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Abstract

Reduced density matrix cumulants play key roles in the theory of both reduced den-

sity matrices and multiconfigurational normal ordering, but the underlying formalism

has remained mysterious. We present a new, simpler generating function for reduced

density matrix cumulants that is formally identical to equating the coupled cluster and

configuration interaction ansätze. This is shown to be a general mechanism to convert

between a multiplicatively separable quantity and an additively separable quantity,

as defined by a set of axioms. It is shown that both the cumulants of probability

theory and reduced density matrices are entirely combinatorial constructions, where

the differences can be associated to changes in the notion of “multiplicative separabil-

ity” for expectation values of random variables compared to reduced density matrices.

We compare our generating function to that of previous works and criticize previous

claims of probabilistic significance of the reduced density matrix cumulants. Finally,

we present the simplest proof to date of the Generalized Normal Ordering formalism

to explore the role of reduced density matrix cumulants therein.
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1 Introduction

Reduced density matrix cumulants are fundamental in both reduced density matrix (RDM)

theories and multireference theories that use the generalized normal ordering formalism

(GNO) of Kutzelnigg and Mukherjee.1–5 To RDM theories, RDM cumulants are the size-

consistent parts of the RDMs. This is one of the primary reasons why cumulants are either

parameterized or varied directly in many RDM-based theories.6–11 In GNO, second quan-

tized operators are decomposed into linear combinations of operators “normal ordered” with

respect to an arbitrary reference, Ψ, via the Generalized Wick’s Theorem. This theorem

gives the expansion coefficients of the linear combination in terms of contractions. This is

analogous to the normal ordering procedure and contractions familiar from correlated single-

reference wavefunction theory.12,13 However, in the single-reference theory, the contractions

are Kronecker deltas. In GNO, the contractions are Kronecker deltas and also the RDM

cumulants of Ψ. The GNO formalism has also been used in many studies.14–16

Broadly speaking, there have been three approaches to defining reduced density matrix

cumulants in the literature. The first definition is an explicit formula for them in terms of

reduced density matrices.17–19 Apart from one presentation of the two-body cumulant,20 this

presentation is ad hoc, and the connection to size-consistency is not established. The second

definition begins by identifying the connected components of the perturbation expansion

of the n-particle propagators.21 The terms can then be related to terms of a perturbation

expansion of the reduced density matrices,22 and the size-consistent terms isolated. This

definition was nearly immediately replaced with the third definition. The third definition is

based on Kubo’s presentation of cumulants in probability theory23 and is now the exclusive

formalism used to discuss size-consistency of the RDM cumulants.20,24–28

Given random variables X1, ..., Xn, Kubo began by defining the moment generating func-

tion

M(t1, ..., tn) = 〈exp(
N∑
i=0

tiXi)〉 (1)
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and the cumulant generating function

K(t1, ..., tn) = logM(t1, ..., tn) . (2)

Any moment, or expectation value, of a product of the variables can be written in the

form 〈
N∏
n=0

X in
n 〉. That moment is the coefficient of

N∏
n=0

(in!)−1tinn in (1). Kubo defined the

cumulant of random variables, which we call the probabilistic cumulant, as the coefficient of
N∏
n=0

(in!)−1tinn in (2). Kubo showed that the probabilistic cumulants so defined are “additively

separable” with respect to variables that are “multiplicatively separable.” Specifically, Kubo

defined sets of random variables as being statistically independent if any moment of variables

factors into a product of moments, one for each set. For example, if the sets {X} and {Y, Z}

are statistically independent, then 〈X2Y Z〉 = 〈X2〉〈Y Z〉. Then any cumulant of variables

from multiple independent sets is zero. This is the probabilistic analogue of the fact that

any coupled cluster amplitude with orbital indices from multiple noninteracting systems is

zero.

To adapt Kubo’s definition of probabilistic cumulants to a definition of RDM cumulants,

we must change expectation values of random variables to expectation values of second quan-

tized operators. However, Kubo’s proof of additive separability assumed that the random

variables commute, but our second quantized operators do not. To define cumulants of

non-commuting objects while keeping additive separability, Kubo proposed that the multi-

plication appearing in the power series of exp and log from (1) and (2) be replaced with a

“multiplication” which does make the objects commute. This idea has been key in the third

approach to defining RDM cumulants, via a generalization of Kubo’s generating functions.

We are convinced that the current definitions of RDM cumulants from generating function

have left important points unclear, and that these points leave hindered broader use of

cumulants among electronic structure theorists:

1. It is not a priori obvious what the “correct” adjustment to the definition of multiplica-
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tion in the exp and log series is. This has led to two distinct schemes to adapt Kubo’s

cumulants to RDM cumulants. Is there another way to generalize Kubo’s approach?

The complexity of both definitions makes a simpler definition desirable:

(a) The approach dominant in generalized normal ordering literature was pioneered

by Kutzelnigg and Mukherjee25 and later refined by Hanauer and Köhn.24 Ac-

cordingly, we call it the KMHK approach. In this formalism, the analogue of

random variables are the particle-conserving operators apq , and exp and log must

be redefined to use a modified normal order product. While this modified normal

ordering works, its significance is unclear. Further, the presentation of Hanauer

and Köhn uses six different product operations: the Grassmann product (∧), the

alternative Grassmann product (⊗), the normal order product ({}), the scalar

product of tensors (·), the antisymmetrized tensor product (×A), and the modi-

fied normal order product ({}′).

(b) The approach dominant in reduced density matrix literature was pioneered by

Mazziotti.26 In this formalism, the analogue of random variables are the creation

and annihilation operators a†p and aq, and the exponential is modified by apply-

ing an “ordering” operator. The analogue of the “formal variables”, t1, ..., tn, are

neither real nor complex numbers, but anticommuting numbers. Throughout the

literature, it has been typical20,26,27,29–32 to obtain RDM cumulants by differen-

tiating the exponentiated analogue of (2), rather than using the log series. The

required differentiation operators also anticommute. Furthermore, an n-electron

RDM cumulant in this formalism is related not to the n-variable probabilistic cu-

mulant, as in the KMHK approach, but to the 2n-variable probabilistic cumulant,

before reducing to a formula reminiscent of the n-variable probabilistic cumulant.

2. It remains opaque why RDM cumulants should be size-consistent, that is, why RDM

cumulants with indices in noninteracting subsystems should vanish. This is so for two
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reasons. First, the proof that the RDM cumulants are size-consistent using the KMHK

definition is more complicated than in Kubo’s case, because not all “random variables”

can be assigned to one subsystem or the other.24 (Mazziotti’s approach does not have

this drawback.) Second, when the formula for a cumulant is simplified to a polynomial,

it is not clear why one polynomial is size-consistent while another is not. For example,

why is γpqrs−γprγqs+γpsγ
q
r size-consistent but not γpqrs+γprγ

q
s−γpsγqr? Neither generalization

of Kubo’s approach immediately offers insight.

3. It is an open question whether RDM cumulants of arbitrary rank have some fur-

ther probabilistic interpretation, due to their similarity to the probabilistic cumulants.

