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ABSTRACT  1 

The production process of many active pharmaceutical ingredients such as sitagliptin could 2 

cause severe environmental problems due to the use of toxic chemical materials and production 3 

infrastructure, energy consumption and wastes treatment. The environmental impacts of sitagliptin 4 

production process were estimated with life cycle assessment (LCA) method, which suggested that 5 

the use of chemical materials provided the major environmental impacts. Both methods of Eco-6 

indicator 99 and ReCiPe endpoints confirmed that chemical feedstock accounted 83% and 70% of 7 

life-cycle impact, respectively. Among all the chemical materials used in the sitagliptin production 8 

process, trifluoroacetic anhydride was identified as the largest influential factor in most impact 9 

categories according to the results of ReCiPe midpoints method. Therefore, high-throughput 10 

screening was performed to seek for green chemical substitutes to replace the target chemical (i.e. 11 

trifluoroacetic anhydride) by the following three steps. Firstly, thirty most similar chemicals were 12 

obtained from two million candidate alternatives in PubChem database based on their molecular 13 

descriptors. Thereafter, deep learning neural network models were developed to predict life-cycle 14 

impact according to the chemicals in Ecoinvent v3.5 database with known LCA values and 15 

corresponding molecular descriptors. Finally, 1,2-ethanediyl ester was proved to be one of the 16 

potential greener substitutes after the LCA data of these similar chemicals were predicted using 17 

the well-trained machine learning models. The case study demonstrated the applicability of the 18 

novel framework to screen green chemical substitutes and optimize the pharmaceutical 19 

manufacturing process. 20 

Keywords: Machine learning; Life cycle assessment; Green chemistry; High-throughput 21 

screening; Pharmaceutical manufacturing process22 
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Graphical Abstract 1 
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SYNOPSIS 4 

Neural network models were trained using molecular descriptors and life-cycle impact of known 5 

chemicals, and used to search greener substitutes in a huge library of chemicals. 6 

 7 
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1. INTRODUCTION 1 

Recently the concept of green chemistry has been widely acknowledged and applied in the 2 

field of chemical industry due to the rising environmental concerns.1 The principle theory of green 3 

chemistry is to minimize human health and environmental risks, for example, using greener 4 

chemical substitutes in the manufacturing process or optimizing the production process to reduce 5 

energy consumption.2-4 Pharmaceutical manufacturing has been found to bear more severe 6 

environmental impacts than basic chemicals production because of the complex molecular 7 

structures of chemical feedstocks, intricate synthesis and separation reactions, and high-standard 8 

purifications in the production process.5 In order to quantify and evaluate the anthropogenic 9 

environmental impacts in pharmaceutical process, life cycle assessment (LCA) has received much 10 

attention by virtue of its broad applicable scope and outstanding holism.5, 6 Meanwhile, the 11 

implementation of LCA also significantly supports the development of greener concepts according 12 

to the relationships between the manufacturing process and resulting environmental impacts.6, 7  13 

LCA is a methodological framework that has been developed for several decades, from 14 

simple energy analysis, environmental burden analysis to present “compilation and evaluation of 15 

the inputs, outputs, and potential environmental impacts of a product system throughout its life 16 

cycle”.8, 9 The general procedures of LCA include the definition of goal and scope, the life cycle 17 

inventory (LCI) analysis for the whole system, the life cycle impact assessment (LCIA) calculation, 18 

and the interpretation for impact assessments results.9-11 The goal and scope definition of LCA is 19 

applied to describe the boundaries (e.g. “cradle to gate” and “cradle to grave”) and functional unit 20 

of production system. LCI as the foundation of LCA is used to summarize the total resources 21 

consumption, waste flows and emissions, while LCIA is performed to quantify the potential 22 
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environmental consequences by multiplying LCI with corresponding impact indicators.8  Life cycle 1 

interpretation always happens at every stage in LCA to better serve decision makers.6 2 

Although LCA calculations of pharmaceutical processes have many difficulties such as 3 

information privacy in many pharmaceutical companies and their complex life cycle inventory, 4 

relevant researches have been recently performed from simple case studies to decision-making 5 

support by comparing the LCA results in different types of chemistry and technologies.12-14  For 6 

example, the synthesis process of an active pharmaceutical ingredient (API) was analyzed from 7 

cradle to factory gate, which suggested that the resources consumption and emissions accounted 8 

for the major contributions to the environmental impacts.5 Furthermore, LCA was applied as a 9 

decision-support tool on another real case from pharmaceutical industry to demonstrate the 10 

importance of continuous flow reactors on the reduction of overall resource consumption.15 Around 11 

the same time, the continuous pharmaceutical supply chain in Janssen-Cilag SpA was also proved 12 

with more greenness and environmental sustainability than conventional batch manufacturing 13 

mode by 10.2% through LCA calculations.16 Similarly, Ott et al. reported the holistic LCA results 14 

for different rufinamide production pathways and proposed the green chemistry optimization 15 

schemes such as solvent recycling or reagent replacement to decrease environmental risks, which 16 

proved the role of LCA in the development of green chemistry.17 However, the case-by-case 17 

comparison of pharmaceutical manufacturing systems was a complex and time-consuming task.18 18 

