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ABSTRACT: Global optimization constitutes an important and fundamental problem in theoretical studies in many chemical fields, 

such as catalysis, materials or separations problems. In this paper, a novel algorithm has been developed for the global optimization 

of large systems including neat and ligated clusters in gas phase, and supported clusters in periodic boundary conditions. The method 

is based on an updated artificial bee colony (ABC) algorithm method, that allows for adaptive-learning during the search process. 

The new algorithm is tested against four classes of systems of diverse chemical nature: gas phase Au55, ligated Au8
2+, Au8 supported 

on graphene oxide and defected rutile, and a large cluster assembly [Co6Te8(PEt3)6][C60]𝑛, with sizes ranging between 1 to 3 nm 

and containing up to 1300 atoms. Reliable global minima (GMs) are obtained for all cases, either confirming published data or 

reporting new lower energy structures. The algorithm and interface to other codes in the form of an independent program, Northwest 

Potential Energy Search Engine (NWPEsSe), is freely available and it provides a powerful and efficient approach for global optimi-

zation of nanosized cluster systems.  

1 Introduction 

Chemical clusters are aggregates consisting of a couple of to a 

few thousand structural units like atoms or molecules. They are 

increasingly capturing attention from the chemical community 

because they exhibit unique properties in electronic structure,1 

magnetics,2 geometry,3 catalysis,4 and energy storage.5 In addi-

tion, being a bridge between a few atoms and bulk matter, 

chemical clusters make good models for computational studies 

of realistic and complicated problems. For example, using a so-

lute-solvent cluster to accurately calculate the hydration ener-

gies of metallic cations6, 7 or to study chemical reaction mecha-

nisms.8 

The determination of the global minimum (GM) of a chemical 

cluster on its potential energy surface (PES) is the first step to-

wards the study of a system. At low temperature, the GM usu-

ally dominates over other structures of similar energy. Also, 

GM suggest the most favorable interaction pattern between the 

atoms or structural units in the chemical cluster, revealing val-

uable chemical information. Searching for the GM is much 

more difficult than locating a local minimum (LM), since it re-

quires the knowledge over the whole PES instead of just a small 

region. Chemists have been working on developing effective 

global optimization algorithms for decades. Examples of such 

methods rely on simulated annealing,9 Monte Carlo minimiza-

tion,10 basin hopping,11-15 genetic algorithms,16-23 particle swarm 

optimization,24 stochastic surface walking,25 kick method,26-29 

GIGA,30 and have shown good performance for various chemi-

cal problems. We also refer the readers to reviews31, 32 or our 

previous papers33, 34 for a comprehensive discussion. 

Since 2004, instead of empirical force-fields, reliable first-prin-

ciples methods began to appear for calculating cluster energies. 

The earliest global optimizations at the density functional the-

ory (DFT) level of theory for gas phase and surface-supported 

clusters were carried out for Na𝑛Cl𝑛+1
−  in 200435 and 

Ag1~4,6,8,10@MgO(100) in 2007,36 respectively. Examples of 

global optimization algorithms used on a variety of systems 

(aperiodic or periodic) have been reported in the literature and 

include Li𝑛
𝑞

,37 Ir𝑛 ,38 Pt𝑛 ,39 graphene-supported Pt𝑛 ,40 MgO -

supported AuPd,41 TiCl4 -capped MgCl2  plate (Ziegler-Natta 

catalyst),42 to name a few. Other general-purpose codes include 

PDECO,43 GEGA, 37 GMIN,44 TGMIN,45 AUTOMATON,46 etc. 

However, some of these codes are either not readily available, 

lack the interface to common computational chemistry pro-

grams, or are simply designed for specific systems. 