Kutzelnigg and Mukherjee tried to offer such an interpretation25 but later said it

did not apply to the “exclusion-principle violating” cumulants.33 Kong and Valeev

interpreted some RDM cumulant elements as probabilistic correlations of electron oc-

cupation, within some restrictive assumptions.19 Hanauer and Köhn gave the same

interpretation with looser assumptions, but could still not provide a definitive proba-

bilistic interpretation for all RDM cumulant elements.24 The latter paper was explicitly

motivated by trying to understand the analogy between probabilistic cumulants and

RDM cumulants.

4. We are aware of no attempt to explain why the RDM cumulants defined via this

generating function should appear in GNO at all.

In this research, we propose a more intuitive definition of the RDM cumulants that

starts not from the cumulant generating function of Kubo but by three axioms, inspired

by Percus,34 that characterize a solution to the general problem of breaking a multiplica-

tively separable second quantized quantity into additively separable parts. Accordingly, the

relation between RDM elements and their cumulants is precisely the same as the relation

between configuration interaction amplitudes and the coupled cluster amplitudes because

both coupled cluster amplitudes and RDM cumulants obey the same three strict axioms.
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This allows us to provide a “generating function” for the RDM cumulants that is simpler

than the functions from the KMHK and the Mazziotti approaches, and can also be trivially

adapted to construct an additively separable quantity from any multiplicatively separable

one. All this will be covered in Section 2.

In Section 3, we shall compare our generating function with that of the KMHK approach

and the Mazziotti approach to analyze how they generalize the idea of Kubo, and how all

three generating functions can lead to the same answer. Section 3.1 shall review generating

functions in detail. Section 3.2 will analyze the use of generating functions in the definition

of the probabilistic cumulant. We intend to establish that the probabilistic cumulant obeys

very similar axioms to the RDM cumulant, with the crucial difference of what they mean by

“multiplicative separability,” and discuss the implications of that difference for the generating

functions that the two cumulants need. In Section 3.3, we discuss how the previous RDM

cumulant generating functions of the KMHK and Mazziotti approaches simplify to ours and

lead to the same answer. By this point in our argument, it will be clear that the analogy

between the probabilistic and RDM cumulants is entirely a matter of combinatorics and

the three axioms, and probability theory plays no role in the analogy. In Section 3.4, we

shall criticize claims of a probabilistic interpretation of RDM cumulants. We refer readers

interested in a detailed look at the connection between our generating function and the

combinatorial problem of the three axioms to Appendix A.

Lastly, we shall consider why cumulants appear in the formalism of generalized normal

ordering in Section 4 and give a proof of its various Generalized Wick Theorems that is far

simpler than any prior proof in the literature.
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2 Additive Separability from Multiplicative Separabil-

ity

Suppose some family of antisymmetric tensors exists where each element is indexed by n

creation operators and n annihilation operators, and the family contains tensors of variable

n.

Further suppose the orbitals can be partitioned into subsets, called blocks, such that

the orbitals of each block factor each tensor into a product of tensors, each indexed by the

orbitals of a single block, multiplied by the usual permutational sign factor. For example, if

p, q, s and t are in one block and the orbitals r and u are in another block, then zpqrstu = zpqst z
r
u

and zrqtu = −zqt zru and zrt = 0, and so on. If this occurs, we say the family of tensors is

multiplicatively separable with respect to the partition.

There are two archetypal examples of multiplicatively separable families of tensors. In

both, the relevant partitioning of orbitals into blocks is the partitioning of orbitals on non-

interacting subsystems.

The first example is the exact configuration interaction amplitudes in intermediate nor-

malization, i.e., when the reference determinant has overlap 1 with the full wavefunction.

This is shown by the argument in Section 4.3.1 of Reference 35, upon recognizing that the

product of intermediately normalized excitation operators is also an intermediately normal-

ized excitation operator.

The second example is the reduced density matrix elements using the McWeeny nor-

malization convention,36 in which all RDM elements are just the expectation values of the

corresponding second quantized operator, such as γpqrs = 〈Ψ| apqrs |Ψ〉. It may be shown, by

tedious but straightforward anticommutation of second quantized operators of different sys-

tems, that the RDMs are multiplicatively separable.

We want to construct a family of tensors that will be additively separable with respect

to a partition of orbitals if we are given a family of tensors that is multiplicatively separable
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with respect to that same partition. Additive separability means that the tensor for the

system with orbitals from all blocks of the partition is the sum of the tensors with orbitals

from only a single block of the partition. In the usual case where blocks contain orbitals of

different subsystems, this means that to obtain the additively separable tensor for a system

of noninteracting subsystems, add the tensors from each non-interacting subsystem. The

experience of quantum chemists has been that formulating an approximate theory in terms

of additively separable quantities is crucial for maintaining the accuracy of a theory applied

beyond the smallest systems.12,13,35

We can construct this manually for low-rank tensors. The key idea is to include products

of tensors such that after applying any possible factorization, all products of tensors either

have coefficient zero or vanish. For example, consider zpqrs −zprzqs +zpsz
q
r . If p and r are on one

subsystem and q and s are on a different noninteracting subsystem, the polynomial factors

to zprz
q
s − zprzqs + 0 ∗ 0 = 0. Likewise, if p and s are on a different subsystem from q and r,

the polynomial becomes −zpszqr + 0 ∗ 0 + zpsz
q
r = 0. This is the general mechanism by which

a polynomial of a multiplicatively separable quantity acquires additive separability.

With additional notation, we can condense our observations into axioms that dictate what

we require of our family of tensors, T , that will be additively separable with respect to an

orbital partition if the tensor C is multiplicatively separable with respect to it. If Z is a family

of tensors and S is an ordered set of n creation operators and n annihilation operators, Z(S)

is the tensor in Z indexed by the orbitals of S. The set of possible factorization patterns of

a Z(S), called the set of fermionic partitions, is written as ΠF(S). Given fermionic partition

ρ with jth block ρj, Z(ρ) is
∏
j

Z(ρj). We regard S as the fermionic partition of only one

block.

Our requirements of the family of tensors, T , which must be additively separable with

respect to any partition that makes C multiplicatively separable, are:
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1. Functional Form

T (S) =
∑

ρ:ρ∈ΠF (S)

µρC(ρ) (3)

2. Normalization µS = 1, where again, S is the fermionic partition consisting of one

block

3. Additive Separability If C is multiplicatively separable with respect to an orbital

partition of S (other orbitals not being relevant), T (S) is identically zero, for any

choice of the remaining C(ρ).

These axioms closely mimic the axioms applied to probabilistic cumulants by Percus34 and

latter refined by Simon.37

To obtain an explicit formula for T (S), we need only determine the coefficients µ of (3)

using the last two axioms. Further, there is at most one solution, and it is independent of

the values of C(ρ). This holds because µS is determined by the normalization axiom, and all

other coefficients may be determined by the following induction over the number of blocks:

Consider fermionic partition π other than S. Suppose that each block defines orbitals of an

independent system. Factorize (3) accordingly, and the coefficient of C(π) is
∑
ρ:ρ⊇π

µρ, where

ρ ⊇ π means that each block of ρ is contained in a block of ρ, as shown in Figure 1. It does

not compare numerical values. For T (S) to be zero for any choice of the C(ρ), as required

by the third axiom, we need ∑
ρ:ρ⊇π 6=S

µρ = 0 . (4)

But all terms other than µπ correspond to fermionic partitions with fewer blocks than π and

thus are already known.

