP, EA, SASA, FOSA, FISA, 



13 
 

PISA, WPSA, PSA, volume, #rotor, donorHB, accptHB, glob, QPpolrz, QPlogPC16, 

QPlogPoct, QPlogPw, QPlogPo/w, logS, QPLogKhsa, QPlogBB, #metabol, etc. The 

descriptions of all these properties are listed in List S1. We have prioritized our screened 

compounds based on the number of descriptor values that fall outside the 95% range of similar 

values for 95% of known drugs (#stars) calculated by QuickProp. Hence a smaller #stars 

suggests that a molecule is more drug-like than molecules with more #stars. We screened all 

the compounds that have passed our previous filters which have #star as 0. Thus, we obtained 

a total of 83 molecules which violate no drug likeness rules. Table 1 lists the important 

ADMET properties of the selected. 

The next level filter used for our screening was ∆Gbind-Ligand efficiency. Mathematically, 

ligand efficiency is the ratio of Gibbs free energy (ΔG) to the number of non-hydrogen atoms 

of the compound. As the binding energy and docking scores of the ligands are biased towards 

the size of the ligands, ligand efficiency is a more appropriate parameter to normalize and 

compare the binding affinities of ligands of different sizes [50]. Ligand efficiency measures 

the binding energy per atom of a ligand to its receptor and is popularly used in drug discovery 

projects to narrow down the focus to lead molecules along with optimal combinations of 

ADMET and physicochemical properties. The initial ∆Gbind of N3 with nCov-MP was 

calculated to be -77. 36 kcal/mol and the ligand efficiency was calculated to be -1.58.  Hence, 

we set a cut-off of -70.00 for the ∆Gbind and -1.6 for the ∆Gbind - Ligand efficiency as the 4th 

level filter. 17 molecules with MM-GBSA ∆Gbind ranging from -70.00 to -80.97 and ligand 

efficiencies ranging from -1.65 to -2.52 were obtained after applying 4th level filter, which were 

named as MP-In1 to MP-In17. The various components of the XP docking score and the MM-

GBSA binding energies of the 17 molecules have been given in Figure 3.  
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Table1. ADMET properties* of the 17 selected molecules.  

Name #stars QPlogPC16 QPlogPoct QPlogPw QPlogKhsa QPlogHERG QPlogPo/w QPlogKp QPlogBB #metab QPlogS CNS FOSA FISA 