Compared with other global optimization methods, the artificial 

bee colony (ABC) algorithm, which was proposed in 2005 in 

the computer science community,47 is simple but effective. We 

adapted the algorithm for chemical problems and wrapped it in 

a program called ABCluster.33, 34 Since then, ABCluster has 

gained wide applications in chemical problems from different 

fields. One example is that ABCluster was used to search the 

GMs of lanthanide (Ln) doped silicon cluster anions as large as 

LnSi20
− , and the calculated photoelectron spectroscopy from 

these GMs agree well with the experimental ones.48-57 Another 

example is that several authors searched the GMs of clusters 

consisting of atmosphere related molecules like water, ammo-

nia, nitric acid, hydroxymethanesulfonic acid, sulfuric anhy-

dride, and pentoxide−iodic acid.58-70 Using GMs of different 

sizes, atmospheric cluster dynamics equations can be solved71 

and a lot of atmospheric chemical phenomena were successfully 

explained.58-70 ABCluster was also applied in catalysis,4, 72-74 

material science,75-77 solution chemistry,78-80 etc. Therefore, the 

ABC algorithm is proven to be a highly successful method for 

searching GMs of atomic and molecular clusters to solve real-

istic chemical problems. 

While clusters of atoms and molecules can be used to solve a 

lot of chemical problems as described above, more complicated 

clusters are desired in state-of-the-art researches. For example, 

in electrochemical catalysis, surface-supported metallic clusters 

play an important role in many chemical processes.81, 82 In the 

study of energy chemistry or soft matter, very large (nanosized) 
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clusters of molecules of different chemical properties, which 

could be of heterogeneous structure, are needed for theoretical 

insights. 

In this paper, we propose a new algorithm, Northwest Potential 

Energy Surface Search Engine (NWPEsSe) based on the ABC 

method, for the efficient global optimization of nanosized clus-

ters. Several systems of distinct chemical nature are used to 

demonstrate the efficiency of this newly developed algorithm, 

showing its ability in obtaining reliable structures of highly 

complex gas phase, ligated, surface-supported, and cluster as-

semblies containing more than 1300 atoms. We anticipate that 

its flexibility and efficiency will make it a useful tool for many 

scientists in different fields.  

2 Method 

The method will be discussed in detail in this section. The algo-

rithm discussed below has been coded into NWPEsSe and can 

be downloaded free of charge from https://store.pnnl.gov/cata-

log-products/open-source . 

2.1 Coordinate Systems 

The structural units of a cluster can be atoms, small molecules, 

microcrystals, or surface slabs. They are defined by a set of Car-

tesian coordinates (in a body-fixed coordinate system). To build 

an initial structure during the global optimization, these struc-

tural units are manipulated as rigid bodies, i.e., their internal 

degrees of freedom (DOFs) are frozen (The internal DOFs will 

be relaxed in their local optimization step). Therefore, the coor-

dinate of each structural unit is represented by 6-component 

vector 𝐪 = {𝐑, 𝛀}: the geometrical center 𝐑 ≡ {𝑋, 𝑌, 𝑍}, which 

determines its position, and the Euler angles 𝛀 ≡ {𝛼, 𝛽, 𝛾} , 

which determines its orientation. This representation has been 

used in our previous study34 and proves to be highly successful. 

Their Cartesian coordinates in the cluster (in a space-fixed co-

ordinate system) can be calculated using34 

(

𝑥space

𝑦space

𝑧space

) = 𝐑𝑧(𝛾)𝐑𝑦(𝛽)𝐑𝑧(𝛼) (

𝑥body

𝑦body

𝑧body

) + (
𝑋
𝑌
𝑍

) (1) 

where 

𝐑𝑧(𝜃) ≡ (
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
) (2) 

𝐑𝑦(𝜃) ≡ (
cos 𝜃 0 sin 𝜃

0 1 0
− sin 𝜃 0 cos 𝜃

) (3) 

Therefore, a cluster consisting of 𝑁 structural units will be rep-

resented by 6𝑁 components: 𝐐 ≡ {𝐪1, 𝐪2, ⋯ , 𝐪𝑁}. 

 

2.2 Generation of Random Structures with Given Features 

In the previous implementation of ABC in ABCluster for sim-

ple atomic and molecular clusters,33, 34 the initial structure of a 

cluster is generated completely randomly. This is a reasonable 

approach since the structures of small clusters are likely to be 

more disordered and therefore more difficult to predict. In ad-

dition, mixed clusters, can adopt structures that are drastically 

different from those of pure species. For example, when metal 

atomic interactions are described with the Gupta potential,83 

both Ag38 and Cu38  are truncated octahedra. However, the 

mixed cluster Ag32Cu6 has an unexpected copper-core-silver-

shell structure.84 Clearly, as the complexity of a system in-

creases, either because of its composition or its size, a different 

sampling seems to be necessary. Sampling of nanosized clus-

ters, especially heterogeneous ones, can be extremely ineffi-

cient since part of the system may still maintain order that ran-

dom searches may skip over.  

