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Decoding the Chemical Bond—On the Connection be-
tween Probability Density Analysis, QTAIM, and VB
Theory†

Leonard Reutera and Arne Lüchow∗a

Classification of bonds is essential for understanding and predicting the reactivity of chemical
compounds. This classification mainly manifests in the bond order and the contribution of different
Lewis resonance structures. Here, we outline a first principles approach to obtain these orders
and contributions for arbitrary wave functions in a manner that is both, related to the quantum
theory of atoms in molecules and consistent with valence bond theory insight: the Lewis structures
arise naturally as attractors of the all-electron probability density |Ψ|2. Doing so, we introduce a
valence bond weight definition that does not collapse in the basis set limit.

1 Introduction
While modern computers allow for the ever more accurate com-
putation of molecular properties with advanced quantum me-
chanical methods, chemists continue to think in Lewis structures
and qualitative valence bond concepts like hybridization. This
qualitative view of molecular chemistry, which is often called
‘chemists intuition’, has proven to be an essential tool in pre-
dicting and explaining reactions and is thus unlikely to vanish
or substantially change in the near future.

In order to connect these two worlds of chemistry, the qualita-
tive concepts have to be redefined and rediscovered in the math-
ematical framework of quantum mechanics. Reaching this goal
would allow chemists to adapt their intuition to theoretical in-
sight that goes beyond energies, geometries, and dipole moments.

While a lot has already been achieved—mainly in the context
of valence bond (VB) theory and the quantum theory of atoms
in molecules (QTAIM)—there is no method that is both, univer-
sally applicable to any wave function and capable of capturing
the many-particle nature of electronic systems.

In the present work, we will try to take a small step towards the
desired redefinition and universal applicability by investigating
the topology of the all-electron probability density |Ψ|2 and by
providing maps to qualitative concepts of bond classification. We
call this approach ‘probability density analysis’ (PDA). In order
to gain a comprehensive picture of chemical bonding, the PDA
results are compared with the established VB theory and QTAIM.

A century ago—and ten years before Schrödinger’s equa-
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tion1—Lewis laid the foundations of molecular bond classifica-
tion.2,3 Heitler and London subsequently developed valence bond
theory by merging Lewis concept of ‘electron pairs’ into wave me-
chanics.4 Eventually, Pauling generalized the theory by writing
molecular wave functions as linear combinations of Lewis reso-
nance structures.5 Later work improved the computability6 and
accuracy7 of VB theory.

Meanwhile, Bader and Beddall introduced what would later
become the quantum theory of atoms in molecules, a ‘unified the-
ory of atoms, bonds, structure, and structural stability’ which is
based on partitioning the 3D real space into topological quantum
atoms defined by the electronic density.8–10 Chamorro et al.11

and later Martín Pendás and coworkers12–17 integrated the prob-
ability density |Ψ|2 over the quantum atoms in order to gain in-
sight into the all-electron distribution. QTAIM and VB Theory
have already been compared by Zhang et al.18, Ferro-Costas and
Mosquera19, and Martín Pendás and Francisco.20

More recently, Scemama et al.21 picked up the idea of in-
vestigating the maxima of |Ψ|2, which was pioneered by Art-
mann22 and by Zimmermann and Rysselberghe.23 However, they
discarded the approach in favor of the maximum probability
domains. Lüchow and coworkers reintroduced the topological
analysis of |Ψ|2,24 added the definition of a basin as the 3N-
dimensional analogue to the quantum atom,25 and used this par-
titioning to investigate the anomeric effect.26 This topological
analysis of |Ψ|2 is now relabelled as probability density analysis
(PDA). It should be noted that Schmidt and coworkers recently
and successfully followed a similar approach.27–30 On the exper-
imental side, Waitz et al. showed that the many-electron proba-
bility density |Ψ|2 is—in principle—measurable.31

In order to obtain a comprehensive picture of chemical bond-
ing in molecules, the three aforementioned approaches (i.e. VB
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theory, QTAIM, and PDA) should be combined and compared. In
the present work, this comparison is done in detail for the sim-
plest system H2. While QTAIM and VB theory have already been
compared for this system by Ferro-Costas and Mosquera,19 we
think that their conclusion might be misleading and follow the
approach by Martín Pendás and Francisco instead.20 A range of
single bonds (heteroatomic and homoatomic) are calculated in
order to confirm and generalize the H2 results. Finally, the dif-
ferent approaches are compared for double bonds in ethylene,
ozone, and sulfur dioxide.

