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Abstract

X-ray spectroscopy delivers strong impact across the physical and biological sci-

ences by providing end-users with highly-detailed information about the electronic and

geometric structure of matter. To decode this information in challenging cases, e.g.

in operando catalysts, batteries, and temporally-evolving systems, advanced theoreti-

cal calculations are necessary. The complexity and resource requirements often render

these out of reach for end-users, and therefore data are often not interpreted exhaus-

tively, leaving a wealth of valuable information unexploited. In this paper, we introduce

supervised machine learning of X-ray absorption spectra, by developing a deep neural

network (DNN) that is able to estimate Fe K -edge X-ray absorption near-edge struc-

ture spectra in less than a second with no input beyond geometric information about

the local environment of the absorption site. We predict peak positions with sub-eV

accuracy and peak intensities with errors over an order of magnitude smaller than

the spectral variations that the model is engineered to capture. The performance of

the DNN is promising, as illustrated by its application to the structural refinement
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of iron(II)tris(bipyridine) and nitrosylmyoglobin, but also highlights areas for which

future developments should focus.

Introduction

The emergence of high-brilliance light sources, such as 3rd-generation synchrotrons and

4th-generation X-ray free-electron lasers (XFELs), has transformed X-ray absorption spec-

troscopy (XAS).1 It is now possible to acquire high-resolution XAS spectra under the most

challenging operating conditions; examples include operando catalysts2 and batteries.3 In

addition, one can also follow ultrafast excited-state dynamics in real time by exploiting

ultrashort X-ray pulses generated by XFELs.4,5 The unprecedented level of detail in mod-

ern XAS spectra, coupled with ever-increasing data acquisition rates, brings into focus the

acute challenge of accurately and efficiently analysing these data to access the quantitative

electronic and geometric structural information encoded into each XAS spectrum.

To access the information encoded into the X-ray absorption near-edge structure (XANES)

region of an XAS spectrum, high-level theoretical calculations are necessary to capture

the complexity of the underlying physics.6 In amorphous materials, and those under non-

equilibrium conditions, e.g. operando measurements and time-resolved experiments, per-

forming the large number of theoretical calculations required to analyse the data is often

precluded by their individual complexity. Indeed, accounting for contributions from all

absorption sites in an amorphous material is time-consuming and resource-intensive; the

challenge is compounded when the contributions change as a function of time. In lieu of

an alternative, the status quo is to interpret the XANES spectrum superficially using semi-

empirical heuristics for estimating changes in geometry,7 symmetry,8 and oxidation state9

at the absorption site. At best, a valuable scientific resource is not exploited to its fullest

potential if the XANES spectra cannot be interpreted exhaustively; at worst, the status quo

leaves the data open to the danger of misinterpretation.
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Although the underlying physics connecting the XANES observables to the geometric

structure of a material are complex and challenging to simulate efficiently, they are well-

understood. Modulations in the absorption cross-section just above the absorption edge

are a consequence of the multiple scattering of low-kinetic-energy photoelectrons by atoms

neighbouring the absorbing atom.10 It is therefore possible to develop models for the refine-

ment of the local geometric structure around the absorption site and fit the XANES data,

as successfully demonstrated by Smolentsev et al. in the development of the FitIT11,12 code.

FitIT is able to interpolate XANES spectra for a given system in a user-defined geometric

parameter space, reducing the number of theoretical calculations required to refine the geo-

metric structure. While powerful, it requires a bespoke model to be initiated for each new

system.

The contemporary literature indicates a growing interest in generalisable, ’data-driven’

approaches for these kind of analyses.13 Supervised machine learning/deep learning algo-

rithms14 have enjoyed considerable success in mapping complex, non-linear relationships

without any hand-coded heuristics and it transpires that these algorithms are able to make

this particular link: that between the XANES spectrum and the underlying electronic and

geometric structure of a material. Timoshenko et al.13,15–20 have worked extensively on au-

tomated, machine-led analysis of XAS spectra and have deployed neural networks to extract

physical insight from the experimental data, including, but not limited to, information on

geometric structure and morphology. In other work, Zheng and Mathew et al.21,22 have lever-