Moreover, LCIA data for pharmaceutical processes were always rarely available due to the use of 19 

fine chemicals with complex molecular structures, which increased the challenges to carry out the 20 

LCA calculation of pharmaceuticals production and optimize chemicals production process.14, 19 21 

Recently a similarity-based link prediction approach has been developed to predict LCIA data in 22 

a given chemical process according to the similarity theory, that is, similar processes tend to share 23 
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similar inputs (e.g. materials, energy, etc.) and output such as wastes.20 Nevertheless, the 1 

framework was not suitable for the complex pharmaceuticals manufacturing process because of 2 

numerous unknown LCIA data.  3 

In order to fill the gap of missing data for LCI and find green chemical substitutes with 4 

lower environmental impacts, correlation models between manufacturing process and resulting 5 

environmental impacts have been attempted. For example, Wernet et al. demonstrated the 6 

dependences of several environmental impacts categories such as Cumulative Energy Demand 7 

(CED), Global Warming Potential (GWP), and Eco-indicator 99 score on the molecular structure 8 

of chemicals.21 But the prediction abilities of simple regression models were limited, the emerging 9 

machine learning method was also tried to gain insights into the complex relationships in recent 10 

years. The model performance of artificial neural network (ANN) has been proved superior to 11 

linear regression in predicting LCI data based on the molecular structures of chemicals.22 12 

Afterwards, Song et al. improved the performances of deep learning ANN model by increasing the 13 

model complexity and expanding the training data size.23 These previous researches provided us 14 

good references, but so far there is still a lack of research to apply the machine learning method in 15 

searching for green chemical substitutes based on the LCA prediction and building the overall 16 

framework for the purpose of achieving green chemistry. 17 

       As an important active pharmaceutical ingredient leading antidiabetic drug, sitagliptin 18 

production line and their LCA calculation are focused to raise a framework to green the 19 

pharmaceutical manufacturing process with the aid of high-throughput screening from chemicals 20 

libraries and machine learning prediction. The accurate prediction for life-cycle impact data will 21 

furtherly increase the application of LCA in the optimization of pharmaceutical industry, while the 22 

framework developed in this case will provide a guidance for finding green chemical substitutes. 23 
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2. METHODOLOGY  1 

2.1 Life cycle assessment for sitagliptin production 2 

         The flowsheet of continuous sitagliptin manufacturing and all chemicals materials used in 3 

the process could be found in our previous work,24 which were also shown in the supplementary 4 

material (Fig. S1 and Table S1). The system boundary of LCA calculation for the process was set 5 

to be "cradle to gate", which meant that it traced back to any ingredient used in upstream to 6 

synthesize the building blocks and ended with sitagliptin production.13 The environmental impacts 7 

of chemical materials and infrastructures, the demand for process energy and the wastes treatment 8 

were calculated, respectively. It should be noted that the environmental impact of enzyme 9 

production was not included due to the limitation of data availability and the main objective being 10 

the search for greener chemical substitutes. The global databases updated in Ecoinvent v3.5 were 11 

used, which provided a more holistic point of view.25 The functional unit (FU) was defined as 12 

producing 1 kg sitagliptin monophosphate to study the corresponding environmental impacts. The 13 

methods of Eco-indicator 99 (EI99), ReCiPe endpoints and midpoints shown in Table S2 were 14 

used to calculate the LCA in the process of sitagliptin manufacturing based on the hierarchism 15 

perspective.26 Ecosystem quality, human health, and resources depletion were considered when 16 

using EI99 and ReCiPe endpoints methods.27 While ten impact categories were chosen based on 17 

ReCiPe midpoints method, including Global Warming Potential (GWP), Fossil Fuel Depletion 18 

Potential (FDP), Freshwater Eutrophication Potential (FEP), Human Toxicity Potential (HTP), 19 

Metal Depletion Potential (MDP), Natural Land Transformation Potential (NLTP), Ozone 20 

Depletion Potential (ODP), Photochemical Oxidant Formation Potential (POFP), Terrestrial 21 

Acidification Potential (TAP), and Terrestrial Eco-toxicity Potential (TETP).  22 

         However, missing data of LCI, especially in pharmaceutical process was a common issue for 23 