While it is possible to give a closed-form solution for the coefficients using low-level

combinatorics, as we show in Appendix A, there is a far more accessible solution. The

coupled cluster amplitudes satisfy all three axioms. The coupled cluster and configuration

interaction amplitudes are related by
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{pqrs}

{pr} {qs}−{ps} {qr}

Figure 1: The fermionic partitions for a rank-two tensor. A vertical path between two
elements ρ and π, where ρ is higher than π, means that ρ ⊇ π.

1 + C = exp(T ) (5)

where

C =
∑
i,a

1

(1!)2
ciaa

a
i +

∑
i,j,a,b

1

(2!)2
cijaba

ab
ij + ... (6)

and

T =
∑
i,a

1

(1!)2
tiaa

a
i +

∑
i,j,a,b

1

(2!)2
tijaba

ab
ij + ... (7)

and the operators aai , a
ab
ij , etc. are the usual second quantized excitation operators of many-

fermion theory.12,13,35

The excitation operators in (6) and (7) perform two roles. First, they make the left and

right hand sides of (5) operators that transform the reference Φ into the target state Ψ.38

The need for an operator to act on a wavefunction is the usual rationale for the appearance of

second quantized operators in (5).12,13,35,38 For our purposes, this role is irrelevant. Second,

equating the coefficients of the operators aai , a
ab
ij , etc. on each side of (5) gives a c amplitude

as a polynomial in the t amplitudes.38,39 In this second role, (5) solves our problem of

additive separability for the configuration interaction and coupled cluster amplitudes. By

the previous arguments, this is the one and only solution.
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Let us adapt this to solve the additive separability problem for any multiplicatively

separable quantity. Define

C =
∑
p,q

C( pq )apq +
∑
p,q,r,s

1

(2!)2
C( pqrs )apqrs + ... (8)

and

T =
∑
p,q

T ( pq )apq +
∑
p,q,r,s

1

(2!)2
T ( pqrs )apqrs + ... . (9)

We may attempt to use 1 + C = exp(T ), but our second quantized operators need not

commute, so we lose the property that exp(A + B) = exp(A) exp(B), which plays a central

role in the logic that the cluster operators are additively separable.12,13,35 Modifying an idea

from Lindgren,40 we redefine the multiplication in the exponential to be the vacuum-normal

order product rather than the operator product; so for example, we use the multiplication

{apraqs} = apqrs rather than apra
q
s = apqrs + δqra

p
s. (In notation such as {apraqs}, the braces denote

redefining multiplication, not a function applied to apra
q
s. The latter approach leads to con-

tradictions of the type discussed in References 41 and 42.) The normal product is always

commutative for particle-conserving operators and reduces to the usual exponential when

we only need excitation operators, as in coupled cluster. Normal ordered exponentials also

appear explicitly in the KMHK approach to cumulants24,25,28,43,44 and as the ordering op-

erator in the Mazziotti approach to cumulants.20,26,27,29–32 However, both second quantized

operators and normal ordering appear for a different reason in our formalism compared to

theirs, as we discuss in Section 3.3.

Therefore, the solution to our additive separability problem is given by

1 + C = {exp(T )} (10)

or equivalently
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{log(1 + C)} = T . (11)

We have used the fact that the logarithm and exponential are inverses as long as the product

operation commutes because they must be inverses as formal power series.45–47

It is easy to confirm from (11) that T satisfies the first two axioms, and it is easy to

confirm from (10) that C satisfies the third axiom because

1 + CA+B = {(1 + CA)(1 + CB)} = {{exp(TA)}{exp(TB)}} = {exp(TA + TB)} . (12)

It is also possible to confirm the additive separability of a given explicit formula derived

from (11) by performing any possible factorization (which corresponds to a way to divide

orbitals into multiplicatively separable groups) and observing that the resulting polynomials

are identically zero. A derivation of the cumulants based on this is given in Appendix A.

We have thus solved the problem of converting any multiplicatively separable quantity

into an additively separable one. Merely equate coefficients of the second quantized operators

on both sides of (11), using the definitions (8) and (9) and the power series of the logarithm.

This applies not only to converting configuration interaction amplitudes to coupled cluster

amplitudes and to converting reduced density matrices to their cumulants, but also to more

exotic quantities, such as the reduced transition matrices of Mazziotti30,31 or the amplitudes

of valence universal multireference coupled cluster.42 The coefficients of (3) will be exactly

the same in any case.

We can give yet more explicit formulas because the Taylor series expansion coefficients

of exp and log are known, we may replace the 1
n!

2
appearing in (8) and (9) by choosing one

permutation of any given set of indices, and the 1
k!

appearing in the degree k term of the

exp and log series precisely cancels out the k! ways to permute the C or T operators to get

identical results. Denoting the number of blocks of partition ρ with #ρ, we find:
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C(S) =
∑

ρ:ρ∈ΠF (S)

T (S) (13)

and

T (S) =
∑

ρ:ρ∈ΠF (S)

(−1)#ρ−1(#ρ− 1)!C(S) . (14)

We emphasize that the additive separability of T with respect to a partition of orbitals

is not automatic, even if the orbitals can be divided into noninteracting subsystems. It

is automatic if C is multiplicatively separable. So for example, the RDM cumulant of an

approximate theory may fail to be additively separable if the RDM lacks the correct mul-

tiplicative separability. We believe this is what Kong and Valeev meant when remarking

that the additive separability of the RDM cumulant “is not guaranteed for arbitrary wave-

functions.”19 Examples of this behavior, even for functions with size-consistent energies,

include the orbital unrelaxed density matrices of coupled cluster,48 the orbital optimized

methods studied by Bozkaya and co-workers,49–52 and the RDM formulation of CEPA given

by Mazziotti and related to his parametric RDM method.53,54

There have been previous attempts to connect reduced density matrix cumulants and

coupled cluster,18,30,31,48,55 but we are aware of none that recognized that near identical

“generating functions” can be produced for the two, or that this is a general solution to the

problem of converting between multiplicative and additive separability.

3 Generating Functions

Equations (10) and (11) provide a way to construct a multiplicatively separable quantity

from an additively separable one and vice versa. However, we have not yet established why

a function should be so useful in solving what is an essence a combinatorial problem, how the

differences between RDM cumulants and the probabilistic cumulants should be understood,
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how the difference between our generating functions and those of the KMHK and Mazziotti

approaches should be understood, or what this means for efforts to interpret RDM cumulants

probabilistically. We address each of these questions in turn in the following subsections.

3.1 Mathematicians’ Generating Functions

While RDM cumulant generating functions have been defined numerous times,20,24–29,32,43,44

as have generating functions for the more general reduced transition matrix cumulants,30,31

we are aware of no general discussion of generating functions in the chemistry literature. As

this is crucial for this research, we provide one, emphasizing the underlying ideas in language

accessible to quantum chemists rather than mathematical rigor. We refer readers interested

in detailed mathematical treatments of generating functions to References 46, 56, 47, 57,

and 58.

Combinatorialists frequently study arrays of numbers indexed by n natural numbers.

For example, av,c may count the graphs with v vertices and c connected components. This

sequence may be encoded into a formal power series in n variables. A formal power series

is a power series where the variables are associative and commutative, but are otherwise

indeterminate. These are called formal variables. Formal variables cannot be evaluated at

specific numbers, and accordingly, questions of convergence do not exist. The formal power

series that a sequence is converted into is called a generating function.