2 Methods
In this section, the term ‘attractor’ is used synonymous with ‘local
maximum’. It is borrowed from dynamical system theory and is
linked with the term ‘basin of attraction’.
All investigated wave functions Ψ(R) are linear combinations of
configuration state functions (CSFs) ΦK(R). The CSFs themselves
are linear combinations of Slater determinants ψk(R).

Ψ(R) = ∑
K

CKΦK(R) = ∑
K

CK ∑
k

cKkψk(R) (1)

In a self-consistent iterative optimization, the so-called configura-
tion interaction coefficients CK are optimized simultaneously with
the orbitals, while the linear coefficients cKk are fixed.
For the complete active space self-consistent field (CASSCF)
method, the determinants are built from an orthonormal set of
molecular orbitals and the cKk are called ‘spin coupling coeffi-
cients’. The resulting CASSCF CSFs form an orthonormal basis
themselves.

The valence bond self-consistent field (VBSCF) method by van
Lenthe and Balint-Kurti6 is an alternative to CASSCF. It is one
of the modern valence bond methods which use wave functions
that are built from inactive molecular orbitals and active strictly
localized hybrid atomic orbitals.

In VB terminology, the CSFs are called (VB) structures. In addi-
tion to their mathematical representation, each structure can be
depicted in the graphical Lewis representation, see Fig. 1.
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Fig. 1 Example of the Lewis representation—three structures of the π

system in ozone with formal charges. Labels are taken from Braïda et
al. 32

The importance of structures is quantified with weights Wk

which are (almost) always positive and sum up to one. In the
three most common definitions, the weights depend on the struc-
ture overlap matrix S:

SIJ =
∫
R3N

dR ΦI(R)ΦJ(R) (2)

The Chirgwin-Coulson weight

W CC
K =CK ∑

L
CLSKL (3)

is the most intuitive definition and follows directly from partition-
ing the norm of the probability density:∫

R3N
dR |ΨVB(R)|2 = ∑

K
CK ∑

L
CLSKL (4)

It is closely related to the Mulliken population analysis: multipli-
cation of the structure weights with the respective formal charges
(e.g. see Fig. 1) produces the Mulliken partial charges. The
Löwdin weight33

W Löw.
K =

(
∑
L

CLS1/2
KL

)2

(5)

is an alternative which is analogous to the Löwdin population
analysis. The inverse weight

W inv.
K =

αK

∑L αL
, αK =

C2
K

S−1
KK

(6)

by G. A. Gallup and J. M. Norbeck34 is often discussed as another
alternative. It should be noted that for orthonormal CSFs (SIJ =

δIJ) like those employed in CASSCF all definitions give WK =C2
K .

The problem of VB weight definition thus arises solely from the
non-orthogonality of the CSFs .

In quantum theory of atoms in molecules, attractors of the elec-
tronic density ρ(r) are denoted nuclear critical points. They par-
tition the real space R3 into their basins of attraction ωωω which are
commonly referred to as Bader basins. Their surfaces s(ωωω) are of
zero flux in the gradient vector field of ρ(r):

∇ρ(r) ·n(r) = 0, ∀r ∈ s(ωωω) (7)

with the position vector r ∈R3 and the unit vector n(r) normal to
the surface s(ωωω).

The formalism of electron number distribution functions
(EDFs) by Martín Pendás and coworkers12–17—and pioneered
by Chamorro et al.11—gives additional insight into the statistical
distribution of electrons. Most commonly, the Bader basins pre-
sented above are used for integration, however any set of basins
that partition R3 could be used.
For EDF, every point R in the 3N-dimensional all-electron space is
mapped to a partition S = (n1,n2, . . . ,nm) by the partition assign-
ment function σ which assigns every electron individually to the
basin ωωω I it is found in, then counts the number of electrons nI per
basin ωωω I for I = 1, . . . ,m.
A 3N-domain D i can be defined for every partition Si:

Di = {R ∈ R3N |σ(R) = Si} (8)

The probability p(Si) of a partition can be calcu-
lated by integrating the all-electron probability density
P(R) = |Ψ(R)|2/∫R3N dR|Ψ(R)|2 over the domain Di:

p(Si) =
∫
Di

dR P(R) (9)