LCA calculation. In order to complete data gaps, the following methods were performed. Firstly, 24 
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for missing data of LCI in chemical materials, the retrosynthetic breakdown method was applied 1 

by summarizing the LCI data of reagents to the target chemical materials.17 Otherwise, the data 2 

could be substituted with that of structurally similar substances or generic data.17 Secondly, the 3 

energy consumption of a single process was hard to split from overall manufacture energy records. 4 

The approximation method proposed by Kim and Overcash was applied, in which the “gate-to-5 

gate” process energy consumption was estimated according to 4 MJ kg-1 in manufacturing of 6 

organic chemicals.28 Thirdly, the generic data “chemical factory construction, organics, Rest of the 7 

World (RoW)” in Ecoinvent database was used to model the LCI of all infrastructures in this study, 8 

while the data of “treatment of spent solvent mixture, hazardous waste incineration, RoW” was 9 

applied to model the LCI of wastes treatment.  10 

2.2 Identification of similar chemicals 11 

     In order to reduce the environmental impact of chemical materials used in the 12 

pharmaceutical process, we tried to find the substituted green chemicals with lower life-cycle 13 

impact based on their similar molecular structures and compositions. The similarity between target 14 

and candidate chemicals was quantified according to their molecular characteristics, and the 15 

flowsheet for identification of similar chemicals was shown in Fig. S2. High-throughput methods 16 

were applied to find the similar chemicals, in which two million chemicals were collected from 17 

PubChem database (https://pubchem.ncbi.nlm.nih.gov/). A total of 125 molecular characteristics 18 

descriptors of these chemicals were generated by python package Rdkit. The data of each 19 

molecular descriptor was standardized to the same scale with the following equation (1): 20 

      !′ = !−%
&      (1) 21 

     where !′ and ! represented the standardized data and original data, % and & were the mean 22 

and standard deviation of all data with respect to a given descriptor, respectively.  23 
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     Thereafter, principal component analysis (PCA) was carried out so as to improve 1 

computational efficiency by reducing the dimensions of molecular descriptors and simultaneously 2 

ensure little information loss, in which orthogonal transformation was used to convert a set of 3 

correlated variables into a set of linearly uncorrelated variables.29 After PCA, the obtained n 4 

principal components could represent the majority of information in molecular descriptors. The 5 

similarity identification was calculated based on the Euclidean distance30 between each of two 6 

million candidate chemicals and the target chemical with following equation (2): 7 

     '(), +) = -∑ ()/ − +/)01
/23  (2) 8 

where )/  and +/  represented the molecular descriptors of target and candidate chemicals, 9 

respectively.  10 

2.3 LCA prediction with deep neural networks  11 

After the similar chemicals were identified, their corresponding LCA data would be 12 

predicted using well-trained deep neural network models based on their structural information. 13 

The predictive models were built based on available 224 nonionic organic chemicals with known 14 

LCA in Ecoinvent v3.5 database. Their corresponding molecular descriptors as the model inputs 15 

were obtained from Rdkit (https://www.rdkit.org/) and AlvaDesc1.0 (https://chm.kode-16 

solutions.net/products_alvadesc.php), respectively. But what needs to be reminded is that names 17 

of chemicals could not be directly recognized by the above two systems, thus the Simplified 18 

Molecular Input Line Entry System (SMILES) structure31 should be firstly obtained through 19 

ChemSpider (http://www.chemspider.com/). Meanwhile, the LCA data of ecosystem, human 20 

health, resources and the total impact obtained by EI99 and ReCipe endpoint methods were applied 21 

as outputs, respectively. The data of molecular descriptors from Rdkit and AlvaDesc were also 22 



10 

pre-processed with PCA approach, and the LCI data with extremely high values were excluded 1 

from the dataset as outliers according to their boxplot distribution. 2 

Artificial neural network was used to build and train machine learning models, in which 3 

the model architecture was composed by an input layer, multiple hidden layers, and an output layer 4 

32. The collected data was randomly divided into three parts, including training group (70%), 5 

validation group (20%) and test group (10%). The data in training group was used to build models 6 

with ReLU activation functions and train the models through adjusting the weights of connections 7 

between neurons in different layers with back-propagation algorithm.33, 34 Thereafter, the validation 8 

dataset was introduced into the fitted model to perform an unbiased evaluation and meanwhile 9 

adjust the accuracy of models by tuning the hyper-parameters such as the number of hidden layers 10 

and the number of neurons in each hidden layer.32 The data in test group was used to evaluate the 11 

final model as external validation. All the ANN models were developed with Tensorflow 12 

framework 35 in Python.  13 

After the best model for each impact category was identified, the molecular descriptors of 14 

these similar chemicals were introduced into the models to predict their corresponding LCI values. 15 

