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Abstract: (Word Count 280) 

The ongoing pandemic of Coronavirus Disease 2019 (COVID-19), the disease caused by the 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a serious threat to 

global public health. Currently no approved drug or vaccine exists against SARS-CoV-2.  Drug 

repurposing, represented as an effective drug discovery strategy from existing drugs, is a time 

efficient approach to find effective drugs against SARS-CoV-2 in this emergency situation. Both 

experimental and computational approaches are being employed in drug repurposing with 

computational approaches becoming increasingly popular and efficient. In this study, we present 

a robust experimental design combining deep learning with molecular docking experiments to 

identify most promising candidates from the list of FDA approved drugs that can be repurposed to 

treat COVID-19. We have employed a deep learning based Drug Target Interaction (DTI) model, 

called DeepDTA, with few improvements to predict drug-protein binding affinities, represented 

as KIBA scores, for 2,440 FDA approved and 8,168 investigational drugs against 24 SARS-CoV-

2 viral proteins. FDA approved drugs with the highest KIBA scores were selected for molecular 

docking simulations. We ran docking simulations for 168 selected drugs against 285 total predicted 

and/or experimentally proven active sites of all 24 SARS-CoV-2 viral proteins. We used a recently 

published open source AutoDock based high throughput screening platform virtualflow to reduce 

the time required to run around 50,000 docking simulations. A list of 49 most promising FDA 

approved drugs with best consensus KIBA scores and AutoDock vina binding affinity values 

against selected SARS-CoV-2 viral proteins is generated. Most importantly, anidulafungin, 

velpatasvir, glecaprevir, rifabutin, procaine penicillin G, tadalafil, riboflavin 5’-monophosphate, 

flavin adenine dinucleotide, terlipressin, desmopressin, elbasvir, oxatomide, enasidenib, edoxaban 
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and selinexor demonstrate highest predicted inhibitory potential against key SARS-CoV-2 viral 

proteins.  
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Introduction 

Severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome 

coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 

are three highly pathogenic human coronaviruses (CoVs) that can cause severe disease in humans1 

2. SARS-CoV resulted in an outbreak in 2003 while MERS-CoV was reported in Saudi Arabia in 

June 2012. SARS-CoV-2 was first reported in the city of Wuhan in central China and the disease 

caused by this virus has been termed as Coronavirus Disease 2019 (COVID-19). COVID-19 has 

now become a global pandemic with severe effects on global public health. As of 28th April, 2020, 

approximately 3 million confirmed cases of COVID-19 have been reported with an estimated 

211,147 deaths globally3. Currently no approved drug or vaccine is available for COVID-19. 

Therefore, there is a pressing urgency to make an expedited discovery of effective therapeutics for 

COVID-19. 

De-novo drug development is a time consuming, complex, and expensive process that 

typically costs 2.8 billion dollars4. How to decrease the costs and speed up new drug 

discovery has become a challenging and urgent question in the industry. Drug repurposing, 

a process of investigating approved or investigational drugs for new therapeutic purposes, offers a 

cost and time effective alternative5. Drug repurposing is based on a paradigm shift in our 

understanding that many effective drugs act via modulation of multiple proteins rather than single 

targets6 7. Both experimental and computational approaches are being employed in drug 

repurposing with computational approaches becoming increasingly popular, robust and efficient5. 

Recent advancements in the field of deep learning have significantly improved the 

computational approaches for drug repurposing. Conventional machine learning methods are 

limited by the lack of ability to process the data in the raw form and hence depend on feature 
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engineering8 for machine learning and pattern recognition9. Deep learning, a novel machine 

learning approach utilizing deep neural networks, based techniques overcome the issue of manual 

feature engineering and processes the crude multi-dimensional data (images, text sequences etc) 

in their layers for algorithm training10. The architecture of deep learning model is a multi-layer 

cascade of several modules, mapping a nonlinear relationship between input and output employing 

a back propagation method to fine-tune the corresponding weights11. Deep learning is also being 

used to study Drug-Target interaction12. 

 

The approach of supervised deep learning can be used to predict drug-target binding affinities. In 

this stratagem, a deep learning model is trained on the experimentally available binding affinities 

of several protein-ligand complexes. Several available benchmark protein-ligand complex 

datasets, providing the experimental binding affinities, are PDB13, DAVIS14 and KIBA15 16 

datasets. These have been used in several studies to predict the binding affinities of the complexes. 

The training of the deep learning model is realized using physical or structural features of protein 

ligand complexes on the training dataset. A properly trained model can be employed to predict the 

binding affinities of unseen protein ligand complexes. A binary prediction classifier has already 

been proposed17 18 which takes into account the several input representations of the protein-ligand 

complex. In several other deep learning network studies, a protein-ligand interaction scoring has 

been predicted, training the convolutional neural network (CNN) using the three dimensional 

structure of the associated complexes19 20. The main source of these complexes is PDB13 ; however 

small number of interactions is a limitation as only 25000 protein-ligand complexes have been 

documented. DeepDTA21 is another novel approach which uses SMILES and FASTA sequences 

of ligands and proteins, respectively. In the DeepDTA approach, two separate CNN blocks have 
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been employed to train the protein and ligand sequences and eventually combined in a fully 

connected layer called DeepDTA. In this study, we have employed DeepDTA with few 

improvements. 

Another computational approach that is employed to study drug target interaction is virtual 

screening. Virtual screening can be performed by using molecular docking - a technique that 

samples the ensemble of binding modes to predict preferred pose(s) in which the ligand can bind 

with the receptor at a certain location, known as active / binding site, in order to form a stable 

complex22 23. A binding mode refers to a unique conformation along with orientation and 

translation of the ligand. Ranking of the preferred binding modes / poses is carried out by 

evaluating a mathematical function, known as scoring function, that quantifies the stability of the 

complex formed by a particular pose of ligand with the receptor24 25,. In our work, docking was 

performed using actual simulation as it is more realistic compared to its alternatives25 26,. We have 

used the results of docking simulations to get docking scores of potential candidate drugs with 

COVID19 viral proteins. In order to reduce the time required for around 50,000 docking 

simulations, we made use of a recently published open source high throughput screening platform 

virtualflow27 to parallelize the docking scenarios across multiple machines and CPU cores. 