MP-In1 0 15.27 25.32 12.57 1.10 -5.16 5.31 -4.35 -0.57 5 -6.33 1 440.80 119.48 

MP-In2 0 16.82 28.47 15.97 0.43 -5.70 4.06 -4.64 -0.87 4 -6.27 0 562.96 131.24 

MP-In3 0 15.25 27.87 15.26 0.84 -6.97 4.03 -7.18 -0.20 5 -4.92 0 315.15 150.09 

MP-In4 0 15.04 27.54 19.16 -0.09 -6.35 1.51 -5.81 -1.81 6 -3.22 -2 332.10 211.19 

MP-In5 0 15.70 26.50 14.47 0.79 -6.87 4.76 -4.29 -0.54 8 -5.79 0 151.48 140.40 

MP-In6 0 14.79 28.35 19.53 0.08 -6.52 1.29 -7.70 -0.93 6 -1.89 -1 317.85 190.63 

MP-In7 0 17.92 31.04 18.74 0.10 -3.80 1.76 -5.21 -1.85 8 -5.09 -2 219.90 216.91 

MP-In8 0 17.12 30.53 17.10 0.78 -6.64 3.23 -8.80 -1.21 4 -4.23 -2 288.03 238.17 

MP-In9 0 16.65 29.50 21.06 0.03 -6.20 1.85 -7.47 -1.16 5 -2.22 -2 340.75 195.09 

MP-In10 0 15.16 22.74 12.72 0.78 -7.40 4.43 -3.70 -0.78 6 -5.76 -1 437.09 104.38 

MP-In11 0 13.42 25.89 17.92 -0.23 -4.55 2.02 -4.58 -0.69 5 -3.38 0 358.08 130.79 

MP-In12 0 15.24 26.47 16.37 0.22 -3.09 2.85 -5.22 -1.03 6 -4.07 -2 604.43 146.03 

MP-In13 0 16.10 31.73 22.05 0.00 -5.34 1.83 -7.50 -0.78 4 -2.09 -1 361.04 183.14 

MP-In14 0 16.72 34.43 20.69 0.42 -6.68 2.12 -9.43 -1.61 5 -4.13 -2 393.44 264.88 

MP-In15 0 16.75 31.15 17.16 0.75 -6.54 2.99 -8.12 -1.10 6 -4.09 -2 585.43 192.52 

MP-In16 0 13.19 25.58 20.28 -0.30 -4.21 0.79 -6.43 -1.52 7 -1.87 -2 366.70 209.63 

MP-In17 0 14.24 26.21 12.71 0.99 -6.05 4.26 -6.25 -1.18 4 -6.38 -2 396.43 195.27 
*Description of all the fields are listed in List S1 [47].  
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Figure 3. Various components of the XP docking score and the MMGBSA binding energies 

(Kcal/mol) of the 17 selected molecules with MMGBSA dG_bind < -70 kcal/mol. 
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In order to evaluate the novelty of these molecules, they were searched against the 10'639'400 

drug like molecules of the most popular public chemical database ZINC and 177'000 bioactive 

compounds (activity<10µM) of ChEMBL using SwissSimilarity server [51]. Table 2 lists the 

ZINC and ChEMBL IDs of the most similar (measured by Tanimoto coefficient) molecules 

returned for MP-In (1-17). We did not get any exact matches from both the databases ensuring 

the 17 molecules represent novel chemotypes. Interestingly, none of the molecules were found 

to have close similarities (Tanimoto coefficient) with the ChEMBL compounds. However, MP-

In1, MP-In6, MP-In10, MP-In12, MP-In14, MP-In15 and MP-In17 showed close similarities 

with some of the ZINC compounds. The synthetic accessibilities of these compounds as 

predicted with SwissADME ranged between 3.9 to 5.6 (Table 2) indicating that these molecules 

are reasonably synthesizable.   

Table2. Synthetic feasibility and similarity of the 17 selected molecules with ZINC and ChEMBL 

compounds. 

Name 

Synthetic 

feasibility¥ ChEMBL ID 

Similarity 

Score 

(Tanimoto) ZINC ID 

Similarity Score 

(Tanimoto) 

MP-In1 4.98 CHEMBL1744037 0.530 ZINC19582044 0.907 

MP-In2 5.58 CHEMBL2179016 0.171 ZINC72342120 0.304 

MP-In3 4.3 CHEMBL1760664 0.337 ZINC72340395 0.793 

MP-In4 4.6 CHEMBL3128188 0.248 ZINC19656462 0.272 

MP-In5 4.31 CHEMBL463225 0.539 ZINC72337341 0.405 

MP-In6 4.85 CHEMBL472125 0.127 ZINC72356404 0.911 

MP-In7 4.82 CHEMBL126780 0.137 ZINC05097750 0.399 

MP-In8 3.9 CHEMBL2403868 0.219 ZINC76893596 0.501 

MP-In9 4.6 CHEMBL3128188 0.248 ZINC19656462 0.272 

MP-In10 4.85 CHEMBL1092573 0.255 ZINC91486444 0.957 

MP-In11 5.1 CHEMBL113436 0.374 ZINC20118875 0.748 

MP-In12 4.6 CHEMBL115600 0.531 ZINC00571472 0.859 

MP-In13 5.59 none none ZINC72410748 0.250 

MP-In14 5 CHEMBL2029718 0.628 ZINC67967404 0.956 

MP-In15 4.98 CHEMBL1744037 0.530 ZINC19582044 0.907 

MP-In16 5.35 CHEMBL327990 0.120 ZINC79021439 0.215 

MP-In17 4.42 CHEMBL2387076 0.305 ZINC33126995 0.835 
¥Value ranges from 1 to 10, a value of 1 indicates easily synthesizable, while 10 indicates very difficult to synthesize.  

