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Abstract 

There is an urgent need for a new drug against COVID-19. Since designing a new drug and 
testing its pharmacokinetics and pharmacodynamics properties may take years, here we used a 
physics-driven high throughput virtual screening drug re-purposing approach to identify new 
compounds against COVID-19. As the molecules considered in repurposing studies passed 
through several stages and have well-defined profiles, they would not require prolonged pre-
clinical studies and hence, they would be excellent candidates in the cases of disease 
emergencies or outbreaks. While the spike protein is the key for the virus to enter the cell though 
the interaction with ACE2, enzymes such as main protease are crucial for the life cycle of the 
virus.  This protein is one of the most attractive targets for the development of new drugs against 
COVID-19 due to its pivotal role in the replication and transcription of the virus. We used 7922 
FDA approved small molecule drugs as well as compounds in clinical investigation from NIH 
Chemical Genomics Center (NCGC) Pharmaceutical Collection (NPC) database in our drug 
repurposing study. Both apo and holo forms of target protein COVID-19 main proteases were 
used in virtual screening. Target proteins were retrieved from protein data bank (PDB IDs, 
6M03 and 6LU7). Standard Precision (SP) protocol of Glide docking program of Maestro was 
used in docking. Compounds were then ranked based on their docking scores that represents 
binding energies. Top-30 compounds from each docking simulations were considered initially 
in short (10-ns) molecular dynamics (MD) simulations and their average binding energies using 
collected 1000 trajectories throughout the MD simulations were calculated by Molecular 
Mechanics Generalized Born Surface Area (MM/GBSA) method. Selected promising hit 
compounds based on average MM/GBSA scores were then used in long (100-ns) MD 
simulations. These numerical calculations showed that the following 6 compounds can be 
considered as COVID-19 Main Protease inhibitors: Lasinavir, Brecanavir, Telinavir, 
Rotigaptide, 1,3-Bis-(2-ethoxycarbonylchromon-5-yloxy)-2-(lysyloxy)propane and 
Pimelautide. 
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Introduction 
 