In this study we have employed a multidisciplinary, multimodal approach combining deep 

machine learning and large scale molecular docking experiments in a sequential manner to identify 

FDA approved drugs that can be used as effective treatment against SARS-CoV-2.  

Methods: 

Deep Learning Model Overview 

In our work, we have employed a deep learning based DTI-model, called DeepDTA20, with few 

improvements. Our deep learning model automatically incorporates useful and required features 
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from raw ligands and proteins into the model to predict the drug and protein interactions. We have 

utilized 1-D sequences of ligands (SMILES)28 and proteins (FASTA)29 to train our model. 

SMILES (Simplified Molecular Input Line Entry System) representation of molecules have been 

exploited rather than physical and chemical properties associated with the ligands. We have 

employed the Bi-LSTM30 blocks of neural networks instead of CNN used by DeepDTA20 to learn 

the SMILE representation of molecules whereas fully connected CNN have been engaged to learn 

the FASTA representation of proteins. 

Dataset 

We have used a benchmark KIBA dataset for training our model and prediction evaluation of 

binding affinities, which has been tapped previously in a handful of studies.  The KIBA dataset 

comprises selectivity assays of the kinase proteins family and the associated inhibitors15. It 

predominantly embodies the corresponding KIBA scores. The KIBA values have been contrived 

by combining Ki, Kd and IC50 values obtained from several sources. This Dataset has been created 

from original 52,498 drugs14, which has been filtered to 2111 unique drugs. The pool of all 

shortlisted drugs has at least 10 measured interactions, yielding a total of 229 proteins out of all 

467 targets and a total of 118,254 interactions20. In our preliminary work we have employed the 

same KIBA dataset used by DeepDTA20.  

Input Representation 

In our approach, we have employed byte pair encoding30 to represent the SMILES of ligands 

and FASTA sequences of the proteins. SMILES have a varied length based upon the number of 

atoms and type of bonds in the drug. Since we used Bi-LSTM31 to learn the representation of drugs, 

we used an end token to indicate the end of the SMILES. We utilized CNN for learning protein 
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representation, so we set the maximum length of the FASTA sequence to 1000 characters. We 

truncated larger sequences and padded zeros to smaller sequences. 

Proposed Model 

Our prediction model is based upon two sub-models. One part takes SMILES as input and the 

second part takes FAST as input. SMILES are encoded via byte pair encoding (BPE) and then 

passed to a novel Bi-LSTM31 learning approach for sequence analysis. It has been successfully 

used in the recent studies for text sequence analysis. This part yields an effective representation of 

drugs. FASTA sequences of proteins are also encoded with BPE and then trained with 

Convolutional neural networks (CNN). This part learns the representation of the proteins. These 

separate representations are then concatenated and then passed through three fully connected 

layers. Our CNN model greatly relies on the number and size of filters to define dependencies of 

the sequences and we have chosen appropriate values fit to the scenario. As the size of filters and 

the number of filters are varied, performance of CNN also varies with it. All layers of networks 

are shown in the block diagram (Figure 1).  

The interaction pairs of the KIBA dataset have been split into training and testing datasets. As 

an activation function, we used Rectified Linear Unit (ReLU)32 mathematically represented as g(z) 

= max{0, z}, which has been widely used in deep learning studies8. A learning model is trained to 

minimize the difference between the expected and actual value. We have formulated it as a 

regression task, mean squared error (MSE) has been chosen as an appropriate loss function. The 

learning has been accomplished with the 100 epochs and mini-batch size of 512 is chosen to update 

the weights and hyperparameters of our networks. The chosen optimization algorithm to train the 

networks is ADAM33 which had the default learning rate of 0.001.  
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Figure 1: Block Diagram of Modified DeepDTA model with Bi-LSTM and CNN blocks to learn 

from sequences - The proposed Bi-LSTM and CNN methodology is represented. It consists of two 

separate BI-LSTM and CNN blocks, for training the representations of ligands and proteins 

respectively. The output representations from both blocks have been concatenated and fed to the 

fully connected layers, which eventually predict the drug.-protein binding affinities at their output. 

Prediction of KIBA Scores for FDA approved and investigational drugs 

After training of the model, we have predicted the KIBA scores of FDA approved and 

investigational drugs. The FDA approved and investigational drugs have been retrieved from 

Canadian DrugBank34. The DrugBank database is a handy pool of drugs which includes detailed 

drug information and their corresponding interactions. The DrugBank is composed of approved 

3,546 drugs, including 2,630 small molecule drugs and 1,372 approved biologics (proteins, 

peptides, vaccines, and allergenics) and over 9,000 drugs which are either under investigation or 

experimentation34. From DrugBank, we have retrieved SMILE sequences for both FDA approved 

and investigational drugs. The SMILE sequences of various drugs were not available on the 

DrugBank and ultimately based upon available SMILE sequences we have incorporated 2,440 

FDA approved drugs whereas 8,168 investigational drugs have been analyzed. The FASTA 

sequences of 24 viral proteins have been acquired from  the published genome of SARS-CoV-2 

available at C-I-TASSER28. Both of them, in combination, have been supplied to the trained deep 

learning model, which predicted all corresponding KIBA scores.  

Selection of FDA approved drugs for Virtual Screening 

FDA approved drugs were ranked according to their KIBA scores for each viral protein. Two 

mutually non-exclusive subsets of drugs were prepared. Subset A comprised of drugs making it to 

top 50 drugs with highest KIBA score for any of 24 viral proteins. Subset B comprised of drugs 



 13 

with KIBA scores of greater than or equal to 11.5 for all 24 viral proteins. Two subsets were then 

combined, duplicates were removed and drugs with significant interaction with less than 3 viral 

proteins were removed. Resulting set of FDA approved drugs were then subjected to Virtual 

Screening. 