The chemicals with higher similarities and lower environmental impacts could be considered as 16 

potential greener substitutes. The whole framework of the proposed high-throughput screening for 17 

green chemical substitutes based on LCA and ANN was shown in Fig. 1.      18 
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3. RESULTS AND DISCUSSION 1 

3.1 Life cycle assessment in the sitagliptin manufacturing process  2 

We used the manufacturing process of sitagliptin as a case study to demonstrate the 3 

developed methodology. The production of sitagliptin started with chloropyrazine through nine 4 

main steps, in which the holistic LCA results with EI99 and ReCiPe endpoints methods were 5 

shown in Fig. 2. Both of the two LCA calculation methods (Figs. 2A and 2B) suggested that the 6 

sitagliptin production process had largest impact on human health (i.e. 53% and 44% for EI99 and 7 

ReCiPe endpoint, respectively), followed by the impacts on resources depletion (i.e. 40% and 36% 8 

for EI99 and ReCiPe endpoint, respectively) and ecosystem quality (i.e. 7% and 20% for EI99 and 9 

ReCiPe endpoint, respectively). The influences of drug production on human health may be related 10 

to the consequent global warming and respiratory tract effect of chemical feedstocks 5. From 11 

another perspective (Figs. 2C and 2D), the use of chemical feedstock was the major contributor 12 

to the total environmental impacts with 83% and 70% in EI99 and ReCiPe endpoint, respectively 13 

(Fig. 2). The large proportion of environmental impacts caused by chemical feedstock was 14 

consistence with the LCA results of previous pharmaceutical synthesis process.5 In detail, chemical 15 

materials provided 86%, 76% and 92% of the damage to ecosystem quality, human health and 16 

resources availability with EI99 method, respectively (Fig. 2C). The influences of process energy 17 

and waste treatments accounted for similar proportions as the second most important factors for 18 

all the impact categories, while the impacts of infrastructure were negligible due to their long-term 19 

use.36 From the LCA results with ReCiPe endpoints method, we could also obtain similar 20 

conclusion that the influences of chemical materials were most significant for ecosystem (55%), 21 

human health (62%) and resources (87%) in the sitagliptin manufacturing process (Fig. 2D) in 22 

spite of some deviations with the absolute values from EI99 method.37  23 
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More detailed impact categories were also applied to identify the relative importance of 1 

chemical materials, infrastructure, process energy and waste treatment with ReCiPe midpoint 2 

method (Fig. 3). The use of chemical materials still accounted for the majorities of environmental 3 

impacts, while the infrastructure also had the lowest proportion in each of the ten categories 19. The 4 

overall environmental impact caused by this process is as follows: 547.76 kg of CO2 equivalents 5 

per FU for GWP; 155.16 kg of oil equivalents per FU for FDP; 0.03 kg of P equivalents per FU 6 

for FEP; 55.26 kg of 1,4-dichlorobenzene per FU for HTP; 13.88 kg of Fe equivalents per FU for 7 

MDP; -0.02 m2 per FU for NLTP; 0.0002 kg of chlorofluorocarbon-11 per FU for ODP; 1.31 kg 8 

of non-methane volatile organic compounds per FU for POFP; 1.78 kg of SO2 equivalents per FU 9 

for TAP; 0.51 kg of 1,4-DCB per FU for TETP. Since chemical feedstock has been proved as the 10 

most significant factor for environmental impacts, the next step would be in-depth analysis to 11 

recognize the relative influence of each chemical material used in the sitagliptin manufacturing 12 

process and try to explore greener substitute. The life-cycle impacts of twenty-one chemicals in 13 

the sitagliptin production were calculated with ReCiPe midpoint method38 and the relative 14 

proportion of each chemical at the midpoint level was investigated shown with radar chart in Fig. 15 

4. Taking the radar chart of TETP as an example, hydrazine provided more than 50% of terrestrial 16 

eco-toxicity in the 21 chemicals because of the toxicity and its interactions with environmental 17 

medium.39 Making a general survey of the ten impact categories, it could be found that 18 

trifluoroacetic anhydride showed the highest impact in all the impact categories other than GWP, 19 

ODP and TETP. Moreover, the environmental impact of trifluoroacetic anhydride came in second 20 

in GWP and ODP impact categories (Fig. 3). Therefore, it is necessary to search for greener 21 

substitutes for trifluoroacetic anhydride to reduce the environmental impact. 22 

 3.2 Identification of similar chemicals for trifluoroacetic anhydride 23 
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The quantified molecular descriptors of two million chemicals were preprocessed with 1 