If it is possible to map a partition to a VB resonance structure (ie.
Si→ΦK), an EDF weight can be defined: W EDF

K = p(Si)

However, with the Bader basins alone, this map does often not
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exist (eg. for multiple bonds). Instead, a partition can then be
mapped to a group of resonance structures, that have the same
formal charges.
In probability density analysis24–26—pioneered by Scemama et
al.21—, attractors of the probability density P(R) partition the
all-electron position space R3N into their basins of attraction ΩΩΩ.
The surfaces S(ΩΩΩ) of these basins are of zero flux in the gradient
vector field of P(R):

∇P(R) ·N(R) = 0, ∀R ∈ S(ΩΩΩ) (10)

with the all-electron position vector R ∈ R3N and the unit vector
N(R) normal to the surface S(ΩΩΩ). For one-electron systems (e.g.
H +

2 ) PDA is identical to QTAIM, since R = r and thus P(R)≡ ρ(r).
The attractors of P(R) can be assigned to VB structures (more
precisely VB determinants) and the integral of P(R) over a basin
of attraction can be interpreted as a measure of importance. We
therefore define the PDA weight of a VB structure

W PDA
K =

∫
ΩΩΩK

dR P(R) (11)

where ΩK is the union of all basins Ω around attractors that are
assigned to determinants of the VB structure ΦK .

In general, a good agreement of VB theory and PDA is expected
due to the locality of VB orbitals: if a Slater determinant is built
from perfectly localized orbitals (in the sense of no overlap of
the squared orbitals), the squared Slater determinant is the sum
of squares of all possible Hartree products. The attractors of the
squared determinant are then composed of the 3D attractors of
the squared orbitals—this has already been pointed out by Sce-
mama et al.21 While the VB orbitals cannot be perfectly localized
(otherwise there would be no bonding), a good agreement of the
all-electron attractors with the squared orbitals attractors is still
expected.

3 Computational Approach

The VB program XMVB35,36 has been used for all VB calcula-
tions. The integrals have been prepared with Gaussian 16.37

The Molpro38 package has been used for all CASSCF calcula-
tions. Experimental geometries are taken from NIST Computa-
tional Chemistry Comparison and Benchmark Database39 for the
following molecules: HF and HCl from the NIST Diatomic Spec-
tral Database.40 H2O2 from Redington et al.41 O3, SO2, C2H6,
and NH3 from Herzberg.42 N2H4 from Tsuboi and Overend.43 H2
and F2 from Huber and Herzberg.44 H2O from Hoy and Bunker.45

BH3 from Kuchitsu.46

The all-electron triple-ζ Slater type basis set TZPae47 by van
Lenthe and Baerends has been used for the all-electron calcu-
lations. For the Gaussian and Molpro calculations the basis
functions have each been expanded into 14 primitive Gaussian
type functions.48,49 The energy-consistent pseudopotentials by
Burkatzki et al.50 with the triple-ζ basis set (BFD-VTZ) have been
used for ozone and sulfur dioxide. The PDA as well as the stochas-
tic EDF analysis have been performed with our in-house codes
Amolqc and inPsights. The PDA integral in Equation 11 is cal-
culated by Monte Carlo integration: samples of the all-electron

position vector R drawn from P(R) are obtained during a vari-
ational quantum Monte Carlo run. Local optimization of P(R)

(small-step gradient following) is used to identify the attractor of
the basin each 3N-dimensional sample point is in.

The EDF integral in Equation 9 is also calculated by Monte
Carlo integration, but with local optimization of ρ(r), which is
obtained from a B3LYP51–54 density functional theory calculation
(with the VWN(III)55 local correlation energy) with Molpro.

4 Results and Discussion

4.1 Starting Simple: the Ionic Contribution in H2

There are several reasons to start with the sandbox molecule H2:
it is easy to understand, two-particle density surface plots on the
bond axis can be visualized, the two-particle density is simply the
probability density (ρ2(r1,r2) = P(R)), and it has already been
investigated for comparison of QTAIM with VB theory.19,20

The hydrogen molecule is oriented along the z-axis, with the
mass center at the origin. The protons are labelled A and B and
placed at rA (0,0,−dHH/2) and rB (0,0,dHH/2) respectively. The
wave function is built from the two 1s orbitals ϕA(r) and ϕB(r)
with overlap s.