Although generating functions have multiple uses, the one most relevant to the present

work is that they convert combinatorial problems into algebraic ones. It is possible to define

algebraic operations on formal power series that replicate familiar operations on functions

and that also automate some combinatorially significant operation on the sequence. We can

thus solve a problem algebraically and only afterwards rephrase the result in terms of the

original combinatorial problem.

Let us illustrate the combinatorial significance of the familiar algebraic operation of

multiplying functions of one variable. Suppose the sequence {an} is encoded into a function
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by a(x) =
∞∑
n=0

anx
n. This construction is called an ordinary generating function. If b(x)

is the ordinary generating function of {bn}, then term-by-term multiplication of a(x) and

b(x) gives
∞∑
n=0

(
n∑

m=0

ambn−m)xn. Multiplying two ordinary generating functions creates a new

sequence where term n is
n∑

m=0

ambn−m. Combinatorially, this corresponds to combining a

“degree m” object of the first sequence and a “degree n−m” object of the second sequence

into a new “degree n” object. The summation exists because there are multiple ways to get

a “degree n” object.

Alternatively, suppose the sequence {an} was encoded into a(x) =
∞∑
n=0

an
xn

n!
, and likewise

to produce b(x) from {bn}. This produces an exponential generating function. Term-by-

term multiplication gives
∞∑
n=0

(
n∑

m=0

(
n
m

)
ambn−m) 1

n!
xn. Multiplication of exponential generating

functions thus means that term n of the new sequence is
n∑

m=0

(
n
m

)
ambn−m. This is commonly

used in problems where not only do a “degree m” object and “degree n−m” object combine

to produce a “degree n” object, but every one of the
(
n
m

)
ways to assign the degrees of the

“degree n” object to the original two objects produces a distinct object.

These ideas can be extended to a sequence d indexed by n natural numbers, d1 through

dn. There are n formal variables x1 through xn, and the generating functions are written

as a(x1, ..., xn) =
∑
d

ad
∞∏
i=1

x
di
i

di!
for an exponential generating function and a(x1, ..., xn) =∑

d

ad
∞∏
i=1

xdii for an ordinary generating function.

3.2 Probabilistic Cumulants

We are now prepared to address the probabilistic cumulants.

We require notation that mirrors our notation for the fermionic case. Given a set, S, of n

random variables, we define Π(S) as the set of partitions, all ways to divide the variables into

subsets (blocks) such that each variable is in exactly one set. κ refers to the set of cumulants,

and m refers to the set of moments. κ(S) refers to the cumulants using the variables of set

S, and m(p) is the product of moments corresponding to each block of partition p.
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Once again, we can define cumulants following the axioms of Percus34 and Simon.37

1. Functional Form

κ(S) =
∑

p:p∈Π(S)

µpm(p) (15)

2. Normalization µS = 1, where again, S is the partition consisting of one block

3. Connectedness If m is multiplicatively separable with respect to a partition of S

(other variables not being relevant), κ(S) is identically zero, for any choice of the

remaining m(p).

Compared to the axioms that apply to RDM cumulants, the axioms for probabilistic

cumulants differ in two primary ways. First, our additively separable quantity is no longer

a linear combination of antisymmetric tensors, but of moments of our variables. Second,

the set of partitions that our multiplicatively separable quantities can separate into have

changed from fermionic partitions to the usual set partitions.

The corresponding cumulant generating function is given by (2). Again, we may check

that when all variables in the moment are distinct, the cumulants so defined satisfy all three

of the axioms.

Let us try to understand why (2) solves our combinatorial problem. First, the appearance

of log is unsurprising, as we are converting a quantity that is multiplicatively separable with

respect to a partition to a quantity that will be additively separable with respect to that

partition. But unlike (11), we do not need to modify the multiplication appearing in the

power series of the logarithm.

We can rationalize this as follows: To read off relations of form (3) and (15) from our

generating functions, we need both sides of the equations to be coefficients of the same

monomial. In both cases, the right-hand side will arise from repeated multiplication of

a function with the multiplicatively separable quantities as coefficients. How should we

“multiply” this function by itself to get the collection of terms we want?
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The multiplication differs for these two cases because the partitions we want to sum differ

for these two cases. For probabilistic cumulants, we sum over set partitions. All we need

is to count how many times each variable has been included in our partition, and this is

accomplished by attaching the moment 〈
∏
xni
i 〉 to the monomial

∏
tni
i . Even after taking

products, counting the degree of each formal variable tells how many times the random

variable appeared, which is all we want. So the multiplication of formal variables as in

Section 3.1 is perfectly acceptable, though we have yet to decide whether to use an ordinary

or an exponential generating function.

For additively separable fermionic quantities, we sum over fermionic partitions. We need

to count how many times each fermion appears as a creation or annihilation index, and also

the overall phase factor. For efficiency, we should assume the same number of creation as

annihilation operators. It is possible to adapt the formal variable approach to this, and as

we shall discuss in Section 3.3, this is exactly what the KMHK and Mazziotti approaches

to RDM cumulants do. However, quantum chemists already have a multiplication to count

this: the normal ordered product of particle-conserving operators. This is the fundamental

reason why the normal ordered product must be used rather than the operator product in

equations (10) and (11).

Another obvious difference between the generating functions for the additively separable

probabilistic (2) and fermionic (11) quantities is that the probabilistic multiplicatively sepa-

rable generating function (1) uses an exponential that has no counterpart in the “generating

function” for the fermionic multiplicatively separable quantity, (8). This is due to fermionic

antisymmetry eliminating a technicality in the probabilistic cumulants.

For probabilities, it is perfectly legitimate to have a moment with a repeated variable, such

as the cumulant κ(XX). This cannot occur for fermionic quantities, because any “moments”

with a repeated creation index or annihilation index must be zero by antisymmetry. We

point out that because the fermionic partitions are defined with a sign factor, the formulas

for moments and cumulants in terms of each other given by equations (13) and (14) preserve
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antisymmetry.

The possibility of repeated variables in a probabilistic cumulant introduces an ambiguity

in how we define the probabilistic cumulant. Do we define it by taking the formula for the

cumulant given distinct variables and substitute in the repeated variables, or do we extract

the term from the functions (2) and (1) with the repeated variables? Ideally, both approaches

should produce the same polynomial.

Direct computation shows that when all variables are distinct, encoding the moments m

as an ordinary generating function or an exponential generating function produces the same

polynomial. However, for repeated variables, the two definitions differ using the ordinary

generating function. For example, the ordinary generating function produces κ(XX) =

m(XX)− 1
2
m(X)m(X) and κ(XY ) = m(XY )−m(X)m(Y ).

The remedy for the case of repeated variables is to choose an exponential generating

function for the moment and cumulant generating functions. Taking the logarithm of our

moment-generating function is then the composition of exponential generating functions. It

is a well-known combinatorial fact that this encodes a sum over all set partitions for a single

variable. (See Theorem 5.1.4 of Reference 58.) This interpretation hinges on repeated appli-

cation of the multiplication of exponential generating functions we discussed in Section 3.1.