PCA to reduce the dimensionality and improve the calculation efficiency. The first component 2 

explained almost 25% of variance in the original data as shown in the cumulative explained 3 

variance plot (Fig. S3). In order to minimize information loss,40 sixty-six principal components 4 

were finally selected by covering almost the entire data variability (99%). 5 

The Euclidean distances were subsequently calculated between each collected chemical 6 

from PubChem databases and target chemical (i.e. trifluoroacetic anhydride) with the 7 

corresponding PCA-molecular descriptors. The similarity indices of chemicals were ranged from 8 

0 (total similarity) to infinity (complete dissimilarity) and 30 chemicals that were most similar to 9 

the target chemical were shown in Table S3 according to the Euclidean distances.41 It could be 10 

found that the Euclidean distance between chemical 0 and the target was zero, because they are 11 

the same substances and the SMILES structure of trifluoroacetic anhydride is 12 

O=C(OC(=O)C(F)(F)F)C(F)(F)F. The excellent performance of Euclidean distance index has been 13 

confirmed as the useful similarity index.42 The results suggested that the majority of the most 14 

similar 30 chemicals were comprised of carbon, oxygen and fluorine, which were the same with 15 

the atoms composition of the target chemical. However, the LCA values of the thirty chemicals 16 

were unknown, so the next step would be to train prediction models according to the chemicals 17 

with known LCA values and corresponding molecular descriptors. 18 

3.3 LCA prediction models with deep learning neural networks  19 

           In order to improve the accuracy of machine learning models, the data used for building 20 

LCA prediction models were collected from nonionic organic chemicals, consistent with the target 21 

chemical such as petrochemicals, pharmaceuticals and industrial chemicals in Ecoinvent v3.5 22 

database. The distributions of LCA values with eight impact categories (i.e. ecosystem quality, 23 

human health, resources and the above total LCA values obtained with EI99 and ReCiPe endpoints 24 
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methods, respectively) were shown with boxplot in Fig. S4. The lines from bottom to top in the 1 

boxplot presented the minimum, the first quartile (Q1), the median, the third quartile (Q3), and the 2 

maximum of these statistical data.32 Both of the two methods showed that the influences of these 3 

organic chemicals on ecosystem were lower than that on human health and resources (Fig. S4), 4 

which was accordance with the chemical materials in our sitagliptin production process (Fig. 2). 5 

However, the LCI values of chemicals with ReCiPe endpoint method were generally larger than 6 

that with EI99.43 Especially for the ecosystem quality impact category, the median value of these 7 

chemicals obtained with ReCiPe endpoints was higher than that with EI99 by four folds (Fig. S4). 8 

Although ReCiPe endpoint was developed based on the classical LCA method (EI99), there were 9 

still inherent differences such as their endpoints characterization factors.37 The damage to 10 

ecosystem quality was calculated according to the potentially disappeared fraction of species in 11 

terrestrial ecosystem for EI99 method, while both of terrestrial and aquatic (including freshwater 12 

and marine water) damages were considered in ReCiPe endpoint.44 The rhombus shape in the 13 

boxplot represented the outliers of statistical data, and the points far away from the normal values 14 

would be excluded in the next section. 15 

The molecular descriptors generated by Rdkit (125 descriptors) and AlvaDesc (3,874 16 

descriptors) were extracted by PCA, respectively, in which PCA-based a models had been proved 17 

to have the best performances in the previous LCA prediction models.23 The PCA-molecular 18 

descriptors were thereafter used as the inputs of ANN models. However, the performances of 19 

molecular descriptors from Rdkit were very poor and not reported here, which may be related to 20 

the less input information from original molecular descriptors. It has been proved in our previous 21 

study that prediction ability improved when more relevant information was introduced into the 22 

developed models.45 The performances of the best ANN model for each of the eight impact 23 
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categories based on the molecular descriptors from AlvaDesc were shown in Fig. 5. The regression 1 

coefficient (R2) and root mean square error (RMSE) of test group were applied to quantify the 2 

prediction ability of developed models. The results suggested that the chemicals with larger LCA 3 

values tended to have higher prediction errors due to less training data within the same range.23 4 

Meanwhile, both of total EI99 (R2= 0.8356)and total ReCiPe endpoints (R2= 0.883) showed the 5 

highest R2 for the comprehensive evaluation compared to the corresponding individual prediction 6 

for ecosystem, human health or resources. As a whole, the total ReCiPe model was slightly better 7 

than total EI99 model, which may be because the ReCiPe method, as the successor of EI99, could 8 

reflect the environmental impacts more objectively. Among the eight models, the prediction 9 

models for ecosystem in both EI99 and ReCiPe endpoints methods showed lower performances, 10 

with R2 values of 0.6454 and 0.6328 on the test group, respectively. A rational explanation would 11 

be that it is difficult to monitor the damage of these chemicals to ecosystem due to the 12 