Coronaviruses (CoVs) are the family of viruses containing single-stranded RNA (positive-
sense) which is encapsulated by a membrane envelope. They are classified in the Nidovirales 
order, Coronaviridae family, which is comprised of two sub-families and about 40 known 
species. These species are divided and characterized into four gene era (alpha, beta, gamma and 
delta), and only the alpha and beta- strains are identified to be pathogenic to human and other 
mammals 1, 2. Before 2019, six coronaviruses were known to cause respiratory and enteric 
diseases in humans, especially the two of them belonging to betaviruses cause severe illness: 
SARS (Severe Acute Respiratory Syndrome)-CoV and MERS (Middle East Respiratory 
Syndrome)-CoV. A novel coronavirus is discovered in Wuhan, China in late 2019, and 
officially named as SARS-CoV-2 (formerly 2019-nCoV) due to its genomic similarity to 
SARS-CoV 1-4. The disease caused by this virus is officially named as Coronavirus Disease 
2019 (COVID-19) by World Health Organization (WHO). Like SARS- and MERS-CoVs, 
SARS-CoV-2 mostly affects the lower respiratory tract to cause pneumonia, and may also affect 
the gastrointestinal system, kidney, heart and central nervous system, with the common 
symptoms including fever, cough and diarrhea5. On 11th of March 2020, WHO declared the 
COVID-19 as pandemic. The first emergence of the virus was witnessed at the penultimate days 
of 2019 as pneumonia concentrated in Wuhan, China. The outbreak in China was then spread 
very quickly to the other countries and as of 23rd March 2020, more than 300,000 individuals 
have been infected by SARS-CoV2 virus and it is expected that the numbers will increase in 
the following months. Thus, drugs and vaccines are highly in demand to control the outbreak. 
The genomic sequence of SARS-CoV-2 is available (GenBank ID: MN908947.3) and the initial 
analyses indicate that the sequence similarity of around 80% and sequence identity of more than 
90% with the different essential enzymes found in SARS-CoV. Furthermore, the catalytic sites 
of the four key enzymes that could be the antiviral targets are vastly conserved between two 
coronaviruses6. SARS-CoV-2 is also reported to have the same cell-entry receptor for infection, 
ACE2 (Angiotensin-Converting Enzyme 2), as SARS-CoV 7, 8. The genome of SARS-CoV-2 
encodes for different proteins and important ones are 3-chymotrypsin-like protease (3CLpro), 
main protease, papain-like protease, helicase, and RNA-dependent RNA polymerase which 
construct the non-structural proteins and spike glycoproteins which belong to structural proteins 
2,9. While the spike protein is the key for the virus to enter the cell though the interaction with 
ACE2, enzymes such as main protease are crucial for the life cycle of the virus.  This protein is 
one of the most attractive targets for the development of new drugs against SARS-CoV2 due to 
its pivotal role in the replication and transcription of the virus. One of the advantages of 
targeting this protein is that although the mutagenesis rate is high in viruses, not many happens 
in this protein since any mutation here can be lethal for the virus.  
There are around 20 3D protein structures for SARS-CoV-2, mostly for the main protease 
structure in apo- and holo- states, resolved via X-ray diffraction or cryo-electron microscopy, 
deposited and available in Protein Data Bank (RCSB PDB). In silico studies related to main 
protease are increasing in terms of protein-inhibitor interactions and drug screening10,11. For a 
broad review of additional background, patents, developments and perspectives in COVID-19 
and other diseases related to coronavirus, the reader is referred to see 7.  
The phenomenon known as drug repositioning or repurposing has gained attention as the 
development of new drug starting from the beginning becoming more costly in respect to both 
time and resources required.12-15 Established favorable toxicological, pharmacokinetic and 
pharmacodynamic properties of approved/clinical  drug molecules make them suitable to be 
used for new indications.16-19 As the molecules considered in repurposing studies passed 
through several stages and have well-defined profiles, they would not require prolonged pre-
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clinical studies and hence, they would be excellent candidates in the cases of disease 
emergencies or outbreaks.20-21 Drug repurposing studies have already been conducted for 
various kind of diseases (review articles for different diseases16, 21-24). Thanks to repositioning 
studies, different compounds have been found new usages than their original purposes21, 25  even 
tough they have been failed in their original purpose and/or withdrawn from the market.26 

Computational approaches such as virtual screening would decrease the times required for the 
identification of new targets for the existing drug molecules with the advantage of also being 
cost-efficient as demonstrated in review articles. 18, 25, 27  
In our group, virtual screening of different ligand databases including FDA approved drugs 
have been performed vastly in recent years by an in-house script and it is shown that the 
obtained results by this screening algorithm which is a hybrid algorithm of ligand- and target-
driven based screening techniques gave successful results.28-32 Thus, in the current study, this 
hybrid algorithm is applied for the identification of approved compounds against COVID-19 
main protease enzyme. 
 