The multivariable generalization of the same argument shows that the use of an exponential

generating function maintains the desired sum over partitions structure, whether variables

are repeated or not. Thus, we see that the exponential in the moment generating function

is only necessary to treat repeated variables, which we do not have in the fermionic case.

We make two final observations about the probabilistic generating function. First, proba-

bilistic concepts played no role in our construction of the cumulant. The generating function

we need is determined only by combinatorial considerations of how a moment can separate.

Accordingly, any probabilistic interpretation of the probabilistic cumulant must arise from

the fact that the cumulant is a polynomial in moments. Second, the needed coefficients µ

for the probabilistic cumulant and the cumulants arising for our original fermionic problem
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are closely related. The coefficients for the fermionic case obey the recursion (4) where the

sum is over fermionic partitions, and the same logic shows that the probabilistic cumulants

obey the same recursion, but where the sum is now over set partitions. But once you have

chosen a fermionic partition into n blocks, the set of elements appearing in the recursion is

exactly the same as those from the probabilistic cumulant of n elements, as demonstrated

in Figure 2. Because both cumulants also agree about the base case of 1 blocks, where the

recursion does not apply, it follows that the corresponding coefficients are identical.

{pqrstu}

{ps}{
qr
tu} {qt}{prsu} {ru}{

pq
st }

{ps}{
q
t}{ru}

{XYZ}

{X}{YZ} {Y}{XZ} {Z}{XY}

{X}{Y}{Z}

Figure 2: The fermionic partitions greater than or equal to {ps}{
q
t}{ru}, and the set of

partitions of three objects. A vertical path between two elements ρ and π, where ρ
is higher than π, means that ρ ⊇ π. The two subsets and their order relations are
isomorphic.

3.3 Comparison with Previous Generating Functions

Both the KMHK and Mazziotti approaches acquire their added complexity by sticking too

closely to formal variables. Products of formal variables reflect the factorizations of proba-

bilistic cumulants but not fermionic cumulants, so products of formal variables are not an

optimal tool for defining fermionic cumulants. We now describe how the concepts of our

approach in Section 2 have been hidden in those previous. The comparison is summarized

in Table 1.

Both the KMHK and Mazziotti approaches obtain their RDM generating functions by

taking the normal ordered exponential of a sum of “minimal” second quantized operators
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Table 1: A comparison of different generating functions of reduced density matrix cumu-
lants.

Descriptor KMHK Approacha Mazziotti Approachb This Workc

Moment Generating Function 〈ψ| {exp(kpqa
q
p)} |ψ〉 〈ψ| {exp(Jka

†
p + J∗kap)} |ψ〉 1 +

∑
Cq...p...a

p...
q...

Formal Variable kpq Jk, J
∗
k apq

Product of Formal Variables kpq ∗ krs = kpqk
r
s 6= −kpskrq Jk ∗ Jl = JkJl = −JlJk {apqars} = aprqs = −aprsq

Particle-conserving variables only? Yes No Yes
Role of apq Construct RDMs Construct RDMs Formal variables

Multiplication in exp/log ×A Standard {}
Match coefficients of... Antisym. products of variables Products of variables Products of variables
Rank n cumulant needs n variables 2n variables n variables

a Kutzelnigg, Mukherjee, Hanauer, and Köhn;;24,25,28,43,44 b Mazziotti26,29–32 and other
reduced density matrix investigators;20,27 c Section 2 of the present research

multiplied by formal variables indexed by the “minimal” operator. An expectation value is

then taken. This constructs the moment-generating function. For probabilistic moments,

where repeated variables exist, this is a very useful device to construct the moment-generating

function and much easier to remember than the explicit factorials. However, for our fermionic

quantities, their approach is more complicated than our own (8), which is an easy gener-

alization of the familiar configuration interaction form (6). This is exactly as discussed in

Section 3.2.

We now consider the two approaches separately.

First is the KMHK approach. As Hanauer and Köhn’s presentation uses six different

product operations,24 we comment only on the elements that are apparent from the less

detailed presentations of Kutzelnigg and Mukherjee.25,28,43,44 In the KMHK approach, each

formal variable is indexed by both a creation operator and an annihilation operator. This

ensures that each term contains the same number of creation operators as annihilation opera-

tors. However, different products may be related by antisymmetry. Namely, kprk
q
s and −kpskqr

both count the same thing. To resolve this, when extracting terms from the generating func-

tions, the KMHK approach matches coefficients of antisymmetrized products of their formal

variables, such as kprk
q
s−kpskqr , instead of simply matching coefficients of the formal variables.

Our formalism avoids this entirely because {apraqs} = −{apsaqr}. Instead of the normal ordered
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logarithm that appears in our formalism, the KMHK approach uses an “antisymmetrized

logarithm” to enforce that each product of their formal variables appearing in the Taylor

series of log(1 + X) is antisymmetric. In our formalism, this is unnecessary because the

formal variables have been replaced with the fermionic second-quantized operators, which

are already antisymmetric.

In the Mazziotti approach, each formal variable is indexed by a single operator, creation or

annihilation. In that case, the formal variables are ordered in the same way as the creation

and annihilation operators used to produce the reduced density matrix. In Mazziotti’s

moment-generating function, every string of “probe variables” can be replaced with a second-

quantized operator to convert to our notation. The anticommutation of the probe variables

so JpJqJ
†
sJ
†
r = −JqJpJ†sJ†r is just the familiar equation in our formalism, apqrs = −aqprs. That

the probe variables are ordered so that the ones associated with creation operators are on

the left of those with annihilation operators again is more naturally stated in our formalism

as {apraqs} = apqrs. In Mazziotti’s approach, a traditional exponential is used rather than a

normal ordered one. However, the multiplication used by Mazziotti’s approach is not that

of a second-quantized operator product, but multiplication of formal variables. Further,

different orderings of the operator are not treated as distinct, so JpJqJ
†
sJ
†
r and JpJ

†
rJqJ

†
s are

treated as the same. This is again the behavior of the more familiar normal ordering our

formalism uses, apqrs = {apraqs}. However, we reiterate that Mazziotti’s formalism generates

terms with different numbers of creation and annihilation operators that must eventually

vanish. This does not occur in our formalism, which is particle-conserving from the start.

So we see that both previous formalisms can be understood in terms of our simplified

cumulants.

3.4 Probabilities and the RDM Cumulant

The arguments of the preceding sections establish that the cumulants are a fundamentally

combinatorially entity that describe additive separability from multiplicative separability.
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This has different forms for probabilities compared to fermionic quantities because they have

different notions of multiplicative separability. Probabilistic cumulants have probabilistic

significance only because they are polynomials in expectation values, which themselves have

combinatorial significance. Accordingly, we revisit and correct the claims of Hanauer and

Köhn24 that there is a probabilistic interpretation of the RDM cumulant.

Hanauer and Köhn concluded that “in a natural orbital basis, the diagonal elements of

λn are in fact the covariances of the occupation numbers of n spin orbitals” and stated that a

paper by Kong and Valeev19 made the same conclusion. The actual conclusion of Kong and

Valeev was limited to the special cases of λ2 and λ3, but conspicuously made no statement

for λn of higher ranks. For ranks higher than 3, the statement is false.