aged ensemble learning to extract information on coordination geometry and oxidation state

from XAS spectra. Overwhelmingly, these are ’forward ’ (spectrum-to-property/structure)

rather than ’reverse’ (property/structure-to-spectrum) mappings and, where the latter are

sparingly demonstrated, they are always system-specific or restricted to a narrow class of

systems, i.e. a new set of theoretical calculations would be necessitated, and the model

would have to be reoptimised, were it to be applied to different systems, assuming that this

were even possible under the constraints of the model architecture.
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The only authors to have deployed a generally-applicable machine learning model capable

of predicting XANES spectra for an arbitrary absorption site (and consequently overcoming

system-specificity) are Carbone et al.23 In their recent contribution, the authors introduce

a supervised machine learning model for the prediction of XANES at the N and O K edges

for small molecules from the QM9 molecular database.24 Their model successfully learns a

structure-to-spectrum mapping using XANES spectra derived from the Materials Project

library. However, these XANES spectra have already been convoluted to account for core-

hole lifetime broadening, instrument response, and many-body effects, e.g. inelastic losses,

which leaves little flexibility for experiments performed at different resolution, such as high-

energy-resolution fluorescence detected (HERFD) measurements.25

Beyond XAS, reviews note the success of machine learning models in bypassing expen-

sive theoretical calculations of scalar properties in computational chemistry and physics,26,27

but there are very few examples of this being attempted for higher-dimensional data, e.g.

spectra, with genuine generality. In our present paper we aim to contribute to the wider

literature in this respect. We introduce a deep neural network (DNN) for instantaneous

estimations of the Fe K -edge XANES spectra of arbitrary systems which only requires the

geometry of the local environment around the absorbing atom as an input. We demon-

strate that this initial implementation is able to predict peak positions and intensities with

good accuracy and illustrate its performance by applying it to the structural refinement of

iron(II)tris(bipyridine) and nitrosylmyoglobin.

Theoretical and Computations Details

Dataset

Our dataset comprises 9040 Fe absorption site geometry and theoretical XANES spectrum

pairs. Fe absorption site geometries were harvested from the Materials Project Database28

via the Materials Project API;29 one Fe absorption site geometry was selected arbitrarily
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per Fe-containing material.

The Fe absorption site geometries, defined by an arbitrary cutoff radius, were featurised

for input as a two-body pair/radial distribution curve (RDC):

N∑
i

N∑
j>i

ZiZje
−α(rij−R)2 (1)

The summation runs over all internuclear pairs ij separated by some distance, rij. Zi and

Zj are the atomic numbers of i and j, respectively. R is a vector obtained by discretising

a linear interpolation between zero and twice the cutoff radius around the absorption site

(defining the maximum pairwise distance that can be accommodated by the RDC), and α

is a smoothing parameter. Throughout this work, the following parameters were used for

featurisation: α = 10.0, and R = 0.0
1.2
⇁ 800.0 pm. RDCs were standarised for input into

our DNN; Fe K -edge XANES spectra were subject to post-edge normalisation.

Deep Neural Network

Our DNN is based on the multilayer perceptron model and is programmed in Python 3 with

Tensorflow/Keras.30,31 The model comprises an input layer of 680 neurons (into which an

RDC is input) and an output layer of 240 neurons (from which the estimated XANES spectra

is retrieved). There are four dense hidden layers between the input layer and output layer;

the initial hidden later contains 1150 neurons, and each subsequent hidden layer contains

10% fewer neurons than the preceding hidden layer. Each hidden layer performs non-linear

transformations using a hyperbolic tangent (tanh) activation function. Regularisation is

implemented to minimise overfitting; batch standardization and dropout are applied at each

hidden layer. The probability, p, of dropout is set to 0.15.

Our DNN optimises c.a. three million internal weights via sequential feed-forward and

backpropagation cycles. Gradients of a MSE loss function with respect to the internal

weights are updated iteratively according to the Adaptive Moment Estimation (ADAM)
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algorithm. Gradients are estimated over minibatches of 48 samples. The learning rate for

the ADAM algorithm, η, is set to 3 × 10−4. Our DNN learns from, and casts estimations

of, unconvoluted Fe K -edge XANES spectra. The estimated XANES spectra are convoluted

subsequently with an arctangent function in a post-processing step.