Results and Discussion 
 
Main protease has been studied by different groups to find inhibitors capable of halting this 
enzyme activity and consequently the reproduction of the virus. After the SARS outbreak at 
2003 many researches were conducted to target the main protease of the SARS-CoV. Chen et 
al. utilized screening approaches using a 3D model of SARS-CoV 3CLpro to screen the MDL-
CMC database that contains 8.000 compounds33. Cinanserin was among the high-ranked final 
compounds for which in vitro studies were performed. The proteolytic activity of the enzyme 
was shown to be inhibited by 70 to 90% at 50 to 100 µM of Cinanserin 34.  
In a study performed by Liu et al.35 homology modeling was used to construct a model of main 
protease since SARS 3CLPro was not publicly available at the time of the work. Then virtual 
high throughput screening was performed using different chemical libraries including The 
National Cancer Institute Diversity Set (230.000 compounds total), ACD-3D (Available 
Chemical Database, Release: ACD 3D 2002.2, 280.000 compounds in total), and MDDR-3D 
(MDL Drug Database Report, Release: MDDR 3D 2002.2, 120.000 compounds in total). The 
final hits (40 compounds) were further tested in vitro to check the inhibition activity, and 3 of 
them were found to inhibit the protease activity up to 40%. C3930 or calmidazolium which is 
the antagonist of calmodulin was found as the best hit with the highest inhibition activity35.  
After the recent outbreak of SARS-CoV2, many research groups have started to use screening 
methods to search for the inhibitors of main protease. In a recent paper, Li et al.36  have screened 
8.000 molecules including the approved or experimental compounds and small molecules 
derived from DrugBank. The protease protein with the PDB ID 5N5O was used as target. 
Compounds showing better affinity than -7.7 kcal/mol were selected as hits and experimentally 
unapproved ones, as well as those with strong side effects were removed from the list. The list 
was even shortened considering the marketability of the molecules. Prulifloxacin, Bictegravir, 
Nelfinavir and Tegobuvi are finally selected molecules 37.  In a research conducted by Chen et 
al.38 apo-enzyme structure of SARS-CoV (PDB ID: 2DUC) was used to build a model for the 
main protease of SARS-Cov2 and MTiOpenScreen web service9 was used to screen for 
purchasable drugs (Drugs-lib). The library has 7.173 compounds. Autodock Vina39 was used to 
screen the active site at chains A and B and finally 10 and 11 drugs were selected for these 
chains based on the energy cut-off.37 Another recent study conducted by Jin et al.40 targeted the 
main protease as well. This group found some promising compounds by combining structure-
based drug design approaches with screening methods. In vitro cell-based assays showed the 
high inhibitory effect of the finally chosen compounds on the target enzyme and antiviral 
activities. Virtual screening studies were performed by Jin et al.40 using a model constructed 
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based on the crystal structure of COVID-19 Mpro in complex with N3 inhibitor (PDB ID: 6LU7). 
An in-house library containing potential binding compounds was used. Cinanserin was found 
as the best binding affinity to the substrate-binding pocket of the enzyme, and in vitro studies 
showed an IC50 of 124.93 µM 40. This compound that is an antagonist of serotonin was 
previously found to inhibit SARS-CoV 34. Fluorescence Resonance Energy Transfer (FRET)-
based high-throughput screening resulted in the finding of some FDA-approved drugs 
(disulfiram and carmofur) and other compounds which are in preclinical/clinical trial (ebselen, 
TDZD-8, shikonin, tideglusib, and PX-12).40 
 