heterogeneous and complex characteristics.44   13 

3.4 Prediction of LCA characterized results for similar chemicals 14 

According to the best prediction models based on total EI99 and ReCiPe endpoints methods, 15 

the LCIA data of these 30 most similar chemicals with the target (same with chemical 0) were 16 

evaluated (Fig. 6). The chemicals were considered as the greener substitute candidates when they 17 

had lower LCIA values obtained with both EI99 and ReCiPe endpoints than that of the target 18 

molecules. Ultimately, 17 chemicals were found to have lower environmental impacts than 19 

trifluoroacetic anhydride as shown in Fig. 7. In terms of EI99 method, chemical 22 (i.e. Methyl 20 

pentafluoropropionylacetate) had the lowest LCIA values and meanwhile the LCIA predictive 21 

values based on ReCiPe endpoints method were lower than that of target chemical. Likewise, 22 

chemical 29 (i.e. 1,2-ethanediyl ester) had the lowest LCA predictive values obtained from ReCiPe 23 

endpoints and was also lower than the target based on EI99 method. Finally, chemical 29 was 24 
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assessed as the suitable substitute candidate for the two functional groups (i.e. C=O, CF3), because 1 

the two chemical groups –COCF3 of trifluoroacetic anhydride provided an important role in the 2 

sitagliptin production.24 Therefore, considering structural similarity, desired functional groups, and 3 

lower environmental impacts, it is worthwhile to experimentally assess the feasibility of 4 

substituting chemical 29 for trifluoroacetic anhydride in the sitagliptin manufacturing process. 5 

3.5 Outlook and improvement in the future 6 

A feasible direction has been demonstrated to predict the life-cycle impact data of fine 7 

chemicals using the information of molecular structures without a priori knowledge of the 8 

production process. After all, molecular descriptors could reflect the physicochemical properties 9 

(e.g. solubility, molar refractivity, topological polar surface area, etc.) and molecular fingerprint 10 

(e.g. atom type, aromaticity, functional groups, the number of attached hydrogen atoms, 11 

connectivity, etc.). Nevertheless, the available LCIA data in Ecoinvent database was insufficient 12 

to furtherly improve the performances of machine learning models. Although a large number of 13 

other LCA databases have been developed such as ELCD database and GaBi Database, the 14 

differences of standards and methods among these databases limited the expanding the data size 15 

used to build LCA prediction models.46 The integration of these separate databases in the future 16 

with united criteria may be a potential solution to better realize the LCA prediction.  17 

Furthermore, the molecular structures of chemicals could not represent the information of 18 

overall production, especially for fine pharmaceutical production process. For example, stringent 19 

standard in separation and purification would require higher energy consumption and chemical 20 

feedstocks. Therefore, if we could consider the whole production process with the increase of 21 

related data in the future, including the molecular structures and process parameters, a 22 

generalizable machine learning model will be more meaningful for simplifying the application of 23 

LCA in the pharmaceutical manufacturing field.18 24 
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4. Conclusions  1 

Taking the sitagliptin production as an example, the overall framework of greening the 2 

pharmaceutical manufacturing process was proposed in this article based on the holistic LCA 3 

calculation and emerging machine learning methods. Both of EI99 and ReCiPe endpoints LCA 4 

results suggested that the use of chemical feedstocks provided the major contribution to the total 5 

environmental impacts, while trifluoroacetic anhydride accounted for the majority of chemical 6 

materials in most impact categories according to the results of ReCiPe midpoints method. In order 7 

to reduce environmental footprint caused by the sitagliptin production, searching for greener and 8 

similar chemicals with the target chemical (i.e. trifluoroacetic anhydride) was subsequently 9 

performed. Thirty most similar chemicals to the target were firstly selected as candidate substitutes 10 

from PubChem database containing two million chemicals on the basis of Euclidean distance 11 

calculations. Meanwhile, machine learning models were built to explore the relationship between 12 

LCIA values of chemicals and their corresponding molecular structures. Herein, 224 nonionic 13 

organic chemicals with known LCI from Ecoinvent v3.5 database were used to build, train and 14 

test the predictive models with deep learning ANN algorithm. Thereafter, the molecular 15 

descriptors of the 30 similar chemicals were introduced into the well-trained ML models to 16 

calculate their LCIA values. Finally, the chemical 1,2-ethanediyl ester was reported as the potential 17 

greener substitute that is worth being experimentally validated according to the lower LCI data 18 

and similar molecular compositions and function groups. The overall screening framework 19 

provided a reference to search greener substitute in pharmaceutical process from large libraries of 20 