By repeated K -fold cross-validation with an 80:20 in-sample/out-of-sample split, we as-

sess the performance of our DNN on the entire dataset while keeping the data used for

evaluation always out-of-sample, i.e. unseen by our DNN.

The optimal hyperparameters for our DNN were determined via 500 cycles of Bayesian

optimisation as implemented in the GPyOpt32,33 module.

Simulation of XANES Spectra

Fe K -edge XANES spectra for all Fe absorption site geometries were calculated using multiple

scattering theory as implemented in the FDMNES package.34 A self-consistent muffin-tin

potential with a cutoff radius of 6 Å around the Fe atom was used; the interaction with the

X-ray field was described by the electric quadrupole approximation, and scalar relativistic

effects were included.

To compare to experimental XANES spectra, computed cross-sections are routinely con-

voluted to account for core-hole lifetime broadening, instrument response, and many-body

effects, e.g. inelastic losses. The convolution is performed here as a post-processing step and

employs an energy-dependent arctangent function (Γ):

Γ = Γi + Γf

(
1

2
+

1

π
arctan

(
π

3

Γf
Ew

(
E − Ef
Ec

− E2
c

(E − Ef )2

)))
(2)

Γ is defined over the energy scale, E, relative to the Fe K -edge of the XANES spec-

trum as per specification of the core-level and final-state widths (Γi and Γf , respectively),

the centre and width of the arctangent function (Ec and Ew, respectively), and the Fermi

energy (Ef ). This is an empirical model, closely related to the Seah-Dench formalism.35 Our
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implementation is the same as that implemented in the FDMNES package.34 The following

parameters were used throughout for arctangent convolution: Γi = 1.25 eV, Γf = 15.0 eV,

Ec = 30.0 eV, Ew = 30.0 eV, Ef = −5.0 eV, and E = −35.0
0.25
⇁ 75.0 eV.

Results

Figure 1 shows six out-of-sample DNN estimations and theoretical XANES spectra. The

top three XANES spectra (Figs. 1a, 1b, and 1c) are selected from the first centile, Mean

Squared Error (MSE) < 2.0 × 10−4, and the bottom three XANES spectra (Figs. 1d, 1e,

and 1f) are selected from the ninety-ninth centile (MSE > 1.2 × 10−1) when performance

is ranked over all out-of-sample DNN estimations by MSE. The XANES spectra have been

selected to represent broadly across spectral line-shapes, elemental composition, and unit

cell packing density.

Figure 1: Examples of theoretical target (grey) and out-of-sample DNN-estimated (black)
Fe K-edge XANES spectra for absorption sites in a) CaLaVFeO6, b) FeCo3(PO4)4, c)
Sm6Fe13Pb, d) CePuFe4, e) Fe7(OF7)2, and f) FeAgS2. XANES spectra a), b), and c) are
drawn from the first centile (MSE < 2.0 × 10−4) and XANES spectra d), e), and f) are
drawn from the ninety-ninth centile (MSE > 1.2× 10−1) when estimations are ranked over
all convoluted out-of-sample DNN estimations by MSE.

Estimations drawn from the first centile cannot be distinguished from the target XANES

spectra; the average Pearson correlation coefficient between the estimated and target XANES
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spectra in this subgroup is >0.99, and peak positions on the energy scale are predicted con-

sistently to sub-eV accuracy. Impressively, even the worst estimations, i.e. those drawn

from the ninety-nineth centile, reproduce faithfully the spectral shapes of their target; the

average Pearson correlation coefficient for these estimations is still >0.95. Estimated peak

positions on the energy scale (arguably the metric of principle importance for the spectro-

scopist) are broadly accurate even here. Indeed, these estimations are only placed in the

ninety-ninth percentile by MS because of a) an underestimation of the spectral intensity

that compounds across the energy scale, and b) because small peak shifts on the energy

scale result in relatively larger errors on the intensity scale.