In the present study, we used 7922 compounds from NIH Chemical Genomics Center (NCGC) 
Pharmaceutical Collection (NPC)  database (https://tripod.nih.gov/npc/) and in order to 
eliminate the non-specific binders, some criteria including molecular weight, between 100 to 
1000 g/mol; number of rotatable bonds,  <100; number of atoms, between 10 and 100; number 
of aliphatic and aromatic rings,  <10; number of hydrogen-bond acceptor and donors, <10 were 
set and as a result the total number of compounds was decreased to 6654. These 6654 
compounds were then docked to the binding cavities of apo (PDB, 6M03) and holo (PDB, 
6LU7) forms of COVID-19 main protease enzyme. (Figure 1) In docking, standard precision 
(SP) protocol of Glide docking module of Schrodinger software was used. Tables S1 and S2 
show the top-100 docking scored compounds based on the docking scores at the COVID-19 in 
holo and apo forms, respectively. Although recent studies have suggested that docking is a 
successful approach for selecting hits, since in the docking flexibility of both protein residues 
and docked ligand are not fully considered, ordering of compounds only by their corresponding 
docking scores may not potentially lead to the correct ranking of compounds. Moreover, 
although molecular docking studies may give an initial insight into protein-ligand interactions, 
it is always crucial to understand the maintenance of these interactions and perform dynamical 
studies such as molecular dynamics (MD) simulations. Therefore, we selected top-30 
compounds from each docking simulations and initially performed short (10-ns) MD 
simulations for these complexes (in total 600-ns MD simulations via Desmond). An in-house 
script was used for the preparation of simulation boxes as well as for the analysis of MD 
simulations. Desmond was used in MD simulations. Tables S3 and S4 represent average 
MM/GBSA scores using collected 1000 trajectory frames of selected 30 compounds from both 
holo- and apo- based simulations, respectively. We also performed MD simulations for the co-
crystallized ligand-bound structure using the same MD protocol for screening compounds. 
Figure S1 shows protein-ligand interaction diagram. The figure includes a timeline 
representation of the interactions and contacts (H-bonds, hydrophobic, ionic, water bridges) 
representing which residues interact with the ligand in each trajectory frame. Interactions that 
occur more than 15.0% of the simulation time in the selected trajectory (0.00 through 100.00 
ns), are shown. The stacked bar charts are also normalized over the course of the trajectory (i.e., 
a value of 0.5 suggests that 50% of the simulation time the specific interaction is maintained). 
Results showed that the following residues are crucial for ligand binding: Thr26, His41, Met49, 
Asn142, His164, Glu166, Gln189, Thr190 and Gln192. Several water bridges and hydrogen 
bonding interactions dominate the interaction constructed from Glu166. The interaction 
between this residue and the screened compounds was also checked. Average MM/GBSA 
scores of co-crystallized ligand N3 from long MD simulations was found as -89.34 ± 7.68 
kcal/mol. Thus, we forwarded compounds that have better average MM/GBSA scores than a 
cutoff value (-70.0 kcal/mol) from short MD simulations to long MD simulations. (Table 1) 
Interestingly, while 9 compounds identified using target retrieved from holo-state were fitting 
this cutoff, only 1 compound was found from database screened at apo-state.  Long (100-ns) 
MD simulations were performed for these identified 10 hits and average MM/GBSA scores 
were calculated using 1000-trajectory frames throughout the simulations. Table 1 also shows 
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the corresponding mechanism of actions of identified compounds. Average MM/GBSA scores 
show that following 6 compounds: Rotigaptide, Lasinavir, Pimelautide, 1,3-Bis-(2-
ethoxycarbonylchromon-5-yloxy)-2-(lysyloxy)propane, Telinavir and Brecanavir have 
significant MM/GBSA scores, and throughout the MD simulations the interaction between 
these compounds and the crucial residues of the target were maintained. (Figures S2-S11). 
Other selected compounds from short MD simulations such as Arzoxifene and Truxicurium 
could not maintain their initial crucial interactions during the simulations. 
Identified compound Rotigaptide is a drug under clinical investigation for the treatment of 
cardiac arrhythmias – specifically atrial fibrillation. Crucial residue interactions were formed 
by Thr26, His41, Phe140, Leu141, Gly143, Ser144, Met165, Glu166, Gln189, Thr190 and 
Gln192. (Figure S5) Three of the identified inhibitors are HIV-1 protease inhibitors (Lasinavir, 
Telinavir and Brecanavir). While Thr26, His41, Met165 and Gln189 were crucial residues in 
the enzyme inhibition for Lasinavir, corresponding residues were His41, Ser46, Glu166 and 
Gln189 for Brecanavir (Figures S2 and S3). Telinavir mainly constructs interactions with 
Leu141, Asn142, Gly143, Ser144, Cys145 and Glu166. (Figure S8) Pimelautide is an 
immunostimulant and its built-in adjuvants are associated with an HIV-1-derived peptide.  The 
observed crucial residues which are maintained the interactions with the ligand during the 
simulations were His41, Asn142, Gly143, Cys145, Glu166 and Gln189. (Figure S4) Another 
drug that we identified in this study was 1,3-Bis-(2-ethoxycarbonylchromon-5-yloxy)-2-
(lysyloxy)propane. This compound is an orally-active pro-drug of disodium cromoglycate 
(DSCG). DSCG  is a commonly used anti-asthmatic medicine. The maintained interactions with 
this drug at COVID-19 Main protease were Thr26, His41, Asn119, Asn142, Glu166, Leu167, 
Pro168, Thr190, and Gln192 (Figure S10).  
 