Molecular Docking Simulations 

We made use of recently published structures of 24 viral proteins for COVID1928 and the three 

dimensional structures of these proteins were retrieved. We performed extensive literature search 

for the availability of binding site data for these viral proteins. If the structures are available and 

their binding site data is elucidated, it is made use in this research work. In the other case, the 

predicted binding sites for all the proteins are provided as determined by several binding site 

prediction algorithms e.g. COACH, S-Site, FINDSITE, ConCavity etc29. In our simulations for the 

sake of uniformity, we made use of the predicted binding sites given by C-I-TASSER28 from which 

we have obtained our protein structures. For every site, we computed the search box mean by 

averaging the coordinates of residues forming the site. The size of the search box was set to be the 

difference of maximum and minimum along all three dimensions. Afterwards we discarded the 

search boxes that were contained in other search boxes. This resulted in 284 potential sites to be 

tested in total. In case of published active site data, we relied on that data completely. Autodock 

tool was used to preprocess docking files for Autodock Vina docking algorithm30. The structure 

files for ligands were obtained from PubChem31 and converted to pdbqt. Various tools like 

Chimera32 and ChemOffice33 were used for the refinement and proper energy minimization of the 

structures of ligands. The refined and best stereochemical quality structures having suitable 

number of minimization steps, were then docked into the active site of the target proteins using 

AutoDock and AutoDock Vina. The simulations were executed in parallel on eight compute nodes 
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with eight CPU cores each. To parallelize the whole procedure, we made use of virtualflow27, an 

open source platform that automates docking simulations across multiple machines in a scalable 

manner. Every docking scenario was run once on one CPU core with exhaustiveness value fixed 

to 8 for all scenarios. VMD34 (Visual Molecular Dynamics) and Chimera were used for the analysis 

of best docked conformations and interaction of drugs with active residues. 

 

Results and Discussion 

Modified DeepDTA identified key FDA approved drugs targeting SARS-CoV-2 viral proteins 

Using the DeepDTA based model, we predicted drug-protein binding affinities, represented as 

KIBA scores, for 2,440 FDA approved and 8,168 investigational drugs against 24 SARS-CoV-2 

viral proteins, yielding KIBA scores for a total of 254,592 interactions (Supplementary Figure 1 

and Supplementary Table 1). These proteins include four structural proteins; spike (S), envelope 

(E), membrane (M), and nucleocapsid (N)2. N protein forms the capsid that protects the viral RNA 

while E, M and S proteins make the outer coat of the virus that surrounds the capsid2 28. Spike 

protein projects from the surface of the virus and plays a crucial role in viral attachment, entry and 

fusion into the target host cell35-37. Two essential proteins constituting the viral replication- 

transcription complex are helicase and non-structural protein 12 (nsp12)38 39. Nsp12 is an RNA-

dependent RNA polymerase39 that binds with nsp7 and nsp8 to make a multi-subunit complex 

essential for viral replication40. Helicase (nsp13) assists in viral replication by unwinding the 

duplex viral RNA. Main protease (Mpro, also called 3CLpro)41 42 is another essential protein that 

works in conjunction with papain-like protease(s) to process the huge polyproteins encoded by the 

SARS-CoV-2 genome. These proteins are key targets for an effective antiviral therapy38 39 41-44. 

Predicted KIBA scores for all these interactions are provided in the supplementary table S1.  
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By applying our predefined filtering strategy (See Section 2.6 of Methods for details), 184 out 

of 2,440 FDA approved drugs (top 7.5%) with high predicted binding affinity scores were 

identified. Sixteen drugs with either severe toxicity or topical use only (eyes and skin) were 

excluded. Remaining 168 drugs included 48 antimicrobial, 18 antineoplastic, 22 central nervous 

system acting, 35 hormonal, 9 vitamin derivatives and 36 other agents from miscellaneous classes 

of drugs. (Supplementary table S2). Antimicrobial agents included antibiotics, antiviral, antifungal 

and antimycobacterial drugs. Two most frequently observed classes of antibiotics were beta lactam 

agents (including penicillin derivatives and cephalosporins) and quinolones. Antiviral drugs 

included 3 anti-retroviral drugs (didanosine, nelfinavir and cobicistat), 5 anti-HCV drugs 

(sofosbuvir, elbasvir, pibrentasvir, glecaprevir and velpatasvir), 2 neuraminidase 

inhibitor (peramivir, oseltamivir) and 1 anti-HBV drug (adefovir dipivoxil). Three highest 

predicted KIBA score antifungal agents included anidulafungin, isavuconazonium and natamycin. 

Antineoplastic drugs included tyrosine and BRAF kinase inhibitors, anthracyclins and growth 

factor inhibitors amongst others. Vitamin derivatives included vitamin D derivatives and 

analogues, flavin derivatives (Riboflavin monophosphate and FAD) and biotin. Hormonal drugs 

included glucocorticoids, androgen antagonists and analogues of estrogen, progesterone, oxytocin, 

vasopressin and somatostatin. Drugs acting on central nervous system included dopamine agonists, 

selective serotonin reuptake inhibitors and antipsychotic agents. Miscellaneous group of drugs 

included dipeptidyl peptidase 4 (DPP-4) inhibitors (alogliptin and linagliptin), anticoagulants 

(edoxaban, ticagrelor and dabigatran etexilate), calcium channel blockers (manidipine and 

diltiazem), angiotensin-converting enzyme (ACE) inhibitors (cilazapril, perindopril, trandolapril, 

enalaprilat and reserpinine), angiotensin II receptor blocker (eprosartan) and HMG-CoA reductase 
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inhibitors (rosuvastatin and cerivastatin). (For a complete list of drugs with the predicted KIBA 

scores against each selected SARS-CoV-2 protein see supplementary table 2)    

Molecular docking simulations identified most promising inhibitors of selected SARS-CoV-2 

proteins 

We obtained the protein structures for docking from Zhang lab server 

(https://zhanglab.ccmb.med.umich.edu/COVID-19/). In order to verify the accuracy of these 

structures, we performed a comparison with available crystal structures. We found that the root-

mean-square deviation (RMSD) of backbone atomic positions was in the range of 0.5 to 1.9 Å, 

establishing the reliability of the Zhang lab structures. It is worth mentioning that these structures 

were determined experimentally35-37 39 41 and being published when the manuscript was in the 

process of compilation. 