Figure 2 shows a histogram of the MSE achieved on 9040 estimations of out-of-sample

XANES spectra. The median MSE is 5.2 × 10−3 and the lower and upper quartiles are

found at 1.8 × 10−3 (−3.5 × 10−3) and 1.2 × 10−2 (+9.5 × 10−3), respectively. The narrow

interquartile range (IQR) of 1.0 × 10−2 and the high positive skewness coefficient of 5.18

attest to the strong and balanced performance of our DNN on out-of-sample estimations

across our dataset. For perspective, the median MSE is an order of magnitude smaller than

the spectral variation 4.0×10−2 (measured relative to the average spectral intensity over the

whole spectrum) of our dataset, and corresponds to a median absolute error of <5% relative

to the target spectra, allowing for high confidence in qualitative analyses.

The inset in Figure 2 shows a histogram of the MSE achieved on 9040 unconvoluted

out-of-sample DNN estimations. These estimations have not been post-processed, i.e. an

arctangent convolution (see Equation 2) has not been performed. Post-processing the esti-

mated XANES spectra via convolution with the arctangent function improves the MSE by

an order of magnitude. The median MSE achieved on out-of-sample unconvoluted XANES

spectra is 5.4×10−2 and the lower and upper quartiles are found at 2.6×10−2 (−2.8×10−2)

and 1.1 × 10−1 (+5.2 × 10−2), respectively. Beyond the absolute values, the greater spread

of the data and the lower coefficient of skewness (2.53) for the MSEs on the out-of-sample

unconvoluted XANES spectra demonstrates that the improvement brought about by arctan-
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Figure 2: Histogram of the MSE achieved on 9040 convoluted out-of-sample DNN estima-
tions. All estimations are made on unconvoluted XANES spectra; an arctangent convolution
is applied as a post-processing step. The inset is a histogram of the MSE prior to arctangent
convolution.

gent convolution is not uniform for all estimations in the dataset. Outlier estimations with

high MSE are improved to a greater extent than other estimations; in all cases, the outlier

estimations have intense pre-edge peaks before arctangent convolution, and we find a strong

correlation between the intensity of these pre-edge peaks and the improvement in MSE after

arctangent convolution.

Parity plots of the difference between the estimated and target peak positions on the

energy (ETarget and EEst., respectively) and intensity (µTarget and µEst., respectively) scales

are presented in Figs. 3a and 3b, respectively. Strong linear relationships between ETarget

and EEst., and µTarget and µEst., are evidenced by their coefficients of determination, R2,

which are 0.986 and 0.973, respectively. Histograms of the mean absolute error (MAE)

between ETarget and EEst. (∆E), and µTarget and µEst. (∆µ), are shown in Figs. 3c and 3d,

respectively. The median ∆E and ∆µ are 0.45 eV and 3.7× 10−2, respectively; low, in each

case, and reflective of the predictive power of our DNN > 90% of all prominent peaks in the

target XANES spectra are reproduced in the estimations.

Figure 4 shows the convergence of our DNN as a function of real time and the number

of forward passes through the dataset. It is possible to optimise our DNN to effective
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Figure 3: Parity plots of estimated and target peak positions on the a) energy (ETarget and
EEstm., respectively) and b) intensity (µTarget and µEstm., respectively) scales. Histograms of
the MAEs, c) ∆E and d) ∆µ, between estimated and target peak positions on the energy
and intensity scales, respectively.

convergence in < 500 forward passes through the dataset and this can be achieved in as

little as five or ten minutes (real time) using off-the-shelf, consumer-grade hardware (two

nVidia RTX 2080 Ti GPUs connected via an nVidia NVLink). This illustrates that once the

data have been curated, our DNN could be quickly reoptimised to estimate XANES spectra

at other absorption edges and/or for other elements.