Conclusions 
 
In this virtual drug repurposing study, we used 7922 FDA approved drugs and compounds in 
clinical investigation from NPC database. Both apo and holo forms of COVID-19 main 
proteases were used for virtual screening. Initially, docking was performed for these compounds 
with two different PDB structures. The compounds were then sorted according to their docking 
scores which represent binding energies. The first 30 compounds from each docking 
simulations were initially subjected to short (10 ns) MD simulations, and average binding 
energies were calculated using the MM / GBSA method during MD simulations. Then, the 
selected promising hit compounds based on average MM/GBSA scores were used in long (100 
ns) MD simulations. In total around 2 µs MD simulations were performed. Both docking and 
MD simulations binding free energy calculations showed that holo form of the target protein is 
more appropriate choice for virtual drug screening studies. These numerical calculations have 
shown that the following 6 compounds can be considered as COVID-19 main protease 
inhibitors: Lasinavir, Brecanavir, Telinavir, Rotigaptide, 1,3-Bis-(2-ethoxycarbonylchromone-
5-yloxy)-2- (lysiloxy) propane and Pimelautide. These compounds can be clinically tested and 
if the simulation results validated, they may be considered to use against in COVID-19. 
 
Methods 
 
7922 compounds were downloaded from NPC database and these ligands were prepared using 
LigPrep module of Maestro at neutral pH (LigPrep, Schrodinger v.2017). In molecular docking 
we used two different proteins (apo (PDB, 6M03) and holo (6LU7) forms of COVID-19 main 
protease).  These proteins were prepared using Protein Preparation module of Maestro. 
PROPKA was used for protonation states of amino acid residues. Restrained minimization was 
performed with OPLS3 force field for the protein using 0.3 Å heavy atom convergence. 
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Docking was performed with Glide/SP using default settings. Protein-ligand complexes were 
placed in the orthorhombic boxes with explicit TIP3P water models that have 10 Å thickness 
from edge of target proteins. All systems were neutralized by adding 0.15 M NaCl solution. 
The long-range electrostatic interactions were calculated by the particle mesh Ewald method. 
A cut-off radius of 9 Å was used for both van der Waals and Coulombic interactions. 
Simulations were performed in body temperature (310 K) and 1.01325 bar. Nose-Hoover 
thermostat41 and Martyna-Tobias-Klein barostat42 was used at the simulations. The time step 
was 2 fs. The OPLS3 force field was used in simulations. Throughout the MD simulations, 
1000 trajectory frames were recorded and Molecular Mechanics Generalized Born Surface Area 
(MM/GBSA) binding free energies of compounds were calculated. VSGB 2.0 solvation model 
at Prime module of Maestro was utilized during MM/GBSA calculations.  
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Tables 
 
Table 1. Selected hit compounds based on average MM/GBSA scores from short (10-ns) MD 
simulations. Long (100-ns) MD simulations are performed for these identified hits and average 
MM/GBSA scores were calculated using 1000-trajectory frames throughout the simulations. 
Table also shows the corresponding mechanism of actions of the identified compounds. 
 

Compounds 2D Structures MM/GBSA 
(kcal/mol) 

Mechanism of Action 

Rotigaptide 

 

-86.81 

Rotigaptide (ZP-123) is a drug under 
clinical investigation for the 
treatment of cardiac arrhythmias – 
specifically atrial fibrillation. 
 

Lasinavir 

 

-80.59 

HIV Protease inhibitor 
 
 

Pimelautide 

 

-76.17 

Immunostimulant. Pimelautide Built-
in Adjuvants Associated with an HIV-
1-Derived Peptide 

 
 

1,3-Bis-(2-
ethoxycarbonylchromon-5-
yloxy)-2-(lysyloxy)propane 

 

-75.59 

Orally-active pro-drug of disodium 
cromoglycate (DSCG). DSCG  is a 
commonly used anti-asthmatic 
medicine  
 
 
 

Telinavir 

 

-74.22 

HIV Protease inhibitor 
 

Brecanavir 

 

-74.06 

Aspartic protease inhibitor for the 
treatment of HIV 
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Ociltide 

 

-67.35 

Gut motility stimulator 
 
 

Arzoxifene 

 

-62.37 

Arzoxifene is a selective estrogen 
receptor modulator (SERM) which 
antagonizes estrogen in mammary 
and uterine tissue, but acts as an 
estrogen receptor agonist in bone 
tissue. Arzoxifene reduces bone loss 
and risk of osteoperosis and 
decreases serum cholesterol. 
 