A flexible VB wave function is investigated with all methods:

Ψ
VB
H2

(R) = NVB
H2

[
(1−η)Ψ

cov.
H2

(R)+ηΨ
ion.
H2

(R)
]

(12)

NVB
H2

is the normalization factor, and η controls the contribution
of the two normalized VB structures (covalent and ionic)

Ψ
cov.
H2

(R) =
1√

2+2s2
[ϕA(r1)ϕB(r2)+ϕB(r1)ϕA(r2)]

Ψ
ion.
H2

(R) =
1√

2+2s2
[ϕA(r1)ϕA(r2)+ϕB(r1)ϕB(r2)] .

(13)

For η = 1/2, Equation 12 yields the Hartree-Fock (HF) wave func-
tion σ2

g .

4.1.1 QTAIM and EDF

In the electronic density ρVB
H2

(r), the ionic coefficient η appears
only in the product η (1−η). The density is thus equal for η and
1−η:

ρ
VB
H2

(r) =

(
NVB

H2

)2

s2 +1

[
(q+1)

(
ϕ

2
A(r)+ϕ

2
B(r)

)
−2(q− s)ϕA(r)ϕB(r)

]
with q = 2η (1−η)(s−1)

(14)
Therefore, the ionic and covalent VB structures give rise to an
identical electronic density which is already mentioned in text-
books.56 It also follows, that—for the chosen wave function
ansatz—the mapping ρH2

(r)→ΨH2
(R) is only unique for the HF

wave function (η = 1/2).
For any η , due to symmetry, the real space R3 is trivially divided

into two Bader basins:

ωωωA = {r ∈ R3|r3 < 0}, ωωωB = {r ∈ R3|r3 > 0} (15)

In order to determine the covalent and ionic contributions of any
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approximate wave function, the norm of the probability density
(which is also the two-particle density) can be partitioned:

||PH2
(R)||= 1 =

∫
R3
dr1

∫
R3
dr2 PH2

(R)

=

(∫
ωωωA

dr1

∫
ωωωB

dr2 +
∫

ωωωB

dr1

∫
ωωωA

dr2 +
∫

ωωωA

dr1

∫
ωωωA

dr2 +
∫

ωωωB

dr1

∫
ωωωB

dr2

)
PH2

(R)

=W EDF
cov. +W EDF

ion.

with W EDF
cov. =

(∫
ωωωA

dr1

∫
ωωωB

dr2 +
∫

ωωωB

dr1

∫
ωωωA

dr2

)
PH2

(R)

and W EDF
ion. =

(∫
ωωωA

dr1

∫
ωωωA

dr2 +
∫

ωωωB

dr1

∫
ωωωB

dr2

)
PH2

(R)

(16)
Note that this partitioning is but the application of the EDF
method by Martín Pendás and coworkers with the covalent parti-
tion SAB = (1,1) and the ionic partitions SAA = (2,0) and SBB =

(0,2), which they already used for a comparison with VB The-
ory.20 Note also that, in contrast to the work by Ferro-Costas et
al.,19 the whole two-particle density is taken into consideration
and not just its exchange-correlation component. The reported
conceptual incompatibilities of VB theory and QTAIM are owed
to the neglect of ρ(r1)ρ(r2) which becomes PH2

(R) in the dissoci-
ation limit. In accordance with Ferro-Costas et al., we define

I =
∫

ωωωA

dr |ϕA(r)|2 =
∫

ωωωB

dr |ϕB(r)|2 (17)

W EDF
ion. is a function of η , I, and s with the latter two depending on

dHH:

W EDF
ion. =

(s−1)2
η2−

[
s2−2s−4I (I−1)

]
η + s2

2 −2I (I−1)

s2 +1−2η (1−η)(s−1)2 (18)

4.1.2 VB Theory

The structure overlap matrix SH2
is given as

SH2
=

(
1 Sic

Sic 1

)
, Sic =

2s
s2 +1

(19)

with the ionic-covalent overlap Sic. Its inverse and square root
can be calculated as:

S−1
H2

=

(
S−1 −SicS−1

−SicS−1 S−1

)
, S−1 =

1
1−S2

ic
(20)

S1/2
H2

=

(
S1/2
+ S1/2

−
S1/2
− S1/2

+

)
, S1/2

± =
1
2

(√
1+S2

ic±
√

1−S2
ic

)
(21)

The three VB weights of the ionic structure are calculated accord-
ing to Eqs. 3-6:

W CC
ion. =

(
NH2

VB

)2(
η

2 +η (1−η)Sic

)
(22)

W Löw.
ion. =

(
NH2

VB

)2(
ηS1/2

+ +(1−η)S1/2
−
)2

(23)

W inv.
ion. =

η2

η2 +(1−η)2 (24)

Note that W inv.
ion. is independent of dHH: S−1 cancels out because

S−1
H2

is persymmetric. It is thus for this system equal to the renor-
malized weight W ren.