Figure 5 shows the convergence of our DNN as a function of the number of in-sample

XANES spectra used in the learning process. The MSE on the out-of-sample XANES spectra

improves monotonically as the in-sample allocation of XANES spectra is increased; likewise,

the standard errors for the MSE evaluations decrease as the DNN is given access to a larger

in-sample reference database to learn from. Convergence is not entirely achieved in the limit

of the current dataset (ca. 8000 in-sample XANES spectra); Figure 5 indicates that there is

still scope to improve further on the results communicated here by growing our dataset.
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Figure 4: Evolution of the MSE as a function of real time and the number of forward passes
through our dataset (’epochs’) Data points are averaged over 100 K -fold cross-validated
evaluations; error bars indicate one standard deviation. No post-processing has taken place;
XANES spectra have not been convoluted with the arctangent function.

To evidence the generality and sensitivity of the DNN, we now apply it to experimental

XANES data for structures far outside our dataset by performing a structural refinement on

iron(II)tris(bipyridine), [Fe(bpy)3]2+,36 and nitrosylmyoglobin (MbNO),37 respectively. Fig-

ures 6a and 6c show comparisons between the experimental, theoretical, and DNN-estimated

XANES spectra of [Fe(bpy)3]2+ and MbNO, respectively. The DNN-estimated XANES spec-

tra are in qualitative agreement with the experimental spectra; the MSEs relative to experi-

ment are 5.1×10−2 and 1.3×10−2, respectively, in line with the median of the MSE reported

in Figure 2. The prominent peaks in the XANES spectra of [Fe(bpy)3]2+ and MbNO are

estimated with eV accuracy with respect to their experimental positions, and other features

in proximity to the absorption edge, e.g. the shoulders to the left of the prominent peaks, are

reproduced qualitatively. The DNN-estimated XANES spectra for[Fe(bpy)3]2+ and MbNO

are consequently on par with the out-of-sample estimations from our dataset.

We further demonstrate that our DNN has sufficient sensitivity to small changes in in-

ternuclear distance to allow for rudimentary refinement of geometric structures. Figures 6b

and 6d show the MSE between the DNN-estimated and experimental XANES spectrum as a

function of Fe-to-N coordination distances, rFe-N, for [Fe(bpy)3]2+ and MbNO, respectively.
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Figure 5: Evolution of the MSE as a function of the number of in-sample spectra accessible
to our DNN during the learning process. Data points are averaged over 100 K -fold cross-
validated evaluations; error bars indicate one standard deviation. No post-processing has
taken place; XANES spectra have not been convoluted with the arctangent function.

For [Fe(bpy)3]2+ (Figure 6b), evaluation of the MSE along a symmetric stretching coordinate,

rFe-Nbpy, produces a minimum in MSE at 1.91 Å - a result in agreement with the value of

1.93 Å obtained from high-level calculations40 and 1.96 Å obtained from X-ray diffraction.38

Similarly, evaluation of the MSE along the rFe-NNO, rFe-Nporphyr., and rFe-Nhist. stretching

coordinates in MbNO (Figure 6d) produces minima at 1.67, 1.98, and 2.31 Å, respectively.

These values that are in reasonable agreement with previous XANES analysis37 values of

1.83, 2.01, and 2.04 Å, and could serve as a starting point for a more rigorous refinement.

Figure 6d shows that our DNN is more sensitive to distortions along rFe-Nporphyr. than either

rFe-NNO or rFe-Nhist.. This is a consequence of the choice of featurisation, since the intensity

of the dominant peak in the RDC is affected to a greater extent by changing four internuclear

distances (rFe-Nporphyr.) along a symmetric stretching coordinate than by changing either of

the other internuclear distances (rFe-NNO or rFe-Nhist.) individually. Being able to refine in-

dependently these three internuclear distances attests to the sensitivity of our DNN because

rFe-NNO, rFe-Nporphyr., and rFe-Nhist. all appear under the same peak in the RDC; our DNN

is sensitive to the subtle differences in peak shape and intensity communicated through the

featurisation. Furthermore, there are no Fe absorption sites in our dataset that resemble
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Figure 6: Experimental target (grey; continuous), theoretical target (grey; dotted), and
DNN-estimated XANES spectra for a) [Fe(bpy)3]2+ and c) MbNO. MSEs as a function of
Fe-to-N coordination distance, rFe-N, for b) [Fe(bpy)3]2+ and c) MbNO. The MSE as a
function of rFe-Nbpy (dotted; circular markers) is plot in b). The MSE as a function of
rFe-NNO (dotted; triangular markers), rFe-Nporphyr. (continuous; pentagonal markers), and
rFe-Nhist. (dashed; square markers) is plot in d).