NWPEsSe was developed to address some of these issues by 

utilizing the power of the ABC algorithm augmented by adap-

tive-learning techniques, where the population of structures on 

the PES increases with acceptable (‘good’) structures along the 

way. This new approach effectively uses several new features 

to accelerate the global optimization, exemplified by two typi-

cal examples: 

(1) Surface-supported clusters. For a surface slab or microcrys-

tal structure, structural units can be identified as parts of a sur-

face with specified atoms/molecules pointing toward specific 

contact sites of the surface. In NWPEsSe surfaces can be de-

tected automatically by calculating its convex hull85 of a finite 

set of points. 

(2) Shell-core structures. When some structural units tend to 

bond to or point towards a core, as for example ligated clusters, 

they can be distributed uniformly or randomly on an ellipsoid 

shell of specified size and orientation. A uniform distribution is 

determined by solving Thomson’s problem86 where we look for  

a minimum electrostatic potential energy configuration of elec-

trons constrained to a unit sphere and then map the solutions to 

an ellipsoid, see Figure 1 and supporting information for more 

details 

Besides these two features, NWPEsSe also features several 

other options, for example, distribute structural units inside a 

box or a sphere. These features can be combined to control the 

possible cluster structures. In the following sections, all refer-

ences of “random structure” refer to any random cluster gener-

ated with given features. 

 

Figure 1. Generation of a shell-core structure of 11 benzonitrile 

molecules. 

2.3 Local Optimization of Clusters 

Once a guess structure is generated, it is submitted to a quantum 

chemistry program for local geometry optimization and energy 

calculation. In NWPEsSe, the guess structure is pre-relaxed to 

remove unreasonable structural motifs, such as short intera-

tomic distances, that could significantly increase the optimiza-

tion steps or lead to convergence problems. This is achieved by 

defining a potential: 

𝑢(𝑟𝑖𝑗) = {
𝑘(𝑟𝑖𝑗 − 𝑟𝑖

c − 𝑟𝑗
c)

2
, 𝑟𝑖𝑗 < 𝑟𝑖

c + 𝑟𝑗
c

0, 𝑟𝑖𝑗 ≥ 𝑟𝑖
c + 𝑟𝑗

c
(4) 
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where 𝑟𝑖/𝑟𝑗  is the distance between atom 𝑖  and 𝑖 , 𝑟𝑖
c/𝑟𝑗

c  their 

covalent radii, and 𝑘 the force constant (see Figure S1). The 

complete potential for the cluster is then constructed as: 

𝑈(𝐐) = ∑ ∑ ∑ ∑ 𝑢(𝑟𝑖𝐼𝑗𝐽
)

𝑗𝐽∈𝐽𝑖𝐼∈𝐼

structural
units

𝐽<𝐼

structural
units

𝐼

(5) 

where, 𝐼 and 𝐽 are indices of structural units, and 𝑖𝐼 are 𝑗𝐽 indi-

ces of the atoms in 𝐼 and 𝐽, respectively. We optimize eq. (5) 

with respect to 𝐐  using the limited-memory-Broyden–

Fletcher–Goldfarb–Shanno (L-BFGS) algorithm87. During this 

process, the structural units will be pushed away from others 

until any two atoms from different structure units are farther 

away than the sum of their covalent radii. The resulting cluster 

is free of atomic clashes and can be safely optimized with other 

quantum chemical programs, see Figure 2. 

NWPEsSe can also be used as a fast structure generator even 

without further optimization by external programs, since the 

structure defined by eq. (5) is already very reasonable as an in-

itial guess for quantum chemical calculations or molecular dy-

namics simulations. Using the structural features provided, 

complicated clusters can be generated rapidly, see Supporting 

Information or NWPEsSe Manual for more details. 

 

Figure 2. The local optimization of a guess cluster structure. 