K =C2
K/∑L C2

L which is later in this work omit-
ted due to its independence of the overlap matrix.

4.1.3 PDA

Four attractors R1-R4 of PH2
(R) are identified with PDA (see

Fig. 2a): R1 = (rA,rB), R2 = (rB,rA), R3 = (rA,rA), and R4 =

(rB,rB). The attractors R1 and R2 have one electron at each core
and can thus be assigned to the covalent structure, while R3 and
R4 are assigned to the two ionic structures. A covalent and an
ionic basin can be defined as unions of the respective basins of
attraction ΩΩΩ1-ΩΩΩ4, which partition R6.

ΩΩΩcov. = ΩΩΩ1∪ΩΩΩ2, ΩΩΩion. = ΩΩΩ3∪ΩΩΩ4 (25)

W PDA
ion. is obtained by solving the integral of Equation 11 for ΩΩΩion.

with Monte Carlo integration. Figure 2 shows a comparison of
the PDA basins and the QTAIM integration domains defined in
Equation 16 which are used for EDF.

4.1.4 Comparison

The presented ionic weight definitions are functions of the ionic
coefficient η and of the proton-proton distance dHH, on which s
and I depend. The weight-coefficient dependency is shown in Fig-
ure 3 for all definitions at three distances.
In the dissociation limit, all definitions agree: they converge to

C2
ion., since Sic→ 0.

In the fused-core limit, W Löw. and W EDF converge to 1/2, W CC

converges to η , and W PDA seems to converge towards the
distance-independent W inv..
At all distances, all weight definitions agree for the Hartree-Fock
wave function (η = 1/2).
At the equilibrium distance (dHH = 1.40a0), W PDA is in between
W CC and W inv., which are the most widely used VB weights. The
EDF and Löwdin weights are qualitatively different from the other
definitions, since they give a significant ionicity larger than 35%
for η = 0. This qualitative difference should always be kept in
mind when discussing VB weights.
A last remark should be added regarding the inverse weights: in
contrast to a claim in the original publication, the inverse weight
definition does not—in general—‘diminish the importance of the
ionic terms’. It rather—due to the sigmoidal shape of the curve—
diminishes the importance of terms, which already have a low
importance.

4.2 Ionic Contributions in Single Bonds

The ionic contribution to any single bond can be calculated simi-
larly to the analysis of H2 described in the previous section. How-
ever, the attractors in R3N are not as trivial with electron posi-
tions away from the nuclei.24,25 The mapping of attractors Ri to
VB determinants can still be done visually, as shown in Figure 4
for difluorine.
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(a) PDA basins ΩΩΩ. (b) QTAIM domains D used for EDF.

Fig. 2 PH2(r1,r2) with η = 0.1 and dHH = 1.40a0 for r1 = (0,0,z1) and r2 = (0,0,z2) (both electrons on the bond axis). The four peaks are the four
attractors R1-R4. The covalent domain is depicted in red, the ionic domain in blue.

Fig. 3 Different ionic weight definitions as a function of the ionic coefficient η . Comparison for three different proton-proton distances.

(a) covalent (84 %) (b) ionic 1 (8 %) (c) ionic 2 (8 %)

Fig. 4 Three attractors of difluorine with VBSCF(2,2). PDA weights in brackets. The fluorine nuclei are depicted as green spheres, electrons as small
red or blue spheres depending on their ms quantum number. Pairs of spin-up and spin-down electrons are connected by purple lines in order to highlight
the resemblance to the VB structures.
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Fig. 5 Ionic contribution according to different definitions for homoatomic
bonds.

Fig. 6 Ionic contribution from EDF and PDA calculations for CASSCF
and VBSCF wave functions.