nCov-MP residues which participated in H-bonds or salt bridge interactions with the 17 

selected ligands are mostly F140, L141, G143, S144, C145, H163, E166, Q189, T190.  
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Figure 4 continues… 
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Figure 4. Molecular interactions and binding pocket occupancy of 16 out of 17 selected 

molecules with comparable MMGBSA binding energy and ligand efficiency with nCov-MP as 

compared to N3 

 

Interestingly, all these residues make salt bridge interactions with E166 and only MP-In7 

makes a π-π stacking with H41. Apart from making H- bond and salt bridge interactions with 

residues of one or two sub-pockets, these molecules occupy the other sub-pockets by shape 

complementarity and hydrophobic contacts. We also observed a fused tricyclic fragment 

(SMILES: Cn1c2CCCCc2c2ccccc12  ) which occurs in four of the top 17 screened molecules, 

which makes factorable contacts with the sub-pocket present at the interface between DI, DII 

and L1, surrounded by residues C44 to M49 of D1, P168 to H172 of DII and  F185 to Q192 of 

L1.  Figure 4 shows the molecular interactions and binding pocket occupancy of the top 16 

molecules with nCov-MP.  The complexes of MP-In1 to MP-In17 were further subjected to 

molecular dynamics simulations in order to assess their structural and enthalpic stabilities and 

to analyse the nature of their interactions with nCov-MP binding pockets.  
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Understanding the stabilities of MP-In (1-17) and nCov-MP complexes 

MD simulation is a technique of apt choice in order to estimate the stability of the identified 

MP-In (1-17) and nCov-MP interactions under dynamical conditions. It also significantly 

enhances strong binding of ligands with the target [52]. The generated 17 complexes were 

submitted to MD simulations for 50 ns in an aqueous environment to study the evolution of 

these systems with respect to time. The PDB structure 6LU7 binding the peptide inhibitor N3 

was also subjected to MD simulations as the reference system. Various analyses were carried 

out on the MD trajectories to evaluate the stabilities of the complexes. The Root Mean Square 

Deviation (RMSD) was used to measure the average change in displacement of the whole 

protein-ligand complexes and the ligands solely for all 5000 frames in the trajectory with 

respect to the first frame. Figures 5a and 5b show the RMSDs of the protein (All heavy atoms), 

RMSDs ligands with respect to the receptors respectively for the 18 protein-ligand complexes 

throughout the simulations.  RMSD of the protein in all systems indicated that the simulations 

have equilibrated, the fluctuations towards the end of the simulation are around some thermal 

average structures. Changes in RMSD values of all the protein-ligand complexes were of the 

order of 1-3 Å, which is normally acceptable for small, globular proteins. The ligand RMSD 

values were calculated when the protein-ligand complex is first aligned on the protein backbone 

of the reference and then the RMSD of the ligand heavy atoms were measured. As the RMSD 

of the ligands with respect to the protein were observed to be maintained below 4 Å for 14 

complexes (MP-In1 to MP-In5, MP-In-7 to MP-In10, MP-In12 to MP-In14 and MP-In16 to 

MP-In17 ), indicating that these ligands bind stably inside the binding pockets.  For systems 

binding MP-In6, MP-In11 and MP-In15 the ligands underwent higher structural changes with 

respect to their receptors, which showed some probability of these ligands to diffuse out of the 

binding site.  
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Figure 5. Analyses of structural and enthalpic stabilities of the 17 complexes from their MD 

trajectories a) RMSD of the protein (All heavy atoms) b) RMSD of the ligands with respect to 

the protein c) MM-GBSA binding energy and d) MM-GBSA binding energy normalized by 

the number of heavy atoms (MM-GBSA binding energy: ligand efficiency) 
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However, when the trajectories were played (Movie clip S1a, S1b and S1c) and the positioning 

of these three ligands inside their respective binding pockets were closely observed, we found 

that  MP-In6, MP-In11 do not show tendencies to diffuse out of the binding pockets, while 