This server has reported 24 proteins or peptides encompassing the complete genome of SARS-

CoV-2. Our aim is to disrupt the pathways where these proteins are involved in order to inhibit 

normal functioning and replication cycle of the virus. We ran docking simulations for 168 selected 

drugs with high predicted KIBA scores against 285 total predicted and/or experimentally proven 

active sites of all 24 SARS-CoV-2 viral proteins28 36 37 39 41. This yielded binding affinity values 

(kcal/mol) for 47,880 docking simulations (For details of all docking sites and docking energies, 

see supplementary table S3). AutoDock vina binding affinity values were plotted against KIBA 

scores of these drugs and drugs with best consensus KIBA scores and binding affinity values were 

selected. (For visualization of KIBA scores and docking binding affinity values of shortlisted 

drugs, see our interactive plot in Supplementary Figure S2 available online). This provided a list 

of top 49 FDA approved drugs that are predicted to effectively inhibit selected SARS-CoV-2 viral 

proteins through 134 key drug-protein interactions with high degree of confidence.  These include 

https://zhanglab.ccmb.med.umich.edu/COVID-19/
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antimicrobials (n=12), hormonal agents (n=14), anti-neoplastic drugs (n=11), vitamin derivatives 

(n=3) and miscellaneous drugs (n=9) (Table 1). Details of these drugs with the predicted KIBA 

scores and docking affinity values are provided in table 1.  

We have shortlisted eighteen docked complexes after extensive analysis and interaction mapping 

based on their significance in the viral pathways. Complete results for docking energies and active 

site details are provided in Supplementary Table S3. The shortlisted complexes include proteins 

host translation inhibitor (NSP1), papain-like protease (PLpro), proteinase 3CL-pro, RNA-directed 

RNA polymerase (RdRp), helicase (Hel), surface glycoprotein (S) and nucleocapsid 

phosphoprotein (N) with key drugs anidulafungin, velpatasvir, glecaprevir, rifabutin, procaine 

penicillin G, tadalafil, riboflavin 5’-monophosphate, flavin adenine dinucleotide, 

terlipressin, desmopressin, elbasvir, oxatomide, enasidenib, edoxaban and selinexor. The 

energy values and other information for the selected complexes are provided in the Table 1. 

In a broader context, PLpro, 3CL-pro, RdRp and Hel are involved in virus RNA synthesis and 

replication. Henceforth, more research is being carried out on these targets due to their biological 

significance. Their structures are mostly available and well elucidated. The fifth protein, NSP1, is 

the virulence factor that is related to assisting the virus in gene expression and interfering host 

immune response. The remaining two proteins, that is, S and N are the structural proteins of the 

virus assisting it in attachment and binding to the host. Results of molecular docking and screening 

experiments clearly showed that certain drugs have higher affinities for a particular protein target. 

Here we briefly discuss the results of docking experiments for these drug-protein complexes. 

Active site of PLpro is deduced through superimposition with a crystal structure having PDB 

code 6W9C.A. The RMSD value for backbone atoms came out to be 0.76 Å. There are 4 domains 

in the monomer of PLpro enzyme, i) an extended ubiquitin-like domain, ii) thumb domain, ii) palm 
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domain and iv) fingers domain. The binding site for inhibitors is present in between the thumb and 

palm domains. Three key drugs namely riboflavin 5’-monophosphate, oxatomide and selinexor 

have shown better binding affinity values than others. Active pocket of the enzyme majorly 

consists of hydrophilic residues as Tyr857, Asp909, Arg911, Glu912, Tyr1009, Asn1012, 

Tyr1013, Gln1014, Cys1015, His1017 and Tyr1018. Other residues present on the interface of 

thumb and palm domains are: Leu907, Gly908, Val910, Thr913, Met953, Pro992, Pro993, 

Gly1016, and Thr1046. It is noted that riboflavin 5’-monophosphate binds to more hydrophilic 

residues as compared to other two drugs. However, the best binding affinity is shown by oxatomide 

having both hydrophilic and hydrophobic interactions in a better fit (Figure 2).  

 

Figure 2. 3D representation of PLpro active residues and three selected drugs riboflavin 5’-

monophosphate, oxatomide and selinexor in active pocket 

3CL-pro contains two chymotrypsin like β-domains and an α-helical domain41. Domains I and 

II have the substrate-binding domain in between them and it is represented in figure (Figure 3a). 

Residues spanning the active site around the drugs procaine penicillin G, enasidenib and edoxaban 
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are Thr24, Thr25, Thr26, Leu27, His41, Cys44, Thr45, Ser46, Glu47, Met49, Leu50, Phe140, 

Leu141, Asn142, Gly143, Ser144, Cys145, His163, Met165, Glu166, Leu167, Pro168 and Gln189 

(Figure 3b). 

  

Figure 3. a) 3D structure of 3CLpro highlighting three domains, the two β-domains are shown in 

orange and red colors respectively, blue shows α-helical domain and drug is shown with CPK 

representation b) 3D representation of active site residues of 3CLpro surrounding the active drugs 

Residues His41, Ser46, Met49, leu141, Asn142, Glu166, Pro168 and Gln189 are involved in 

hydrogen bonding with the inhibitors while Asn142 in all three drugs is forming a salt-bridge 

interaction as well.  

RdRp contains a RdRp domain, a nidovirus N-terminal extension domain, both connected by an 

interface domain39 (Fig. 4a). The inhibitor binding site is present on the RdRp domain for RdRp 

inhibition.  
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Figure 4: a) Structure of RdRp enzyme highlighting different domains: N-terminal domain (red), 

RdRp domain (blue), interface domain (orange) an additional β-hairpin (green). b) 3D 

representation of active site residues surrounding the drug elbasvir. 