chemicals, which could decrease the experimental burden and costs. 21 



18 

Abbreviations 1 

API- Active Pharmaceutical Ingredients 2 

LCA- Life Cycle Assessment 3 

LCI- Life Cycle Inventory 4 

LCIA- Life Cycle Impact Assessment 5 

ANN- Artificial Neural Network 6 

FU- Functional Unit 7 

EI99- Eco-indicator 99 8 

CED- Cumulative Energy Demand  9 

GWP- Global Warming Potential  10 

FDP- Fossil Fuel Depletion Potential  11 

FEP- Freshwater Eutrophication Potential  12 

HTP- Human Toxicity Potential 13 

MDP- Metal Depletion Potential  14 

NLTP- Natural Land Transformation Potential 15 

ODP- Ozone Depletion Potential   16 

POFP- Photochemical Oxidant Formation Potential   17 

TAP- Terrestrial Acidification Potential   18 

TETP- Terrestrial Eco-toxicity Potential  19 

SMILES- Simplified Molecular Input Line Entry System 20 

R2- Regression Coefficient 21 

RMSE- Root Mean Square Error 22 
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 Fig. 1 High-throughput screening framework of green chemical substitutes based on life cycle 

assessment and machine learning method 
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 Fig. 2 LCA results of sitagliptin manufacturing process with EI99 (A, C) and ReCiPe endpoints 

(B, D). For A and B, the outside circle shows the total environmental threat to human health, 

ecosystem, and resource, while the inside circle shows the proportion of detailed influential 

factors, including chemical materials and infrastructure, the demand for process energy and the 

wastes treatment to human health, ecosystem and resource, respectively.  They are reverse for C 

and D.

(A) (B) 

(C) (D) 



24 

 

Fig. 3 LCIA results of sitagliptin manufacturing with ReCiPe midpoints according to the 

following detailed impact categories: Global Warming Potential (GWP), Fossil Fuel 

Depletion Potential (FDP), Freshwater Eutrophication Potential (FEP), Human Toxicity 

Potential (HTP), Metal Depletion Potential (MDP), Natural Land Transformation Potential 

(NLTP), Ozone Depletion Potential (ODP), Photochemical Oxidant Formation Potential 

(POFP), Terrestrial Acidification Potential (TAP), Terrestrial Eco-toxicity Potential (TETP).   
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Fig. 4 Comparison of ReCiPe midpoints LCIA results of chemicals used in sitagliptin 

manufacturing. Following indictors were shown: Global Warming Potential (GWP); Fossil Fuel 

Depletion Potential (FDP); Freshwater Eutrophication Potential (FEP); Human Toxicity Potential 

(HTP); Metal Depletion Potential (MDP); Natural Land Transformation Potential (NLTP); Ozone 

Depletion Potential (ODP); Photochemical Oxidant Formation Potential (POFP); Terrestrial 

Acidification Potential (TAP); Terrestrial Eco-toxicity Potential (TETP).   
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 Fig. 5 Comparison of predicted LCA and actual values using test data for EI99 (A1), EI99-ecosystem (B1), EI99-Human health 

(C1), EI99-Resources (D1), and ReCiPe (A2), ReCiPe -ecosystem (B2), ReCiPe -Human health (C2), ReCiPe -Resources (D2),  

The red lines refer to the line y=x. 
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Fig. 6 LCIA prediction values of 30 most similar chemicals with trifluoroacetic anhydride  
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(A) Target chemical (B) Chemical 3 (C) Chemical 5 (D) Chemical 6 (E) Chemical 7 (F) Chemical 8 

(G) Chemical 9 (H) Chemical 10 (I) Chemical 13 (J) Chemical 14  (K) Chemical1 15  (L) Chemical 16  

(M) Chemical 17  (N) Chemical 20  (O) Chemical 22  (P) Chemical 24  (Q) Chemical 26  (R) Chemical 29  

Fig. 7 The structures of target chemicals (A, Trifluoroacetic anhydride) and potential green 
chemical substitutes, including Allyl pentafluoropropanoate (B), Vinyl perfluoro butyrate (C), 
ethyl perfluoropropionate (D), Ethyl 4,4,4-trifluoro-3-(trifluoromethyl)-2-butenoate (E),  
2,2,3,3,3-Pentafluoropropyl acrylate (F), Methyl heptafluorobutanoate (G), Methyl 2,2,3,4,4-
pentafluoro-3-butenoate (H), 1,1,1,3,3,3-Hexafluoro-2-propanyl acrylate (I), 1H,1H-
Pentafluoropropyl methacrylate (J), Propyl pentafluoropropanoate (K), Ethyl 
heptafluorobutanoate (L), Allyl heptafluorobutanoate (M), 2,2,3,3,4,4-hexafluorobutanoic acid 
(N), Methyl pentafluoropropiony-lacetate (O), 3,3,4,4,4-Pentafluorobutyl acrylate (P), 
1,1,1,3,3,3-Hexafluor-2-propanylmethacrylat (Q), 1,2-ethanediyl ester (R).   
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Fig. S1 Synthetic route of sitagliptin production used in the study 1
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Fig. S2 Flowsheet of the identification of similar chemicals from PubChem database 