Hanauer and Köhn correctly claimed that a diagonal RDM element, where the creation

and annihilation operators are the same, can be interpreted as the probability that the

relevant orbitals are simultaneously occupied. We can thus say γpp = m(p), γpqpq = m(pq), and

so forth. Let us then take the RDM cumulant, λ, and see if it agrees with the probabilistic

cumulant we obtain by regarding RDMs as probabilistic quantities, κ.

For the two-electron case, we have λpqpq = γpqpq−γppγqq+γpqγ
q
p and κ(pq) = m(pq)−m(p)m(q).

The two cumulants λ and κ disagree by the non-diagonal terms. If we choose our orbitals to

be the natural spin orbitals, γ1 is diagonal by definition, so γpq and γqp vanish, and the two

formulas then agree. The same argument shows equality for the λ3 case. However, for λ4,

the argument fails because the RDM cumulant will contain terms such as −γpqrsγrspq , which

cannot be assumed to vanish. The RDM cumulant then disagrees with the probabilistic

cumulant of the probabilistic interpretation of the RDM.

This disagreement is unsurprising from the framework of this article. The functional

forms for the RDM cumulant, (3), and the probabilistic cumulant, (15), differ precisely by

such terms. These represent valid multiplicative separations for fermionic quantities, which

have n creation and n annihilation indices, but not for expectation values of variables, which

simply have n variables.
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Hanauer and Köhn further attempted to give a probabilistic interpretation for off-diagonal

RDMs but struggled to make sense of negative RDM elements. The situation is in fact worse.

The second quantized operators of off-diagonal RDMs are non-Hermitian. These quantities

may be complex numbers, which cannot be a probability. For example, consider the hydrogen

atom RDM element, 〈p+1| apxpy |p+1〉 = i
2
.

Accordingly, we reject claims of a general probabilistic interpretation of the RDM cu-

mulant. The similarities between RDM cumulants and probabilistic cumulants should be

understood on the basis that they solve very similar problems of constructing an additively

separable quantity from a multiplicatively separable one using very similar techniques.

4 Generalized Normal Ordering

Lastly, we present the GNO formalism1–5 motivated by considering why RDM cumulants

appear here. In brief, RDM elements appear so that the expectation values of normal ordered

second-quantized operators (which will themselves be RDM elements) vanish. Cumulants

then appear either by asking for the RDM to be broken into size-consistent pieces, or by

generalizing the contraction patten of single-reference normal ordering, as we show in Section

4.1. While the use of cumulants over RDMs simplifies the remaining theorems discussed in

Sections 4.2 and 4.3, these results have little to do with cumulants in particular but follow

from the contraction pattern.

4.1 Wick Expansion

We seek to generalize the familiar single-reference Wick Theorem,12,13 which says that an

arbitrary string of creation and annihilation operators can be expanded into a scalar and a

linear combination of operator strings “normal ordered” with respect to Φ, meaning their

expectation value for wavefunction Φ is zero. We do so in two steps: we generalize this for

vacuum-normal operator strings, and then extend this result to arbitrary operator strings.
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First, let us assume a vacuum-normal operator string. In any such expansion, the scalar

must be the expectation value of the string because all other terms in the expansion have

zero expectation value. If the operator is particle-conserving, this expectation value is an

RDM element; otherwise, it is zero.

Now, in the single-reference formalism, we write the scalar term as the sum of all possible

“contractions.” Contractions take a creation operator and an annihilator operator into a size-

consistent tensor element, and multiple contractions are allowed. If we want size-consistent

contractions in GNO, we must perform a cumulant expansion of the RDM, per (13), and say

that each contraction is a cumulant. Accordingly, the rules for which contractions are allowed

are dictated by the possible cumulant patterns in Equation (13). Multiple contractions are

still allowed, but contractions now may take n creation and n annihilation operators for

any n. As usual, there is a sign factor associated with anticommuting operators to bring

operators together for a contraction.

Alternatively, we could have started by generalizing the rule that the scalar term is the

sum of all possible complete contractions. If we equate this to the RDM, we find that

when trying to normal-order a string of two creation and two annihilation operators, the

contractions only treat the product of 1RDMs, and another contraction will be needed for

the remainder, the cumulant. In this way, we also arrive at the fact that contractions are

cumulants, multiple contractions remain allowed, and contractions must be able to take n

creation and n annihilation operators. This was the heart of the approach with convolu-

tions and Hopf algebras by Brouder and coworkers,59 although they did not recognize the

importance of the cumulants.

Writing a creation or annihilation operator as q̂, we can write the Wick expansion of a
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vacuum normal operator as

q̂pq̂q q̂rq̂q q̂sq̂tq̂u... = {q̂pq̂q q̂rq̂q q̂sq̂tq̂u...}+
∑
{q̂pq̂q q̂rq̂sq̂tq̂u...}+

∑
{q̂pq̂q q̂rq̂sq̂tq̂u...}

+
∑
{q̂pq̂q q̂rq̂sq̂tq̂u...}+

∑
{q̂pq̂q q̂rq̂sq̂tq̂u...}+

∑
{q̂pq̂q q̂rq̂sq̂tq̂u...}+

∑
{q̂pq̂q q̂rq̂sq̂tq̂u...}+ ...

(16)

where the sums range over all possible contractions, and there can be any number of con-

tractions, and contractions can connect n creation and n annihilation operators for n. At

this point in the argument, contractions are defined by apaq = λpq , a
paqasar = λpqrs, and so

forth. As usual, there is a permutational sign factor to bring non-adjacent operators in the

string together. It is also possible to define a “quasi-normal order” where (16) holds, but the

contractions are not RDM cumulants. Then it will not be true that the normal-ordered op-

erators have zero expectation value with respect to Ψ, as only cumulants have this property.

For now, we shall note that (16) alone is needed for all the remaining proofs.

Before proceeding to the general case, let us confirm that our procedure defined on

operator strings is well-defined on operators. There are two ways by which different strings

can refer to the same operator: the use of anticommutation relations and expanding one

orbital as a linear combination of others. The only way to use anticommutation relations on

a vacuum-normal order string to get another vacuum-normal order string is to anticommute

creation and annihilation operators, so we need to check orbital invariance and antisymmetry.

Both of these properties can be shown by a straightforward recursion on the minimum

of the number of creation operators and the number of annihilation operators, assuming

contractions are antisymmetric and orbital invariant. For RDM cumulants, they are.

Now let us define the Ψ-normal Wick expansion of an arbitrary operator by first bringing

it into vacuum-normal order and then bringing the resulting operators into Ψ-normal order

using (16). We are composing two maps that obey the anticommutation relations and

are orbital invariant, so our final result obeys the anticommutation relations and is orbital

invariant.
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Our expansion still has the form of (16), but more contractions are possible. First, it is

possible to have a contraction if creation operators are not all left of annihilation operators,

by reordering them in the transformation to vacuum-normal ordering and then contracting

them. This introduces contractions such as apasa
qar = −λpqrs. Second, the contractions of

vacuum-normal ordering must also be accounted for. We do this by adding the Kronecker

delta from the vacuum normal contraction to the contraction from applying (16) after the

vacuum normal ordering step, so we have aqa
p = −λpq + δpq .

We also note that a Ψ-normal ordered operator is antisymmetric with respect to any

permutation of the operators in the operator string inside the normal ordering. This property

is inherited from the vacuum-normal ordering.