Elbasvir, that is a direct antiviral medication, shows good binding with RdRp (Figure 4b). A 

number of hydrophobic residues are involved in binding of elbasvir and anidulafungin into the 

binding site of RdRp. Major contributing residues in drug binding are: Ile548, Ser549, Arg569, 

Ile589, Ala685, Ser759, Leu758, Ala688, Gln573, Leu576, Asp760, Asp761 and Cys622. 

Hydrogen bonding interactions are formed by Ile548, Ser549, Ser759, Cys622, Asp760, Ala550, 

Lys551, Tyr689, Lys798, Lys577, Cys813 and Ser814. 

Helicase contains five domains namely N-terminal zinc-binding domain, stalk domain, 1A, 2A 

and 1B with inhibitor binding site between domain 1A and 1B (Figure 5a). The drugs flavin 

adenine dinucleotide, desmopressin, glecaprevir and rifabutin inhibit viral helicase protein with 

lowest binding affinities. These drugs mainly form hydrogen bonding and electrostatic interactions 

due to the presence of majority hydrophilic amino acid residues such as: Asp260, Glu261, Asn265, 

His290, Glu319, Lys320, Arg442, Arg443, His464, Lys465, Ser539, Glu540, Asp542, Arg567 and 

Lys569. Both Arg442 and Arg443 form salt-bridge interactions with the drugs contributing to tight 

binding. Figure 5b shows a snapshot of all the residues involved in binding 
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Figure 5: a) 3D representation of helicase structure highlighting N-terminal zinc-binding domain 

(tan), stalk domain (green), 1A (blue), 2A (red) and 1B (orange) with inhibitor binding site between 

domain 1A and 1B b) 3D representation of active site residues surrounding the drugs 

In a second category of targets, Host translation inhibitor or NSP1 is selected for detailed 

analysis. Tadalafil is a drug that improves exercise capacity by relaxing muscles of the blood 

vessels and increase of blood flow. Tadalafil and enasidenib show promising results and best 

energy values in our docking experiments with NSP1. The binding site contains hydrophobic 

residues such as Leu39, Leu88, Val89, Leu123, Phe143 and Pro153. Several hydrogen bonds are 

formed by amino acids: Arg43, Lys72, Glu87, Lys125, Asp144, Tyr145 and Asp144. 

Our third category of targets include S and N proteins. S protein consists of two functional 

subunits (S1 and S2) (Fig 6a). it is reported that S protein binds to human ACE2 to enter the cell 

correlating with its speedy dissemination36. A structure for spike protein is reported35 and 

deposited in RCSB protein databank (PDB) having PDB ID 6VXX. It was matched with the 

structure from Zhang lab server and RMSD value for backbone atoms came out to be 1.88 Å. We 

have observed three different drugs to show strong potency for S protein target: anidulafungin, 

velpatasvir and terlipressin. The key residues that are present in the active binding pocket include: 
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Ser45, Ser46, Leu48, Glu281, Leu303, Ser305, Phe306, Thr307, Glu309, Lys310, Arg815, 

Phe823. Asn824, Thr827, Leu828, Ala829, Ala831, Ala846, Arg847, Leu849, Lys854, Leu945, 

Gly946, Leu1203, Lys1205, Tyr1209, Ile1210, Pro1213, Ile1216, and Trp1217. Terlipressin is a 

large compound covering a wide area over the protein surface. It is involved in majority hydrogen 

bonds and electrostatic interactions.  

 

Figure 6: a) 3D representation of S protein structure highlighting S1 (blue), S2 (red) and S2’ 

(orange) with inhibitor binding site b) 3D representation of active site residues surrounding the 

three selected drugs for S protein anidulafungin, velpatasvir and terlipressin 

The model of the SARS-CoV-2 nucleocapsid phosphoprotein was superimposed with the NMR 

structure of RNA-binding domain of this protein45 (PDB ID 6YI3) and RMSD value was 1.14 Å. 

It is observed that the drug anidulafungin binds at the interface of the protein and interacts with 

many polar residues naming a few: Arg92, Tyr109, Asn150, Arg259, Gln272, Gln283 and Asp399. 

Anidulafugin, a member of the echinocandin class of antifungals, appears to be a promising 

candidate against SARS-CoV-2 and has high predicted KIBA scores and low docking energies 

against key viral proteins including RdRp, helicase, exonuclease, S and N. Anidulafungin is used 

for the treatment of mucosal and invasive fungal infections46. Isavuconazonium, another triazole 

antifungal approved for the treatment of invasive aspergillosis and invasive mucormycosis, 
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showed high binding affinities for nsp2 and N proteins (Table 1). Interestingly, Anidulafungin was 

shown in a recent study to exhibit strong in-vitro antiviral activity against SARS-CoV-2 virus with 

an IC50 value of 4.64 µmol47. Although rare, cases of invasive fungal infections have been 

reported in literature in association with severe influenza48 and severe acute respiratory syndrome 

(SARS) virus infection49. Whether COVID-19 patients are also at increased risk of invasive fungal 

infections is yet to be investigated. Anidulafungin with its potential antiviral activity against 

SARS-CoV2 and proven antifungal activity against invasive fungal infections appears to be a 

promising candidate.  