 

Tert-
amyloxycarbonyltetragastrin 

 

-61.44 

Gastric stimulant  
 
 

Truxicurium 

 

-55.42 

Ganglionic blocking agent 
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Figure 1. Around 7000 FDA approved and drugs in clinical investigation from NPC database were screened at the apo (top-left) and holo (bottom-
left) COVID-19 Main Protease target. Hierarchical hybrid screening constructed by our group led to 6 hit compounds. Surface representation of 
one the identified hit compound Rotigaptide has been shown in right.  
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Table S1. Top-100 compounds at the binding pocket of COVID-19 Main Protease crystallized 
in holo-form (PDB, 6LU7) based on Glide/SP docking scores and their corresponding docking 
scores.  

Compounds docking 
score 
(kcal/mol) 

Truxipicurium iodide -10.209 
Ametantrone -9.736 
Arzoxifene -9.405 
Tert-amyloxycarbonyltetragastrin -9.324 
mitoxantrone -9.270 
Ingliforib -9.178 
Frakefamide -9.134 
Pimelautide -9.041 
Truxicurium -9.026 
Rotigaptide -9.009 
Metkephamid -8.998 
1,3-Bis-(2-ethoxycarbonylchromon-5-yloxy)-2-
(lysyloxy)propane 

-8.926 

Mioflazinum -8.913 
Telinavir -8.903 
Alvimopan -8.899 
Ociltide -8.896 
Azimilide -8.856 
Penimepicycline -8.839 
flupenthixol -8.817 
Ioglucol -8.748 
Prezatidicupriciacetas -8.721 
Bazedoxifene -8.701 
Losoxantrone -8.684 
Brecanavir -8.678 
Xantifibrate -8.598 
Diathymosulfonum -8.548 
Ledoxantrone -8.512 
Carafiban -8.476 
Efegatran -8.461 
Iohexol -8.448 
Pipendoxifene -8.447 
Sampatrilat -8.437 
Bialamicol -8.404 
Pinoxepin -8.394 
Demecariumbromide -8.391 
Teloxantrone -8.373 
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Tetragastrin -8.352 
Bms181176-14 -8.338 
Utibapril -8.301 
Zy-15051 -8.292 
Epicainide -8.291 
Genestein -8.289 
Aspoxicillin -8.289 
Ftorpropazine -8.286 
14-Benzodioxin-2-methanolalphaalpha'-
(iminobis(methylene))bis(2 3-dihydro)- 
stereoisomer methanesulfonate 

-8.283 

Bisnafide -8.282 
Flutiazin -8.274 
Etanterol -8.270 
Mefloquine -8.269 
Proflazepam -8.263 
Imidazolidinylureamonosodium -8.256 
ritonavir -8.226 
Montirelin -8.223 
Lu-79553 -8.220 
Osutidine -8.204 
R1634 -8.204 
Pinokalant -8.196 
Piroxantrone -8.184 
Reproterol -8.175 
Tigecycline -8.165 
Alatrofloxacin -8.145 
Carbuterol -8.138 
Ibutamoren -8.136 
Solabegron -8.124 
Benzilonium -8.121 
Nofecainide -8.121 
Spiclomazinum -8.094 
Lopinavir -8.083 
Topixantrone -8.081 
taltirelin -8.080 
Terlakiren -8.068 
Rolitetracycline -8.056 
Asimadoline -8.053 
Lasinavir -8.051 
Iopamidol -8.043 
Cilengitide -8.039 
Pixantrone -8.023 
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Bamifylline -8.010 
2-Chloro-9-(3-dimethylaminopropyl)-9h-
thioxanthen-9-ol 

-8.003 

Remikiren -8.003 
Fludazoniumchloride -7.997 
Pd-196860 -7.994 
Butocrolol -7.993 
Ioversol -7.963 
5-(1-Methyl-4-piperidyl)-5h-
dibenzo[ad]cyclohepten-5-olhydrochloride 

-7.963 

Ioxilan -7.952 
Glufosfamide -7.950 
Moditenenanthate -7.947 
posaconazole -7.945 
2-[Benzyl(tert-butyl)amino]-1-(a4-dihydroxy-m-
tolyl)ethanol 

-7.938 

Alpiropride -7.934 
Flecainide -7.933 
Ambamustine -7.932 
Ra-233 -7.932 
amisulpride -7.931 
Rebimastat -7.930 
Flestolol -7.927 
Capromorelin -7.921 
Difluaninehydrochloride -7.917 
Ecopladib -7.909 
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Table S2. Top-100 compounds at the binding pocket of COVID-19 Main Protease crystallized 
in apo-form (PDB, 6M03) based on Glide/SP docking scores and their corresponding docking 
scores.  