4.2.1 Homoatomic Bonds

The ionicities for the homoatomic bonds in dihydrogen, ethane,
hydrazine, hydrogen peroxide, and difluorine have been cal-
culated using VBSCF(2,2)/TZPae wave functions (see Fig. 5).
Again, a good agreement can be observed between the PDA and
the inverse weight and between the EDF and the Löwdin weight.
The results confirm the qualitative difference between these two
pairs of definitions. Since the EDF and PDA weights can be cal-
culated for arbitrary wave functions, the VBSCF(2,2) wave func-
tions are compared with the corresponding CASSCF(2,2) ones in
Figure 6. Except for the PDA weight of the C-C bond in ethane,
the results of the different wave functions are in good agreement
which is expected since both methods are similar and can even
be identical in a minimal basis. The larger difference for W PDA in
ethane could result from the inactive orbitals being delocalized in
CASSCF and block localized in VBSCF.

4.2.2 Heteroatomic Bonds

For hydrogen containing heteroatomic bonds (with VBSCF/TZPae
wave functions), the PDA and inverse weights are again found to
be in good agreement (see Fig. 7). In contrast to the homoatomic

Fig. 7 Ionic contribution according to different definitions for hydrogen
containing heteroatomic bonds. The darker coloured parts of the bars
are the contributions of the respective hydride ionic structures.

bonds the weights of the two ionic structures are no longer identi-
cal due to the lack of symmetry. The PDA and inverse weights are
also in good agreement for the resulting individual ionic struc-
tures contributions (‘X|− H+’ and ‘X+ |H−’).

4.3 Double Bonds

The characterization of double bonds is only indirectly possi-
ble with methods based on the one- or two-electron density like
QTAIM and even EDF.

4.3.1 Ethylene

The double bond in ethylene has two different VB representa-
tions: the σ -π picture that is widely taught and applied in organic
chemistry and the τ-bond where sp3 hybrids form two ‘banana
bonds’, see Fig. 8. VBSCF(4,4) wave functions built according
to the two pictures give rise to almost the same electronic en-
ergy. This is expected, since unitary transformation of active or-
bitals with a subsequent CI optimization does not alter the wave
function. There is thus, at first sight, no representation generally
favorable. However, if restricted to the most important VB struc-
ture, the σ -π wave function is lower in energy by about 13.7mEh.
If restricted to 3 structures, this difference reduces to 2.4mEh (see
Fig. 9). For three structures and for the full twenty structures, the
energies of the VBSCF(4,4) wave functions are in between the
HF energy and the CASSCF(4,4) energy. The energy difference
between the CAS and full VB calculations arises largely due to the
block localization of the inactive VB orbitals.

The three by inverse weight most important VB structures of
the τ VB wave function are depicted in Figure 10. When apply-
ing PDA to the VBSCF(4,4) or CASSCF(4,4) wave functions of
ethylene, three kinds of attractors are found, see Fig. 11. Note
that the two ionic structures are found more frequently in corre-
lated wave functions.25 These attractors can be rationalized by
comparing them to the schematic VB structures of the τ picture
in Figure 10. Nearly identical PDA weights are obtained for the
both full VB wave functions and the CAS wave function.

The EDF analysis of the investigated wave functions reproduces
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(a) sp3-hybrids forming τ bonds (Pauling). (b) σ -π representation (Hückel).

Fig. 8 Alternative sets of hybrid atomic orbitals for describing the double bond in ethylene with VB theory.

Fig. 9 Electronic energies of different wave functions of ethylene. The
optimized active orbitals of the full VB wave functions are shown in Fig-
ure 8.

••
••

(a) cov. (55%, 84%)

••
••

(b) ionic 1 (9%, 8%)

••
••

(c) ionic 2 (9%, 8%)

Fig. 10 The three most important VB structures of the τ VB wave function
with inverse weights for both, the full (20 structure) wave function and the
three structure wave function.

the distribution presented by Martín Pendás and Francisco.17 The
EDF analysis with Bader basins cannot distinguish between the
three structures in Figure 10 since they have the same formal
charges: none. Thus—in order to compare PDA and VB weights
with the partition probabilities—the 20 VB structures are grouped
according to the distribution of electrons to the CH2 fragments:
in 10 structures, they are distributed evenly (i.e. (8,8)). In 8
structures, both fragments have an absolute formal charge of 1
(i.e. (7,9) and (9,7)) and in 2 structures, the absolute formal
charge is 2 (i.e. (6,10) and (10,6)). The sum of the weights
of the respective structures can directly be compared to the par-
tition probabilities which are again taken as EDF weights—e.g.
W EDF

(8,8) = p(8,8).