Our study highlights the potential of HCV protease inhibitors (elbasvir, velpatasvir, glecraprevir 

and pibrentasvir) in inhibiting SARS-CoV-2 proteins. Elbesvir, an HCV NS5A inhibitor, 

demonstrated best docking energies with RdRp, a key viral enzyme and an important therapeutic 

target for COVID-19. In other studies, elbasvir50 and velpatasvir51 have been reported to dock well 

with 3CLpro. Glecraprevir, an HCV NS3/4A protease inhibitor, is often given in combination with 

pibrentasvir, an NS5A inhibitor, for treatment experienced cases of HCV infection. While safety 

profile of this combination has been well-established, the potential of this combination in treating 

COVID-19 has not been examined so far. Rifabutin and rifapentine belong to the rifamycin group 

of antibiotics. Both rifabutin and rifapentin inhibits mycobacterial DNA-dependent RNA 

polymerase, thereby suppressing the initiation of RNA formation and are used in combination with 

other drugs for the treatment of tuberculosis. With the potential of inhibiting RdRp and helicase 

amongst other SARS-CoV-2 viral proteins, rifabutin can be a promising therapeutic option that 

needs further investigation. 

Selinexor, an FDA approved drug for the treatment of relapsed or refractory multiple myeloma, 

is predicted to inhibit SARS-CoV-2 PLpro in our study. Selinexor is an inhibitor of Exportin-1 
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(XPO1) which is an important protein involved in the transport of multiple proteins across nuclear 

envelope. In addition to its role in cancer, XPO1 also plays an important role in facilitating 

transport of viral proteins across the host cell nuclear envelope52. Studies have shown that XPO1 

plays a critical role in SARS-CoV viral replication by controlling the export of certain SARS-CoV 

proteins out of the nucleus53. We hypothesize that selinexor has both direct antiviral activity 

through inhibiting PLpro as well as indirect activity through modulation of host target proteins. A 

multinational clinical trial has recently been launched to study the efficacy of selinexor in patients 

with severe COVID-19 disease. Enasidenib, another anti—neoplastic drug, inhibits mutant forms 

of isocitrate dehydrogenase 2 (IDH2) and is approved for the treatment of refractory form of acute 

myeloid leukemia (AML). Here, we have shown that enasidenib demonstrates high binding 

affinity with two key SARS-CoV-2 viral proteins: 3CLpro and nsp1. 

Edoxaban is a rapidly acting selective factor Xa inhibitor and belongs to Novel Oral Anti-

Coagulant (NOACs) class of drugs. In our study, edoxaban has demonstrated best binding affinity 

with 3CLpro that is a key enzyme involved in SARS-CoV-2 viral replication and an emerging 

drug target. Recently, a wealth of clinical data has suggested that COVID-19 is a hypercoagulable 

state associated with increased incidence of thrombosis in critically ill patients. Therefore, 

anticoagulation is being recommended for prophylactic and therapeutic54. Given the potential to 

inhibit 3CLpro, ease of oral administration and anticoagulant activity, edoxaban appears to be a 

promising candidate drug for treating COVID-19. Further in vitro and clinical studies are 

warranted. 

Flavin mononucleotide (FMN; also known as riboflavin-5’-phosphate) and flavin adenine 

dinucleotide (FAD) are two coenzymes produced from riboflavin (vitamin B2) and function as 

prosthetic group of various oxidoreductases. FMN is predicted to have high binding affinity with 
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PLpro while FAD has high predicted affinities for RdRp, helicase, S and N amongst other SARS-

CoV-2 viral proteins. FAD is a redox-active cofactor that is essential for the functioning of 

flavoenzymes that play critical role in many biochemical processes such as oxidative metabolism 

of macromolecules and electron transport chain55. Studies have shown that the intracellular redox 

state may play an important role in inhibiting viral replication56. In one study FAD was shown to 

enhance the antiviral activity of interferons against herpes virus-1 and influenza virus type A56. 

FAD can also increase intracellular activity of glutathione and nitric oxide synthase, both of which 

may play important roles in inhibiting viral replication. FAD has shown binding affinity with spike 

protein of SARS-CoV-2 in another docking based study (vina score -7.3)57. In another study using 

molecular docking, riboflavin was found to interact with Papain-like proteinase (PLpro) and flavin 

mononucleotide (FMN) interacted with 3C-like main protease (3CLpro) of SARS- CoV-2 virus43. 

Other studies have shown that FAD can decrease lung injury in influenza A H5N1 infected mice 

by altering the levels of immune response related genes58. In conclusion, the results of our study 

coupled with evidence from literature dictate that FAD may play an important role against SARS-

CoV-2 virus by directly targeting the virus as well as host response to the viral replication. 

However, further evidence from in-vitro and in-vivo studies is required. 

Conclusion 

In conclusion, we have combined deep learning and molecular docking simulations to identify 

most promising candidates from the list of FDA approved drugs that can be repurposed to treat 

COVID-19. These drugs include anidulafungin, velpatasvir, glecaprevir, rifabutin, procaine 

penicillin G, tadalafil, riboflavin 5’-monophosphate, flavin adenine dinucleotide, 

terlipressin, desmopressin, elbasvir, oxatomide, enasidenib, edoxaban and selinexor 

amongst others. Further in vitro studies are indicated to investigate antiviral potential of some of 
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these drugs. For drugs with proven in vitro antiviral activity against SARS-CoV-2, clinical trials 

are warranted. 
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Table 1: FDA approved drugs with best predicted KIBA and AutoDock vina binding affinity 
values against selected SARS-CoV-2 Viral Proteins 

Sr # Drug Name PubChem 

Drug ID 

Drug 

Action 

Protein Name KIBA 

Score 

Docking 

Binding 

Affinity 

Values (kcal/mol) 

A. Antimicrobials 

1 Anidulafungin 166548 Antifungal RNA-directed RNA 

polymerase (RdRp) 

11.7602 -13.4 

        Helicase (Hel) 11.7768 -9.0 

        Guanine-N7 

methyltransferase (ExoN) 

11.7008 -13.2 

        Uridylate-specific 

endoribonuclease  

11.7605 -12.3 

        Surface glycoprotein (S) 11.7623 -15.3 

        N 11.6237 -14.3 

2 Isavuconazonium 6918606 Antifungal Non-structural protein 2 

(nsp2) 

11.5459 -11.1 

N 11.6357 -10.9 

3 Procaine Penicillin G 5903 Antibiotic Proteinase 3CL-PRO 11.2148 -9.3 

4 Quinupristin 5388937 Antibiotic RNA-directed RNA 

polymerase (RdRp) 