Compounds docking 
score 
(kcal/mol) 

Ametantrone -9.211 
Teloxantrone -9.053 
mitoxantrone -8.279 
Rotigaptide -8.113 
Pixantrone -8.065 
2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-4h-
chromen-4-one 

-8.038 

5,7,3,4-Tetrahydroxyflavan-3'4'-diol -7.976 
Iosericacid -7.965 
Emiglitate -7.942 
Prospidiumchloride -7.938 
Etanterol -7.920 
Ioglunide -7.824 
Olmidinehydrochloride (-)-isomer -7.782 
Sibrafiban -7.763 
Fluprostenol -7.730 
Chrysarobin -7.726 
Osutidine -7.706 
Benzyl(tert-butyl)(4-hydroxy-3-hydroxymethyl-4-
oxophenethyl) ammonium chloride 

-7.687 

Cefapirin -7.685 
Difebarbamate -7.680 
Donitriptan -7.653 
Ioxilan -7.649 
Losoxantrone -7.645 
Lasinavir -7.635 
Ociltide -7.633 
Isatoribine -7.613 
Lu-79553 -7.603 
Nepafenac -7.601 
Cantabiline -7.595 
Pd-196860 -7.586 
Clopenthixol -7.571 
Iotriside -7.570 
Netivudine -7.565 
Toldimfos -7.564 
Adosopine -7.563 
Difluaninehydrochloride -7.536 
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Emivirine -7.530 
Cifostodine -7.510 
Fenprostalene -7.488 
Dinoprost -7.487 
Reproterol -7.481 
Beta-d-glucopyranoside-4-hydroxyphenyl -7.464 
5-Chloro-1-(4-(4,4-bis(p-fluorophenyl)butyl)-4-
piperidyl)-2-benzimidazolinone 

-7.459 

Orotirelin -7.451 
Prezatidicuprici acetas -7.451 
cladribine -7.447 
Vesnarinone -7.439 
Carboprost -7.432 
arformoterol -7.431 
Tusigen -7.420 
Primozida -7.418 
Enprostil -7.416 
Nordefrin -7.396 
D-glycero-D-gulo-Heptonicacid -7.390 
Fenoterol -7.384 
Torbafylline -7.382 
Doreptide -7.381 
Tilisolol -7.361 
Lobucavir -7.361 
Ilomastat -7.349 
Eganoprost -7.348 
Eplivanserin -7.338 
(1R2R)-2-amino-1-(4-
methylsulfonylphenyl)propane-1 3-diol 

-7.332 

Sapropterin -7.331 
Odiparcilum -7.328 
Arabinosylthymine -7.325 
Cicarperone -7.323 
Tetragastrin -7.312 
Iohexol -7.299 
Telinavir -7.297 
Nofecainide -7.291 
Prostalene -7.282 
Lasofoxifene -7.279 
Spasfon-lyoc -7.277 
Cefradine -7.275 
Resorcinoldisodium -7.271 
Tiaprost -7.267 
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1,4-Benzodioxin-2-methanolalpha alpha'-
(iminobis(methylene))bis(2 3-dihydro)- 
stereoisomer methanesulfonate 

-7.258 

Fidarestat -7.255 
Temoporfin -7.254 
Glucosulfamide -7.251 
cefotiam -7.251 
Maribavir -7.248 
Sulprostone -7.243 
1,3-Bis-(2-ethoxycarbonylchromon-5-yloxy)-2-
(lysyloxy)propane 