Note, that the three structures of Figure 10, which are found as
PDA attractors (Fig. 11), are all in the group (8,8). For the de-
fined groups of structures, the PDA weights again agree best with
the inverse VB weights (Fig. 12). They are however qualitatively
different since only (8,8) structures are found with PDA. The EDF
weights are again in good agreement with the Löwdin weights.
The EDF and PDA weights of the groups are equal up to 0.5% for
the two full VB wave functions and the CAS wave function. Fig-
ure 12 thus only shows the results for the full τ VB wave function.

In summary, it can be stated that there are arguments for both
double bond pictures in ethylene. While the σ -π picture allows
for more compact wave functions, the τ picture is found with PDA
for both VB wave functions as well as for the CAS wave function.
The most likely arrangement of electrons is thus in agreement
with Paulings τ bonds. As discussed in Section 2, this agreement
can be explained with the overlap of the squared active orbitals,
which is lower in the τ picture.

Furthermore, the close link between VB theory, QTAIM/EDF,
and PDA is confirmed for the double bond in ethylene.

Journal Name, [year], [vol.],1–12 | 7



(a) covalent (97.1 %) (b) ionic 1 (1.4 %) (c) ionic 2 (1.4 %)

Fig. 11 Three attractors of ethylene with full VBSCF(4,4). PDA weights in brackets. The carbon nuclei are depicted as dark grey spheres, protons
as light grey spheres, electrons as small red or blue spheres depending on their ms quantum number. Pairs of spin-up and spin-down electrons are
connected by purple lines in order to highlight the resemblance to the VB structures.

Fig. 12 Weights of groups of VB structures for ethylene. The groups are
defined to match with the EDF partitions.

4.3.2 Ozone and Sulfur Dioxide
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Fig. 13 Six structures of the π system in general 1,3-dipoles. Labels are
taken from Braïda et al. 32

In VB theory, ozone is described best by six π resonance struc-
tures, see Figure 13. Harcourt was the first to stress the impor-
tance of the diradical ‘long bond’ structure D.57 Goddard et al.58

and later Hiberty et al.59 verified Harcourts assumption with GVB
calculations and CASSCF expansions respectively. Wu et al. were
the first to perform modern VB calculations on ozone and sulfur
dioxide.60 Braïda et al.61 explained the reactivity of 1,3-dipoles
toward ethylene and acetylene with the weight of the diradical
structure, but investigated neither O3 nor SO2. Lan et al.62 then
took up that work and investigated ozone and sulfur dioxide with
similar modern VB methods. They found ozone to be similar to
the dipoles calculated by Braïda et al., but SO2 dominated by the
multi-ionic structure MI. Furthermore, they found a good agree-
ment with natural population analysis charges. More recently,

Miliordos and Xantheas found ozone to have more diradical char-
acter than sulfur dioxide with CASSCF-based icMRCI wave func-
tions although with substantially smaller magnitudes of the dirad-
ical contributions.63 In their work, they adjusted earlier diradical-
ity indices.64,65 Even more recently, Braïda et al. found a good
correlation of some of these indices with VB weights (Chirgwin-
Coulson and inverse definition) for 1,3-dipoles built from sulfur
and oxygen.32

For ozone, the structures D, Z1, and Z2 are the three most im-
portant structures. Thus, the VB wave functions with only these
three structures are compared with the full VBSCF wave functions
(six structures) and, additionally, with the CAS and HF wave func-
tions. The CAS analogue to the VBSCF wave functions built with
the six π structures of Figure 13 is CASSCF(4,3).