11.7965 -12.2 

Surface glycoprotein (S) 11.5520 -12.1 

N 11.6461 -11.8 

5 Rifapentine 13565901

6 

Antibiotic Non-structural protein 9 

(nsp9) 

11.6792 -8.6 

        Surface glycoprotein (S) 11.6241 -11.4 

        N 11.7584 -11.6 

6 Rifabutin 13541556

4 

Antibiotic Non-structural protein 2 

(nsp2) 

11.8004 -11 

RNA-directed RNA 

polymerase (RdRp) 

11.8209 -11.5 
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Helicase (Hel) 11.8829 -10.5 

Surface glycoprotein (S) 11.7498 -12.7 

N 11.8253 -11.7 

7 Polymyxin B 49800004 Antibiotic RNA-directed RNA 

polymerase (RdRp) 

11.8949 -14.2 

Surface glycoprotein (S) 11.8941 -12.6 

N 11.7840 -12.7 

8 Cobicistat 25151504 Antiviral Non-structural protein 2 

(nsp2) 

11.8630 -10.7 

RNA-directed RNA 

polymerase (RdRp) 

11.9491 -11.4 

Guanine-N7 

methyltransferase (ExoN) 

11.8669 -14.1 

9 Elbasvir 71661251 Antiviral RNA-directed RNA 

polymerase (RdRp) 

11.9396 -13.6 

        Guanine-N7 

methyltransferase (ExoN) 

11.8797 -13.5 

        Uridylate-specific 

endoribonuclease  

11.9112 -11.7 

        Surface glycoprotein (S) 11.8991 -13.7 

        N 11.8131 -13.8 

10 Velpatasvir 67683363 Antiviral Non-structural protein 2 

(nsp2) 

11.4887 -10.8 

RNA-directed RNA 

polymerase (RdRp) 

11.5925 -11.9 

Guanine-N7 

methyltransferase (ExoN) 

11.3040 -13.5 

Uridylate-specific 

endoribonuclease  

11.5538 -11.2 

Surface glycoprotein (S) 11.7373 -14.5 

N 11.5965 -11.7 
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11 Pibrentasvir 58031952 Antiviral RNA-directed RNA 

polymerase (RdRp) 

11.8812 -12.7 

        Guanine-N7 

methyltransferase (ExoN) 

11.7442 -12.3 

        Uridylate-specific 

endoribonuclease  

11.8894 -11.4 

        Surface glycoprotein (S) 11.8692 -13.1 

        N 11.7755 -12.9 

12 Glecaprevir 66828839 Antiviral Non-structural protein 2 

(nsp2) 

11.8902 -11.3 

Helicase (Hel) 11.9120 -10.5 

RNA-directed RNA 

polymerase (RdRp) 

11.9551 -11.7 

2'-O-methyltransferase (2'-O-

MT) 

11.8422 -11.8 

Surface glycoprotein (S) 11.7496 -11.8 

N 12.0036 -11.9 

B. Hormonal 

13 Abiraterone    132971 Antiandro

gen 

M 11.5199 -7.7 

14 Amcinonide  443958 Corticoster

oid 

Helicase (Hel) 11.8256 -9.1 

    M 11.6823 -7.5 

15 Atosiban 5311010 Tocolytic RNA-directed RNA 

polymerase (RdRp) 

11.8447 -12.5 

Surface glycoprotein (S) 11.9298 -11.7 

16 Carbetocin 16681432 Uterotonic Helicase (Hel) 11.6491 -9.8 

Guanine-N7 

methyltransferase (ExoN) 

11.6623 -13.8 

N 11.5698 -12.3 
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17 Cortisone  5745 Corticoster

oid 

M 11.6792 -7.3 

18 Danazol  28417 Androgen M 11.8513 -7.2 

19 Deoxycorticosterone 5952 Corticoster

oid 

M 11.6867 -7.6 

20 Desmopressin 5311065 ADH 

Analog 

RNA-directed RNA 

polymerase (RdRp) 

11.9439 -13.6 

        Helicase (Hel) 11.9303 -10.6 

        Guanine-N7 

methyltransferase (ExoN) 

11.9756 -12.3 

        Uridylate-specific 

endoribonuclease  

11.9761 -11 

        Surface glycoprotein (S) 12.0064 -13.1 

        N 11.8459 -12.4 

21 Ethynodiol diacetate  9270 Progestero

ne 

Receptor 

Agonist 

M 11.7367 -7.5 

22 Pentetreotide 72128 Octreotide 

Analog 

RNA-directed RNA 

polymerase (RdRp) 

12.0372 -11.9 

        Guanine-N7 

methyltransferase (ExoN) 

11.9211 -12.9 

        Uridylate-specific 

endoribonuclease  

12.0956 -12.7 

        Surface glycoprotein (S) 11.8687 -14.5 

        N 11.8935 -12.4 

23 Somatostatin 16129706 Octreotide 

Analog 

RNA-directed RNA 

polymerase (RdRp) 

11.8702 -15.3 

Helicase (Hel) 11.9113 -9.7 

Guanine-N7 

methyltransferase (ExoN) 

11.7610 -12 

Uridylate-specific 

endoribonuclease  

11.8051 -12 
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Surface glycoprotein (S) 11.8407 -14.4 

N 11.7700 -12.5 

24 Progesterone 5994 Sex 

Steroid 

M 11.6636 -7.3 

25 Prednisone 5865 Corticoster

oid 

M 11.7184 -7.3 

26 Terlipressin 72081 Vasopressi

n Analog 

RNA-directed RNA 

polymerase (RdRp) 

11.5954 -13.8 

Helicase (Hel) 11.6692 -9.8 

Uridylate-specific 

endoribonuclease  

11.7842 -11.9 

Surface glycoprotein (S) 11.5950 -14.5 

N 11.5939 -12.4 

C. Anti-neoplastic 

27 Vindesina 11643449   Guanine-N7 

methyltransferase (ExoN) 