4.2 Ψ-Normal from Vacuum-Normal

It remains to derive the rule for taking products of GNO operators, the analogue of what

is usually called the Generalized Wick Theorem. Because we are already in Generalized

Normal Ordering, we follow Mukherjee,4 Evangelista,5 and their coworkers in instead calling

it the extended generalized Wick Theorem. Our derivation in Section 4.3 requires a lemma,

the formula for a Ψ-normal ordered operator in terms of vacuum normal ordered operators.

We are not aware of any previous presentation of this formula in the literature.

First, we will use the freedom to reorder the operators inside a Ψ-normal operator op-

erator to place all creation operators left of annihilation operators, in vacuum-normal order

form. Then

{...a†pa†qa†rasatau...} = ...a†pa
†
qa
†
rasatau...−

∑
...a†pa

†
qa
†
rasatau...−

∑
...a†pa

†
qa
†
rasatau...

−
∑

...a†pa
†
qa
†
rasatau...+

∑
...a†pa

†
qa
†
rasatau...+

∑
...a†pa

†
qa
†
rasatau...−

∑
...a†pa

†
qa
†
rasatau...+ ...

(17)

where a term with c contractions has phase (−1)c, and all contraction patterns appear in
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the sums. We prove this by induction on the minimum of the number of creation operator

and annihilation operators, n. In the base case n = 0, no contractions are possible, and (17)

reduces to (16).

We proceed to prove the case of n = k + 1 if (17) holds for all cases from 0 to k. We

can rewrite (16) to reflect that our terms are vacuum-normal ordered and then solve for the

completely normal ordered term to give:

{...a†pa†qa†rasatau...} = ...a†pa
†
qa
†
rasatau...−

∑
{...a†pa†qa†rasatau...} −

∑
{...a†pa†qa†rasatau...}

−
∑
{...a†pa†qa†rasatau...} −

∑
{...a†pa†qa†rasatau...} −

∑
{...a†pa†qa†rasatau...} −

∑
{...a†pa†qa†rasatau...} − ...

(18)

All the normal ordered terms on the right-hand side are previous cases in the induction, so

we substitute in (17) and collect the terms with t contractions. Given a particular set of

t contractions, it can be produced by any term in the right-hand side of (18) that has less

than t explicit contractions. The remaining contractions will be supplied by substituting

(17). Let the number of explicit contractions be denoted o. There are
(
t
o

)
ways to choose

which of the t contractions come from the substitution, giving a sign factor of (−1)t−o. Thus,

the overall coefficient of our set of t contractions is

−
t∑

o=1

(1)o(−1)t−o
(
t

o

)
= −

(
(1− 1)t − (−1)t

)
= (−1)t (19)

by binomial expansion. All terms with a product of t contractions appear with coefficient

(−1)t. This proves (17).

4.3 Extended Generalized Wick’s Theorem: Products

We now prove the Extended Generalized Wick Theorem:

{A}{B} = {AB}+
∑
{AB} (20)
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where the sum is over all repeated contractions, provided each contraction contains at least

one operator from both A and B.

Our strategy is to expand the GNO operators into vacuum normal operators with (17),

multiply them, and then convert the result back into GNO operators with (16). This is

similar in concept to the proof of Kong, Nooijen, and Mukherjee,3 but (17) allows a much

simpler proof.

Take two Ψ-normal operators, A andB. The expansion via (17) sums over all contractions

on only one term, with a sign factor. We call these internal contractions. When we multiply

and convert the result back using a Wick expansion, we sum over all possible contractions.

This includes contractions of operators from both A and B, called cross-contractions. So the

result is a sum over all possible contraction patterns with some coefficient. Let us choose a

particular contraction pattern and find its coefficient.

Suppose our contraction pattern has i internal contractions and c cross-contractions. The

cross-contractions must occur during the Wick expansion (16), but the internal contractions

may originate from (16) or (17). (16) always contributes a sign factor of 1, but the terms

with n contractions from (17) contribute a sign factor of (−1)n. Further, there are
(
i
f

)
ways

to choose which f internal contractions come from (16). So our total coefficient is

i∑
f=0

(−1)f (1)

(
i

f

)
(21)

We can change the exponent of 1 arbitrarily to i−f to apply a binomial expansion again

and get

i∑
f=0

(−1)f (1)i−f
(
i

f

)
= (1− 1)i =


1 i = 0

0 else

(22)

In other words, all contraction patterns happen exactly once, which contain no internal

contractions. This is precisely the Extended Generalized Wick Theorem, (20).
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As first observed by Kong, Nooijen, and Mukherjee,3 the fact that the contractions

are cumulants plays little role in the proof. All that we require is (16), from which (17)

follows and then (20). Contractions can be defined in a largely arbitrary manner and still

maintain these properties, although care should be taken to ensure that orbital invariance and

antisymmetry are preserved. This freedom has been used by Evangelista and coworkers60,61

to define a variant of GNO where the contractions are the “cumulants” of a density matrix

for an statistical ensemble of electronic states, for multistate chemistry.

Suppose the contractions are chosen exactly as in the “canonical” GNO, where the sum

of all contractions of n creation and n annihilation operators equal some tensor on those

operators. By the logic of Section 2, as long as that family of tensors is multiplicatively sep-

arable with respect to some partition, the resulting contractions will be additively separable

with respect to it. So even in this more general setting, contractions can quite generally be

size-consistent.

5 Conclusions

Despite the importance of reduced density matrix cumulants, we believe that longstanding

questions regarding what they are have discouraged their use in new electronic structure

theories. This research has answered them. In particular:

1. We have provided a simplified definition of reduced density matrix cumulants and a

generating function to provide explicit formulas for them. We have shown that this is

mathematically no more complicated than the familiar exponential relation between

configuration interaction amplitudes and coupled cluster amplitudes. Furthermore,

our definition begins not from obscure mathematics but the intuition that a reduced

density matrix cumulant is the “size-consistent part” of a reduced density matrix. The

approaches of Mazziotti and coworkers26 as well as Kutzelnigg, Mukherjee, Hanauer,

and Köhn24,25 are shown to reduce to our solution. Of special importance is the fact
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that this our solution is a general prescription to convert between multiplicative and

additive separability for fermionic quantities, which can be of use to novel electronic

structure methods.

2. Interpretive issues of cumulants have been resolved. The analogy between RDM cu-

mulants and the probabilistic cumulants is based on the fact that they are both com-

binatorial objects to solve the problem of converting from multiplicative to additive

separability. No further probabilistic meaning of the reduced density matrix cumu-

lants is expected, and arguments to the contrary24 have been refuted. In addition, our

definition of cumulants via axioms provides a way to confirm the additive separability

of cumulants from their polynomial form and understand why, for some approximate

theories, the cumulants are not additive separability. This gives an elementary way to

confirm size-consistency from any seemingly ad hoc definition.