The dominant attractors of ozone in PDA with
VBSCF(4,3)/BFD-VTZ are shown in Figure 14. Two σ bond
electron pairs, the lone pairs, and one additional pair are
indicated with a line in the figure. These attractors can clearly
be identified with the VB structures D, Z1, and Z2. Since the
σ orbitals are inactive in the VB wave function, both covalent
and ionic electron arrangements are found for the two σ bonds,
analogously to the attractors in H2 discussed above. Nonetheless,
all ionic and covalent arrangements in the σ bonds can can
still be mapped to the VB structures D, Z1, or Z2, see Figure 17
in the Appendix. Analogous attractors are found for SO2 with
a corresponding three-structure VBSCF(4,3)/BFD-VTZ wave
function (Fig. 15). Here, the σ electron pairs are always on
the oxygen side, which is expected for polar bonds treated on
single-configuration level (i.e. inactive in the VB wave function).
The weights of the VB wave functions for O3 and SO2 are shown
in Figure 16 with the weights for the three-structure VB wave
functions displayed on the left sides of the diagrams. For the
three-structure wave functions, the PDA weights are in good
agreement with all VB weights for both systems and, as described
in the literature, the weight of the diradical structure D is larger
in ozone. The additional three structures (Z3, Z4, MI) do
not change the picture for ozone as the additional weights are
small. For sulfur dioxide however, the multi-ionic structure MI
is roughly as important as the diradical structure D according
to the three established VB weight definitions. In contrast to
these definitions, the PDA weight of the multi-ionic structure
MI is nearly 100% (only the zwitterionic structures Z1 and Z2
have a non-zero PDA weight of ≈ 0.03%). The dominating MI
attractor is shown in Figure 15a. For the CAS wave function of
ozone, the weights are in almost perfect agreement with the full
VB wave function weights shown in Figure 16a. The HF wave
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(a) D (88.2 %) (b) Z1 (5.7 %) (c) Z2 (5.7 %)

Fig. 14 Three attractors of ozone with VBSCF(4,3). PDA weights in brackets. The oxygen nuclei are depicted as red spheres, electrons as small red
or blue spheres depending on their ms quantum number. Pairs of spin-up and spin-down electrons are connected by purple lines in order to highlight
the resemblance to the VB structures.

(a) MI (100 %, full) (b) D (13 %, 3 strs.)

(c) Z1 (43 %, 3 strs.) (d) Z2 (43 %, 3 strs.)

Fig. 15 Four attractors of sulfur dioxide with VBSCF(4,3). PDA weights in brackets. The oxygen nuclei are depicted as red spheres, the sulfur nucleus
as a yellow sphere, electrons as small red or blue spheres depending on their ms quantum number. Pairs of spin-up and spin-down electrons are
connected by purple lines in order to highlight the resemblance to the VB structures.

(a) ozone (b) sulfur dioxide

Fig. 16 Structure weights for the VB wave functions of ozone and sulfur dioxide. Weights of the three-structure wave functions on the left, respectively.
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function of ozone is qualitatively different with the multi-ionic
structure MI and the zwitterionic structures (Z1, Z2) dominating
by PDA weight. HF, CAS, and the full VB wave function for sulfur
dioxide all result in a multi-ionic (MI) PDA weight of 100%. The
agreement of HF with CAS is not surprising as the weight of the
HF determinant in the CASSCF function is 96% compared to
80% for ozone. Overall, PDA confirms the qualitative difference
between ozone and sulfur dioxide described by VB methods with
ozone dominated by the diradical electron arrangement while in
sulfur dioxide the multi-ionic arrangement is important.

5 Conclusion

In order to compare real space methods with VB theory, a PDA
structure weight has been defined and calculated together with
the EDF weight by Martín Pendás and coworkers. There are three
notable advantages of these two definitions over the established
VB weights: first, they are applicable to any wave function. Sec-
ond, they are still meaningful in the basis set limit where VB
theory collapses. And third, they are (theoretically) applicable
to experimental probability distributions. Both real space weight
definitions give results comparable to VB theory.

The analytical calculations for H2 showed that the EDF weight
is close to the Löwdin one, but qualitatively different from the
other definitions. This result was confirmed for the homoatomic
single bonds and for the partitions in ethylene. The PDA weight
is best compared to the inverse weight of VB theory.

While the PDA results for ozone agree well with the VB weights
and the contributions discussed in the literature, the results for
SO2 show a large deviation from the VB weights. Yet, the PDA
results can also explain the different reactivities of the two 1,3-
dipoles.

Overall, PDA has proven to be a powerful tool that captures
the many-electron nature of molecular wave functions and may
become an important contribution to modern bond classification.
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Appendix

(a) D – left covalent

(b) D – left ionic 1

(c) D – left ionic 2

Fig. 17 Three attractors of ozone with VBSCF(4,3). The oxygen nuclei
are depicted as red spheres, electrons as small red or blue spheres de-
pending on their ms quantum number. Pairs of spin-up and spin-down
electrons are connected by purple lines in order to highlight the resem-
blance to the VB structures.
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