11.4910 -12.8 

        Surface glycoprotein (S) 11.7376 -11.6 

        N 11.7234 -10.9 

28 Nilotinib 644241 Tysrosine-

Kinase 

Inhibitor 

Host translation inhibitor 

nsp1 

11.7249 -8 

Non-structural protein 2 

(nsp2) 

11.7242 -12.2 

Papain-like proteinase 11.7398 -6.7 

Proteinase 3CL-PRO 11.4559 -8.5 

E 11.4128 -7.5 

29 Exemestane 60198 Aromatase 

Inhibitor 

M 11.7052 -7.5 

30 Etoposide 36462 Topoisom

erase 

Inhibitor 

Proteinase 3CL-PRO 11.7101 -8.6 

31 Epirubicin 41867 Anthracycl

ine 

Proteinase 3CL-PRO 11.5659 -8.5 
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antineopla

stic 

antibiotic 

32 Enasidenib 89683805 Isocitrate 

Dehydroge

nase 

Inhibitor 

Host translation inhibitor 

nsp1 

11.9167 -8.5 

Non-structural protein 2 

(nsp2) 

11.9669 -10.7 

Proteinase 3CL-PRO 11.8091 -8.7 

    Papain-like proteinase 11.8572 -6.9 

33 Daunorubicin 30323 Anthracycl

ine 

antineopla

stic 

antibiotic 

Proteinase 3CL-PRO 11.5225 -8.5 

34 Cabazitaxel 9854073 Microtubu

le 

Inhibitors 

RNA-directed RNA 

polymerase (RdRp) 

11.9236 -12.3 

        Uridylate-specific 

endoribonuclease  

12.0602 -11.7 

        N 11.9556 -11.3 

35 Docetaxel 148124 Microtubu

le 

Inhibitors 

Non-structural protein 10 

(nsp10) 

11.7887 -10.1 

        RNA-directed RNA 

polymerase (RdRp) 

11.8086 -11.8 

        N 11.7737 -11.4 

36 Brigatinib 68165256 Tyrosine 

Kinase 

Inhibitor 

Non-structural protein 2 

(nsp2) 

11.7242 -10.7 

37 Selinexor 71481097 Antineopla

stic 

Papain-like proteinase 11.5764 -7.1 

D. Vitamins 

38 Cholecalciferol 5280795 Vitamin 

D- Steroid 

M 11.7619 -7.2 
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39 Flavin adenine 

dinucleotide 

643975 Coenzyme Non-structural protein 2 

(nsp2) 

11.7630 -11.8 

RNA-directed RNA 

polymerase (RdRp) 

11.6978 -12.8 

Helicase (Hel) 11.8304 -11.2 

Guanine-N7 

methyltransferase (ExoN) 

11.3726 -13.6 

Uridylate-specific 

endoribonuclease  

11.8032 -12.3 

Surface glycoprotein (S) 12.2218 -12.9 

N 11.6575 -13.3 

40 Riboflavin 5'-

monophosphate 

643976 Vitamin 

B2 

derivative 

Papain-like proteinase 11.8168 -7 

E. Miscellaneous 

41 Dabigatran etexilate 13556567

4 

Anticoagul

ant 

Helicase (Hel) 11.8329 -9.7 

Guanine-N7 

methyltransferase (ExoN) 

11.7765 -12.5 

Surface glycoprotein (S) 11.6961 -12.7 

N 11.7036 -11.2 

42 Dihydroergotamine 10531 Ergot 

Derivative 

Host translation inhibitor 

nsp1 

11.9048 -8.2 

    Helicase (Hel) 11.9629 -9.2 

43 Edoxaban 10280735 Anticoagul

ant 

Proteinase 3CL-PRO 11.5352 -8.7 

44 Elexacaftor 13458734

8 

Corrector 

of the 

CFTR 

protein 

Non-structural protein 2 

(nsp2) 

11.8181 -11.1 

45 Ergotamine 8223 Ergot 

alkaloid 

with 

vasoconstr

Host translation inhibitor 

nsp1 

11.9048 -8 

Proteinase 3CL-PRO 11.3610 -8.4 
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ictor and 

analgesic 

property. 

Helicase (Hel) 11.9629 -9.3 

46 Manidipine 4008 Calcium 

Channel 

Blocker 

Non-structural protein 2 

(nsp2) 

12.0029 -11.1 

47 Mivacurium  5281042 Neuromus

cular 

Blocker 

Guanine-N7 

methyltransferase (ExoN) 

11.7171 -12.1 

Surface glycoprotein (S) 11.5691 -13.2 

48 Tadalafil 110635 PDE-5 

Inhibitor 

Host translation inhibitor 

nsp1 

11.7874 -8.5 

Non-structural protein 2 

(nsp2) 

11.6870 -11.2 

49 Oxatomide 4615 First-

generation 

H1-

antihistami

ne 

Papain-like proteinase 12.1627 -7.3 
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Supplementary Figures: 

 

 

Supplementary Figure 1: Prediction of KIBA scores using modified DeepDTA  

Performance of modified DeepDTA model demonstrating a high concordance index of 0.899.  

b) Frequency distribution of DeepDTA for FDA approved drugs against three selected SARS-

CoV-2 viral proteins nsp1, 3CLpro and S. Drugs with the highest KIBA scores were shortlisted 

for docking simulations. 

 

Supplementary Figure 2: Interactive plot of selected FDA approved drugs with KIBA scores and 

docking binding affinity values against key SARS-CoV-2 viral proteins   

Supplementary Table 1: Predicted KIBA scores of all FDA approved and experimental drugs in 

DrugBank against all 24 SARS-CoV-2 viral proteins 
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Supplementary Table 2: KIBA scores of selected 168 FDA approved drugs against SARS-CoV-

2 viral proteins 

Supplementary Table 3: Docking binding affinity values for 168 drugs against all predicted 

and/or experimentally proven active sites of SARS-CoV-2 proteins 
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