 

 

 

 

Fig. S3 Number of descriptors extracted by PCA against the cumulative variance preserved 
by the corresponding descriptors. The red referred to the information preserved of each 

principle component, while the blue one was the cumulative values of preserved principle 
components. 
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Fig. S4 LCA data distributions of nonionic organic chemicals from Ecoinvent v3.5 database
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Table S1 Mass balance throughout the sitagliptin manufacturing process1
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Table S2 Summary of life cycle impact assessment methods used in this work 

LCIA method Impact category 

EI99 Ecosystem Human health Resources Total 

ReCiPe 
endpoints 

Ecosystem Human health Resources Total 

ReCiPe 
midpoints 

Global Warming Potential (GWP, in kg of CO2 equivalents per FU) 

 Ozone Depletion Potential (ODP, in kg of chlorofluorocarbon-11 per 
FU) 

 Terrestrial Acidification Potential (TAP, in kg of SO2 equivalents per 
FU) 

 Freshwater Eutrophication Potential (FEP, in kg of P equivalents per 
FU) 

 Human Toxicity Potential (HTP, in kg of 1,4-dichlorobenzene per FU) 

 Photochemical Oxidant Formation Potential (POFP, in kg of non-
methane volatile organic compounds per FU) 

 Terrestrial Ecotoxicity Potential (TETP, in kg of 1,4-DCB per FU) 

 Natural Land Transformation Potential (NLTP, in m2 per FU) 

 Metal Depletion Potential (MDP, in kg of Fe equivalents per FU) 

 Fossil Fuel Depletion Potential (FDP, in kg of oil equivalents per FU) 
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Table S3 Thirty most similar chemicals based on Euclidean distance 

 The SMILE structure of similar chemicals Euclidean distance after PCA 

0 O=C(OC(=O)C(F)(F)F)C(F)(F)F 0.000 

1 O=C(OCC(F)(F)F)C(F)(F)F 2.534 

2 O=C(NOC(=O)C(F)(F)F)C(F)(F)F 2.847 

3 C=CCOC(=O)C(F)(F)C(F)(F)F 2.949 

4 C=C(F)C(=O)OC(F)(F)C(C)(F)F 3.062 

5 C=COC(=O)C(F)(F)C(F)(F)C(F)(F)F 3.063 

6 CCOC(=O)C(F)(F)C(F)(F)F 3.121 

7 CCOC(=O)C=C(C(F)(F)F)C(F)(F)F 3.155 

8 C=CC(=O)OCC(F)(F)C(F)(F)F 3.167 

9 COC(=O)C(F)(F)C(F)(F)C(F)(F)F 3.189 

10 COC(=O)C(F)(F)C(F)=C(F)F 3.292 

11 O=C([O-])C(F)(F)C(F)(F)C(F)F 3.303 

12 COC(=O)C(F)(F)C(F)(F)F 3.323 

13 C=CC(=O)OC(C(F)(F)F)C(F)(F)F 3.325 
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14 C=C(C)C(=O)OCC(F)(F)C(F)(F)F 3.328 

15 CCCOC(=O)C(F)(F)C(F)(F)F 3.370 

16 CCOC(=O)C(F)(F)C(F)(F)C(F)(F)F 3.473 

17 C=CCOC(=O)C(F)(F)C(F)(F)C(F)(F)F 3.498 

18 O=C(O)C(F)(F)C(F)(F)C(F)(F)F 3.500 

19 C=CC(=O)OCC(F)(F)C(F)(F)C(F)(F)F 3.599 

20 O=C(O)C(F)(F)C(F)(F)C(F)F 3.627 

21 O=C(C=C(O)C(F)(F)F)C(F)(F)F 3.632 

22 COC(=O)CC(=O)C(F)(F)C(F)(F)F 3.634 

23 O=C(Cl)ON(C(F)(F)F)C(F)(F)F 3.693 

24 C=CC(=O)OCCC(F)(F)C(F)(F)F 3.729 

25 O=C(CC(=O)C(F)(F)F)C(F)(F)F 3.735 

26 C=C(C)C(=O)OC(C(F)(F)F)C(F)(F)F 3.744 

27 C=C(C)C(=O)OCC(F)(F)C(F)C(F)(F)F 3.770 

28 CC(=CC(=O)C(F)(F)F)C(F)(F)F 3.806 

29 O=C(OCCOC(=O)C(F)(F)F)C(F)(F)F 3.809 
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