the Fe absorption sites of [Fe(bpy)3]2+ or MbNO, and there are less than fifty examples

of Fe-to-N coordination in our dataset. The performance of our DNN for [Fe(bpy)3]2+ and

MbNO supports the conclusion that our machine learning model has learnt how to generalise

beyond our dataset, as opposed to memorising the contents, and has begun to learn a deep

relationship: how to map the local geometric environment of an arbitrary Fe absorption site

to the corresponding XANES features in order to estimate the XANES spectrum.

Discussion and Conclusions

In the previous section we presented the promising performance of our DNN and successful

application of this approach to the structural refinement of [Fe(bpy)3]2+ and MbNO. We

now discuss the limitations of our DNN, which represent the areas of focus for the future

development of the method. It is always the case that a machine learning model is only
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as good as the dataset that it is exposed to during the learning process. This paper is

intended as a proof-of-principle demonstration, and consequently uses a dataset that was

computationally cost-effective to compute under the muffin-tin approximation. Indeed, this

limitation is likely to be a contributing factor in the structural refinement of MbNO. However,

now that the optimal hyperparameters, learning behaviour, and requisite dataset size have

been determined, it is our objective to have our DNN reproduce XANES spectra from higher-

level theoretical calculations. Even at higher levels of theory, it is important to acknowledge

that disagreements between experiment and theory may still exist and it is important that

these situations can be recognised so that the DNN is not treated as a black box by end-

users. The objective of the DNN is to supplement and support high-level calculations, not

replace them.

Furthermore, although our DNN is suitable for estimating the Fe K -edge XANES of

molecular systems far outside our training dataset of perfectly-ordered, homogeneous crys-

talline systems, the sensitivity of our DNN to irregularities in the bulk such as vacancies,

defects, undercoordinated sites, and the effects of lattice stress is not clear. Feedback on

systems for which the underlying theory is inappropriate, and on epistemic uncertainty (i.e.

uncertainty arising from the incompleteness and homogeneity of the training dataset), is

essential for end-users and will be the focus of future developments for this method.

Although we have demonstrated that our DNN is sensitive to subtle structural differ-

ences (e.g. changes in internuclear distance of less than an Ångström near equilibrium),

it is necessary to point out that our DNN cannot be expected at present to provide valid

estimations of Fe K -edge XANES for structures that are far from equilibrium, limiting its

present applicability to very-high-temperature samples and time-resolved XAS experiments.

However, we expect that a combination of data augmentation and feedback on epistemic

uncertainty will enable our DNN to address these problems in the near future.

In summary, this paper has introduced a DNN capable of estimating Fe K -edge XANES

spectra in less than a second from no input beyond geometric information about the local
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environment of an arbitrary Fe absorption site. We have demonstrated that not only is

our DNN able to predict reliably XANES spectra with qualitative accuracy, it is also able

to achieve quantitative (sub-eV) accuracy on peak positions with reference to the target

XANES spectra. Our DNN can be trained to convergence on a moderately-sized dataset of

theoretical XANES spectra in under ten minutes, and can cast individual estimations in less

than a second. We expect that our DNN can be reoptimised to cast estimations of XANES

spectra for other elements/absorption edges, and that it will transform consequently the

analysis workflow in XAS spectroscopy. Beyond this, we expect that our approach is equally

transferable to other spectroscopies. We stress that the objective of the work communicated

in this paper is not to replace high-level theoretical calculations. Rather, we anticipate that

our DNN will find application in situations where many geometric configurations need to

be sampled to simulate accurately the XANES spectrum but the requisite computational

resources for these high-level theoretical calculations are not available, i.e. in molecular

dynamics/nuclear ensemble approaches,41,42 and in qualitative analysis and screening for

high-throughput XAS measurements.
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