 

2.4 The Artificial Bee Colony Algorithm 

The ABC algorithm is a swarm intelligence-based algorithm, 

mimicking the foraging behavior of honey bee colonies.47 In na-

ture, bees search for the best nectar as a food source using an 

efficient strategy conducted by three kinds of bees: (1) Em-

ployed bees (EM), which explore surroundings; (2) Onlooker 

bees (OL), which search for the “good” nectars reported by EM; 

(3) Scout bees (SC), which explore completely new environ-

ments. In our implementation, clusters and their energies corre-

spond to the nectars and their quality where lower energies im-

ply “better” nectars. This is the basic framework of the algo-

rithms used in both ABCluster and NWPEsSe. The discussion 

below will focus on the differences between the two algorithms. 

For more details on ABCluster, please refer to previous pa-

pers.33, 34 

The main steps of the NWPEsSe algorithm can be summarized 

as: 

(1) Initialization: the structure population size 𝑆𝑁, the maxi-

mum cycle number 𝑔max, cycle number 𝑔 = 0; 

(2) Generate 𝑆𝑁  random structures and optimize them using 

quantum chemistry, obtaining the structures 𝐐1
0, 𝐐2

0, ⋯ , 𝐐𝑆𝑁
0  

and their energy 𝐸1
0, 𝐸2

0, ⋯ , 𝐸𝑆𝑁
0 ; 

(3) At cycle 𝑔, the guess structure is generated using one of the 

three ways below with equal probability: 

(3.1) EM: a guess structure is formed using the trigonometric 

mutation operator:88 

𝐐 =
1

3
(𝐐𝑘1

𝑔
+ 𝐐𝑘2

𝑔
+ 𝐐𝑘3

𝑔
) + (𝑝2 − 𝑝1)(𝐐𝑘1

𝑔
− 𝐐𝑘2

𝑔
)

+(𝑝3 − 𝑝2)(𝐐𝑘2

𝑔
− 𝐐𝑘3

𝑔
) + (𝑝1 − 𝑝3)(𝐐𝑘3

𝑔
− 𝐐𝑘1

𝑔
) (6)

 

where 𝑘1, 𝑘2, 𝑘3 are random integers between 1 and 𝑆𝑁 (𝑘1 ≠
𝑘2 ≠ 𝑘3 ≠ 𝑖), and  

𝑝𝑚 =
|𝐸𝑘𝑚

𝑔
|

|𝐸𝑘1

𝑔
| + |𝐸𝑘2

𝑔
| + |𝐸𝑘3

𝑔
|
  (𝑚 = 1,2,3) (7) 

The obtained structure by eq. (6) can preserve the given features 

since it is a deformed average structure of three clusters. The 

EM bee step performs an exploration in a new direction in the 

parameter space based on a triple of individuals. Eq. (6) has 

been proven to be highly efficient in exchanging information 

between individuals of a population in swarm-intelligence-

based algorithms,33, 34, 43, 88 introducing multiple interactions be-

tween individuals. This is a random exploration of cluster struc-

tures. 

(3.2) OL: a guess structure is formed by deformation of the cur-

rent best cluster (i.e., of lowest energy) 𝐐best
𝑔

 using the 

ABC/best/2 strategy:33 

𝐐 = 𝐐best
𝑔

+ 𝐹(𝐐𝑘1

𝑔
+ 𝐐𝑘2

𝑔
− 𝐐𝑘3

𝑔
− 𝐐𝑘4

𝑔
) (8) 

where 𝑘1, 𝑘2, 𝑘3, 𝑘4  are random integers between 1 and 𝑆𝑁 

(𝑘1 ≠ 𝑘2 ≠ 𝑘3 ≠ 𝑘4) and 𝐹 is a random real number in [0,1). 

The structure by eq. (8) can be viewed as a perturbation of the 

current GM like the moving step in Monte-Carlo methods. This 

ABC/best/2 strategy was originally used in the differential evo-

lution algorithm89 but was also proved to be effective in the 

ABC algorithm.90 Since the OL bee step is an exploration based 

on “good” individuals, it gives a positive feedback in the opti-

mization process. This step adds a bias in the search toward 

good structures. 