-7.241 

Iliparcil -7.238 
Zy-15051 -7.237 
Adenosine -7.228 
Ibutamoren -7.225 
Beciparcil -7.216 
Tigecycline -7.215 
Midodrine -7.204 
Cefpiramide -7.201 
Cefetecol -7.196 
Soquinolol -7.194 
Mioflazinum -7.193 
Ceforanide -7.193 
Carafiban -7.186 
Piroxantrone -7.186 
Eptaplatin -7.171 
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Table S3. Average binding free energies (MM/GBSA scores) of selected top-30 compounds 
from docking at the COVID-19 Main protease crystallized in holo form. 1000 trajectory frames 
were considered throughout the short (10-ns) MD simulations.  

Compounds MM/GBSA 
(kcal/mol) 

Pimelautide -83.71 

Rotigaptide -81.21 

Truxicurium -78.58 

Tert-amyloxycarbonyltetragastrin -76.71 
1,3-Bis-(2-ethoxycarbonylchromon-5-yloxy)-2-
(lysyloxy)propane -76.59 

Brecanavir -74.83 

Arzoxifene -74.35 

Ociltide -74.30 

Telinavir -70.13 

Frakefamide -67.54 

Truxipicurium iodide -67.38 

Carafiban -67.26 

Metkephamid -61.33 

Diathymosulfonum -60.84 

Penimepicycline -60.76 

Mioflazinum -59.03 

Ingliforib -55.04 

Azimilide -54.68 

Efegatran -54.26 

Ioglucol -52.63 

mitoxantrone -50.13 

Prezatidicupriciacetas -48.56 

Iohexol -48.18 

Ametantrone -47.57 

Alvimopan -47.57 

flupenthixol -47.37 

Bazedoxifene -37.85 

Losoxantrone -36.40 

Ledoxantrone -32.26 

Xantifibrate -32.19 
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Table S4. Average binding free energies (MM/GBSA scores) of selected top-30 compounds 
from docking at the COVID-19 Main protease crystallized in apo form. 1000 trajectory frames 
were considered throughout the short (10-ns) MD simulations.  

Compounds MM/GBSA 
(kcal/mol) 

Lasinavir -73.58 

Ioglunide -67.04 

Osutidine -64.55 

Ociltide -63.79 

Ioxilan -61.83 

Emiglitate -60.12 

Ametantrone -59.64 

Iosericacid -59.38 

Fluprostenol -58.18 

Difebarbamate -56.78 

mitoxantrone -55.08 
Benzyl(tert-butyl)(4-hydroxy-3-hydroxymethyl-4-
oxophenethyl) ammonium chloride -51.21 

2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-4h-
chromen-4-one -50.08 

Sibrafiban -48.67 

Losoxantrone -48.67 

Rotigaptide -47.64 

Lu-79553 -46.52 

Teloxantrone -46.51 

Donitriptan -44.41 

Etanterol -42.35 

Nepafenac -40.44 

Isatoribine -38.91 

Pixantrone -36.58 

Pd-196860 -36.07 

5,7,3,4-Tetrahydroxyflavan-3'4'-diol -35.96 

Chrysarobin -34.66 

Cefapirin -32.08 

Prospidiumchloride -28.81 

Olmidinehydrochloride (-)-isomer -27.91 

Cantabiline -17.45 
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Figure S1. Ligand interactions diagram for co-crystallized ligand N3. 
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Figure S2. Ligand interactions diagram for Brecanavir 
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Figure S3. Ligand interactions diagram for Lasinavir 
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Figure S4. Ligand interactions diagram for Pimelautide 
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Figure S5. Ligand interactions diagram for Rotigaptide. 
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Figure S6. Ligand interactions diagram for Ociltide. 
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Figure S7. Ligand interactions diagram for tert-amyloxycarbonyltetragastrin 
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Figure S8.  Ligand interactions diagram for Telinavir. 
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Figure S9. Ligand interactions diagram for Arzoxifen. 
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Figure S10. Ligand interactions diagram for 1,3-Bis-(2-ethoxycarbonylchromon-5-yloxy)-2-(lysyloxy)propane 
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Figure S11. Ligand interactions diagram for Truxicurium. 

 

 
 