MP-In15 shows such tendency. The stabilities of the complexes were further examined in terms 

of MM-GBSA ∆Gbind and ligand efficiencies, which were calculated for snapshots of the 

complexes taken at every 5 ns (10 snapshots per system were collected). Figure 5c and 5d show 

the MM-GBSA ∆Gbind and ligand efficiencies of the 18 complexes including the reference 

system throughout the simulations. As depicted from Figures 5c and 5d, the systems with MP-

In4 and MP-In16 showed very good binding energies, while MP-In15 and MP-In17 show the 

weakest binding energy and ligand efficiency profiles, which were maintained much lower than 

that of the reference ligand. Hence, it may not be a good idea to consider MP-In15 and MP-

In17 for further studies. Various protein-ligand interactions of the ligands monitored 

throughout the simulation have been given in Figure 6. Interactions that occur more than 30% 

of the simulation time in each trajectory through 0 to 50 are is shown in Figure S2. These 

interactions were categorized into 4 types: Hydrogen Bonds, Hydrophobic, Ionic and Water 

Bridges. As shown in Figure 6 and Figure S3, the residues G143, S144, C145, E166, Q189, 

T190, Q192 mostly make stable H-bonds with the ligands. Hydrogen-bonding properties of the 

molecules in drug design is considered important because of their strong influence on drug 

specificity, metabolization and adsorption. The hydrophobic contacts shown in the figure 

include π-Cation; π-π; and Other, non-specific interactions which generally hydrophobic amino 

acids and aromatic or aliphatic groups on the ligands. The residues H41, M49, M165, L167 

and P168 mostly formed hydrophobic contacts with the hydrophobic fragments of MP-In (1-

17). H41 was also shown to form π-π stacking with the aromatic rings of MP-In7 and MP-In8 

(Figure S3).  
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Figure 6 continues … 
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Figure 6. Protein-Ligand Contacts of the top 16 molecules monitored throughout the simulation. The 

stacked bar charts are normalized over the course of the trajectory; e.g., a value of 0.7 suggests that 

70% of the simulation time the specific interaction is maintained. Values over 1.0 are possible when a 

protein residue make multiple contacts of same subtype with the ligand.  

  



24 
 

 

Ionic or polar interactions, between two oppositely charged atoms were mostly shown by E166 

while T26, N142 formed stable water bridges i.e., hydrogen-bonded protein-ligand interactions 

mediated by a water molecule in complexes with MP-In-8 MP-In9, MP-In-12 and MP-In15. 

The novel molecules make interactions with almost all key binding pocket residues closely 

resembling the interactions of the reference ligand N3. Hence, 15 out of 17 selected molecules, 

excluding MP-In15 and MP-In17 might be considered as potential inhibitors of nCov-MP 

based on their stable molecular interactions, good binding energy comparable to the reference 

ligand and good shape complementarity and ligand efficiencies.  

Summary 

The current study attempts to design new molecules by tailoring fragments that bind to various 

sub-pockets of the binding sites of nCov-MP. A huge library of publicly available molecular 

fragments was screened against nCov-MP binding site in order to obtain sub-pocket specific 

fragments. These fragments prepositioned in adjacent binding sub-pockets were linked to form 

new molecules. these new molecules were further screened against nCov-MP using extra 

precision docking, ADMET and druglike filters and MMGBSA free energy of binding and 

ligand efficiency to find 17 potential molecules named as MP-In (1-17), with better ligand 

efficiencies as compared to the reference inhibitor N3. MD simulations were run on the 

complexes of these 17 molecules with nCov-MP and also the reference PDB structure 6LU7 

to ensure the stabilities of their binding and interactions. 15 of them showed stable binding 

through various stable molecular interactions such as H-bonding, salt bridges, hydrophobic 

contacts and water bridged H-bonds. These novel chemical entities designed specifically 

according to the pharmacophoric requirements of nCov-MP binding pockets showed good 

synthetic feasibilities and returned no exact match when searched against chemical databases. 
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Considering their interactions, binding efficiencies and novel chemotypes, we propose these 

fifteen molecules as potential starting points for medicinal chemists working on nCov-MP 

inhibitor design.  
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