(3.3) SC: in the population, if a cluster has a very high energy 

compared to a given cutoff that can be defined by the user, or a 

structure similar to others, it will be replaced by a random struc-

ture. In this case, the SC bee step is set against the “bad” indi-

viduals, forming a negative feedback. This step prevents the 

search from being trapped in a local minimum basin.  

(4) The guess structure 𝐐 is optimized using quantum chemical 

programs. The optimized structure is added to the population, 

which increases with ‘good’ structures as the search progresses. 

(5) If 𝑔 ≤ 𝑔max, increase 𝑔 by 1 and go back to step (3); other-

wise the search is finished. 

Figure 3 provides the basic steps of the NWPEsSe algorithm 

(A), the adaptive part (B) and finally a side-by-side comparison 

with ABCluster in the generation of the polulations (C). We 

note two significant difference from ABCluster:  

(1) in ABCluster, in each step all three types of bees, EM, OL, 

and SC, operate on the entire population. This step would be too 

expensive for first-principles global optimization of large struc-

tures. Thus, in NWPEsSe, only one kind of bee (EM or OL or 

SC) is applied during each cycle, but with equal probability 

(1/3). This is a trade-off between computational cost and selec-

tion efficiency. 
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(2) However, the performance of the search is offset by the sec-

ond difference: the population is extended with new guess clus-

ters instead of being kept constant. As the population expands, 

NWPEsSe will have a cluster structure library of higher diver-

sity and quality. Through this adaptive learning process de-

scribed by Eqs. (6) and (8), the bees become more capable of 

discovering improved cluster structures. As shown in Figure 3, 

the algorithm contains fluctuations (random structures), multi-

ple interactions (EM bees), and positive (OL bees) and negative 

(SC bees) feedbacks. The four features lead to a self-organiz-

ing91 algorithm. Self-organization provides a mechanism for an 

adaptive learning procedure during global optimization, keep-

ing the diversity of the population without being trapped in a 

local minimum basin. The efficiency of the new algorithm in 

NWPEsSe is demonstrated by the select systems discussed be-

low. 

 

 

 

Figure 3. (A) The NWPEsSe algorithm. (B) Schematic of population update based on evaluation by EM, OL and SC bees. (C) 

Comparison between the NWPEsSe and ABCluster algorithms: In NWPEsSe, all types of bees are operating on the population, 

updating with ‘good’ structures, while rejecting ‘bad’ ones based on positive and negative feedback. Over time, the population be-

comes larger with ‘good’ structures, creating an adaptive learning environment. In ABCluster, each group of bees operates serially 

on the fixed population, with random updates of the population. 

 

2.5 Quantum Chemical Calculation Details 

NWPEsSe also provides interfaces to a variety of computational 

chemistry programs. In this paper, two programs were used for 

the tests performed: xTB and CP2K. xTB is a program imple-

menting the highly versatile GFN-xTB Hamiltonian,92, 93 which 

is a fast semi-empirical method for molecules. CP2K94, 95 is used 

for both gas phase and condensed phase DFT calculations and 

molecular dynamics simulations. In all DFT calculations, the 

gradient corrected functional PBE96 with Grimme dispersion 

correction DFT-D3,97 in the Γ-point approximation were em-

ployed for Brillouin zone integration. A molecularly optimized 

double-ζ Gaussian basis98 and plane wave basis99 of 420 Ry cut-

off were applied to all the atoms, while core electrons were rep-

resented by the companion norm-conserving pseudopoten-

tials.100, 101  

3 Applications 

It should be emphasized that we selected systems inspired by 

our research from our BES Catalysis and Separations programs 

which also demonstrate the versatility and performance of our 

algorithm. 