3. We have also presented the shortest proof in the literature to date of the difficult

Generalized Normal Ordering formalism to explain why cumulants appear there and

make it more accessible for multireference theories, one of the most pressing problems

in electronic structure theory. The key theorems are shown to follow from binomial

expansions combined along with the form of allowed contractions in the formalism. In

the original Generalized Normal Ordering formalism where normal ordered operators

are required to have zero expectation value against some wavefunction, this form of the

contractions is just the cumulant expansion of the RDMs. More general formulations

are possible and have even been shown to be quite useful,60,61 and we have shown that

the contractions will remain additively separable if the expectation value and RDMs

is replaced with some other multiplicatively separable family of tensors.
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A Cumulants by Low-Level Combinatorics

To illustrate how the exp and log functions solve the combinatorial problem given in our

axiomatic definition of the RDM cumulant (or any other additively separable quantity), we

solve it without generating functions by combining the axioms of Percus34 and Simon37 with

the Möbius inversion of Speed.62 In brief, suppose a set where some elements are said to

be greater than others, or more precisely, a partially ordered set. We denote this abstract

“greater than” relation with ⊇. Mathematicians prefer to use ≥, but the symbol ⊇ suggests

the specific relation we will use. Then given an equation of form

∑
x:y⊇x

f(x) = g(y) , (23)

Möbius inversion solves for f as a linear combination of the g by

∑
x:y⊇x

g(x)µ(x, y) = f(y) (24)

where the function µ is determined by the recursion relations

∑
x:z⊇x⊇y

µ(y, x) = δy,z (25)

and

∑
x:z⊇x⊇y

µ(x, z) = δy,z (26)

Equations (25) and (26) show that the values of µ depend on the set and the rules governing

which elements are greater than others.

Readers interested in a detailed mathematical treatment of Möbius inversion are directed

to Chapter 16 of reference 63, Chapter 8 of reference 47, Chapter 3 of reference 58, Chapter

3 of reference 64, and reference 65. We especially recommend reference 63.
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We shall use the following facts about the set of fermionic partitions:

1. Given any two fermionic partitions ρ, σ, ρ ⊇ σ means that each block of σ is contained

in a block of ρ. This ⊇ is a partial order, which means that we may use Möbius

inversion. Figure 1 demonstrates this for a rank-two tensor.

2. Given any fermionic partition of n creation and annihilation operators, arbitrarily

pair up creation and annihilation operators, and assign each pair to one of n distinct

symbols. Then any fermionic partitions where each operator in the pair is in the same

block can be mapped to a partition of n sets. Furthermore, if all pairs are in the same

block for σ, all pairs will also be in the same block for any ρ where ρ ⊇ σ. By this

map between fermionic partitions and set partitions, the set of π where ρ ⊇ π ⊇ σ has

exactly the same ⊇ (partial order) structure as some subset of the set of partitions of n

objects, which is known as the partition lattice. An example of this is shown in Figure

2. By this trick, if we show a statement is true on some subset of the partition lattice,

we can show it is true for any “counterpart” of that subset in the fermionic lattice.

3. Suppose ρ ⊇ σ and block i of ρ is split into bi blocks in σ, then

µ(σ, ρ) =
∏
i

(−1)bi−1(bi − 1)! . (27)

The same property holds on the set of fermionic partitions, because the recursions that

determine µ, (26) and (25), depend only on the structure of the partially ordered set,

which is the same between the two sets by Point 2.

This property of the partition lattice is shown in Example 16.17 combined with Theo-

rem 16.4 of Reference 63, proved in two ways in Example 3.10.4 of Reference 57 and

Examples 3.3.4 and 3.5.5 of Reference 64, then proved in two more ways in Sections

16 and 18 of Reference 65.

4. Let ρ ∧ π denote the partition in the partition lattice whose blocks are obtained by
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intersecting the blocks of ρ and π. For any σ and for any π other than S:

∑
ρ:ρ∧π=σ

µ(ρ,S) = 0 . (28)

This is proven in the course of Theorem 16.5 of reference 63 and by more sophisticated

arguments in Proposition 3.5.4 of reference 64 and Corollary 3.9.3 of reference 57.

By the trick of Point 2, a very similar property holds for the fermionic partitions:

∑
ρ:ρ,π⊇σ,ρ∧π=σ

µ(ρ,S) = 0 . (29)

Now, suppose a polynomial satisfying the fermionic axioms. It must have the form of

(3). Consider an arbitrary fermionic partition, π.

For most fermionic partitions, π has multiple blocks. Factorize every C(ρ) in (3) so each

tensor contains only indices of a single block of π. Given a partition, σ, the new coefficient

of C(σ) after this factorization by π is

µσ,π =
∑

ρ:ρ,π⊇σ,ρ∧π=σ

µρ . (30)

By the third axiom, for any such π, our polynomial is identically zero. Therefore, each

coefficient must equal zero.

µσ,π = 0 (31)

Choosing the coefficients c so that (31) is satisfied is necessary and sufficient to define our

cumulant. When σ = π, (30) simplifies to

µπ,π =
∑
ρ:ρ⊇π

µρ (32)
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Combining (31) and (32) yields ∑
ρ⊇π

µρ = 0 (33)

which is the equation (4) derived in the body of the article.

The above discussion has assumed π consists of multiple blocks, so we may apply the

connectedness axiom. If π consists of only one block, π = S, and the connectedness axiom

does not apply, but
∑
ρ⊇π

µρ = µS = 1 by the normalization axiom.

In either case, we require

∑
ρ⊇π

µρ = δπ,S . (34)

But this equation is just (26) when z = S, which is precisely the recursion that determines

µ(ρ,S). Using (27), we may immediately conclude

µσ = µ(ρ,S) = (−1)#ρ−1(#ρ− 1)! (35)

where #ρ is the number of blocks of ρ. This is precisely in agreement with (13)

While (35) is necessary, the connectedness axiom still requires that (31) holds. With a

formula for the coefficients just derived, (31) reduces to

∑
ρ:ρ,π⊇σ,ρ∧π=σ

µ(ρ,S) = 0 . (36)

This equation is merely (29) and is thus guaranteed to hold. We have therefore shown a

polynomial satisfying the fermionic additively separability axioms exists and is unique, and

we have determined its coefficients by (35). This polynomial is the probabilistic cumulant.

With Möbius inversion, we can straightforwardly invert our formula to convert multi-

plicative separability to additive separability and obtain a formula for a multiplicatively

separable quantity as a polynomial in additively separable ones. Given fermionic partition

π, we may substitute the cumulant formula just found for the cumulants appearing in the
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product T (π). We find

T (π) =
∑
π⊇ρ

C(ρ)µ(ρ, π) (37)

but this is just (24) with f(y) = T (y) and g(x) = C(x). Because (24) is equivalent to (23),

we have

C(π) =
∑
π⊇ρ

T (ρ) (38)

which is equivalent to relation (14). We have now derived the relations between probabilistic

moments and cumulants entirely from combinatorics and the axiomatic definition.

The reader may wonder what any of this has to do with the exp and log functions of

Section 2. The answer is that taking log of an exponential generating function precisely

corresponds to performing Möbius inversion of the partition lattice, and taking exp of an

exponential generating function undoes the Möbius inversion on the partition lattice, or

sums over all partitions. (This is made precise by Theorem 5.1.11 and Example 5.1.13 of

Reference 58.) As evidence of this, observe that the Taylor-series expansion coefficients of

the log-series are precisely (35) when #ρ is replaced with the degree of the coefficient. We

expect a similar relation holds for the set of fermionic patterns and “generating functions”

based on the normal ordered exponential.

The use of generating functions entirely avoids this otherwise tedious and non-obvious

problem of Möbius inversion.
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