3.1 Gas Phase Gold Clusters 

Gold nanoparticles exhibit excellent catalytic and optical prop-

erties and therefore have a broad spectrum of applications.102 

While the GMs of small gold clusters (up to 20 atoms) are well 

characterized,103 the GM of larger gold cluster are still under 

investigation. Experimental determination of their structures is 

difficult. A typical example is the 1.1 nm cluster Au55, the GM 

of which has been the topic of several studies.104, 105 

NWPEsSe was used in the search of the GM of Au55. The local 

optimization was carried out with xTB using 𝑔max = 3000, 

then the 30 lowest energy clusters were further optimized at the 
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DFT level of theory with CP2K. The cluster with the lowest 
energy, obtained from this search encompassing 3000 semi-
empirical and 30 DFT calculations, was taken as the puta-
tive GMs. Besides this, the GMs proposed in two previous 
papers by Tarrat et al105 and van den Bossche104 as well as 
an icosahedral isomer were also optimized using DFT for 
comparison. Three functionals: PBE,96 revPBE,106 and 

PBEsol107 were used. The CP2K calculations were carried out 

in gas phase in a periodic a 2×2×2 nm cell affording at least 1 
nm space between a cluster and its periodic image. 

The results are given in Table 1 and Figure 4. The energies of 

GMs predicted with NWPEsSe Au55-0 and by van den 

Bossche104 Au55-1 are essentially identical. The GM by Tarrat 

et al105 Au55-2 has D3 symmetry, is predicted to be a high-lying 

isomer by PBE and PBEsol, but comparable in stability with 

Au55-0 or Au55-1 as indicated by revPBE. The icosahedral iso-

mer Au55-3 has the highest symmetry as well as the highest 

energy. Since low-coordinated gold atoms (surface ones) tend 

to form short bonds,108 the inner-shell atoms in icosahedral 

Au55-3 migrate to the outer-shell, resulting in shorter (by about 

0.01 nm) surface Au-Au distances and lower energy. As a re-

sult, the cluster loses its Ih symmetry, resulting in disordered but 

more stable isomers. Interestingly, while Au55-0 and Au55-1 

have similar energies and are both disordered with a two-shell 

46-9 geometry, their inner shells are quite different (Figure 5), 

implying that the low energy part of the Au55 PES is flat and 

contains several disordered structures. This is in agreement with 

direct atomic imaging experiments by Wang et al,109 where no 

highly symmetrical structures of Au55 were observed.  

 

 

Figure 4. The isomers of Au55 optimized at PBE level of theory. Au55-0 is the one found by NWPEsSe. 

 

 

Figure 5. Inner shells of Au55-0 and Au55-1. 

Table 1. Relative energies (Unit: kcal mol-1) of isomers of 

𝐀𝐮𝟓𝟓. 

Isomer Symmetry PBE revPBE PBEsol 

Au55-0 C1 0.00 0.00 0.00 

Au55-1 C1 0.10 0.01 0.30 

Au55-2 D3 12.84 0.72 35.94 

Au55-3 Ih 29.32 31.19 22.27 

 

3.2 Ligated Gold Clusters 

Metal clusters play an important role in catalysis and separa-

tions, and organic ligands are often used to stabilize their struc-

ture and tune their catalytic110, 111 or steric properties.112, 113 Here, 

we consider the ligated gold cluster cation Au8L𝑛
2+, where L is a 

simple phosphine ligand P(CH3)3. 

Here, we started also with xTB to search for the GMs of Au8L𝑛
2+ 

using 𝑔max = 500. Next, 30 lowest energy clusters were further 

optimized at the PBE-D3 level of theory with CP2K. The most 

stable cluster cation ranked by PBE-D3 was taken as the puta-

tive GM. In total, 500 semi-empirical and 30 DFT calcula-
tions were used to determine the GM for each system. These 

CP2K calculations were carried out in gas phase in a 

2.5×2.5×2.5 nm cell. 

The results are shown in Figure 6. For the bare cluster cation, 

the predicted GM Au8c-0 is by 4.12 kcal mol-1 more stable than 

Au8c-1, which was proposed as a GM by Hong et al.114 Inter-

estingly, for Au8L𝑛
2+  where L = P(CH3)3 , when 𝑛 = 4 and 5, 

their GMs have Au8c-1 as their cores. When the cores were 

substituted by Au8c-0, in the optimized cluster cations 

(Au8cL4-1 and Au8cL5-1), the initial Au8c-0 core relaxed  to 

another structure and are overall less stable than their GMs by 

4.98 and 0.39 kcal mol-1, respectively; As 𝑛 goes to 6, 7, and 8, 

the cores of GMs (Au8cL6-0, Au8cL7-0, Au8cL8-0) change 

from flake to polyhedron. For example, one LM of Au8L8
2+ 

Au8cL8-1 with a flake core is 8.32 kcal mol-1 higher in energy 

than the corresponding GM, although all gold atoms are ligated 

in both cases. 

These GMs reveal that ligation can significantly change the sta-

bility of the core gold cluster. This effect can be explored by 

examining the electron density difference of Au8
2+ upon liga-

tion. As shown in Figure 7, when Au8c-0 and Au8c-1 are li-

gated by 4 P(CH3)3, we observe considerable increase in the 

electron density for the Au8c-1 core, while for Au8c-0, only 

minimal changes in the electron density are noted. These 

changes imply that upon ligation, 3D core clusters offer a better 

overlap with the phosphine ligands resulting in overall stabili-

zation and change in the stability order of the ligated clusters. 

Similar effects have been observed in neutral gold clusters, 

where ligation induced electronic stabilization.115 
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Figure 6. The GMs of Au8
2+ and Au8L𝑛

2+ found by NWPEsSe. Ligation induces changes in the electronic distribution such that the relative 

order of stability of the core clusters is completely different than that of the free clusters. 

 

Figure 7. Isosurfaces of electron density difference of Au8c-0 and Au8c-1 upon ligated with 4 P(CH3)3. The difference is defined as 

𝜌[Au8L4
2+] − 𝜌[Au8

2+] − 𝜌[L4]. The isosurfaces of value +0.001 au and −0.001 au are rendered with transparent red and solid blue, respec-

tively. 

3.3 Surface-Supported Gold Clusters 

Graphene and reducible oxides s are often used as support ma-

terials for metal clusters, while performance can be signifi-

cantly enhanced dues to cooperative effects, ease of separation 

from products, resistance of high temperature, or modification 

in their electronic structure.81 Here, we also considered gold 

clusters Au8  supported on three different surfaces: two gra-

phene oxides decorated by epoxy (−O−) moieties (GrD where 

epoxy groups are clustered together and GrU where epoxy 

groups are uniformly distributed), and an oxygen-defected ru-

tile TiO2(110) surface (Rut). 

NWPEsSe was used to drive CP2K to carry out the global opti-

mizations at PBE-D3 level of theory using 𝑔max = 100 to de-

termine the GM for each system. The graphene oxides were 

modelled by a 1.70×1.68 nm cell and the rutile TiO2(110) sur-

face was modelled by a 1.89×1.77×1.09 nm slab, containing 4 

O−Ti−O-layers. An oxygen atom from the first O-Ti-O layer 

was removed to create a defect. Periodic boundary conditions 

(PBCs) were applied for these cases. In the direction of the sur-

face normal, a 3 nm vacuum was created and dipole correction 

was used to remove the artificial field raised by PBCs in this 
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direction.116 The optimized structures of all supports are shown 

in Figure 8. 

The GM and some LMs of graphene oxide and oxygen-defected 

rutile TiO2(110) surface supported Au8 are shown in Figure 9 

and 10, respectively. In gas phase, Au8 tends to be like a flake 

(Figure 8) due to the relativistic effects,117 but they are affected 

in different ways by the surfaces. 

On the graphene oxide supports, we could identify two types of  

Au8  stationary structures: those that form at least one Au-O 

bond, and those where no Au-O bonds are formed, see Figure 9. 

For structures Au8GrD-2, Au8GrD-3, Au8GrU-3,where no 

Au-O forms, the relative stability order for remains the same as 

in the gas phase, although on GrD the energy difference be-

tween Au8-0 and Au8-1 from 6.46 kcal mol-1 reduces to 2.48 

kcal mol-1 (Au8GrD- 2 and Au8GrD-3). This reduction results 

from the more favorable pure interaction energy between Au8-

1 and GrD, see Supporting Information).  

As in the ligated clusters, the formation of covalent bonds be-

tween gold cluster and the graphene oxide substantially impacts 

their electronic structure, and again favors the 3D Au8 struc-

tures, as opposed to flakes. 

 

Figure 8. (A) The GM and some LMs of gas phase Au8 found 

with NWPEsSe+CP2K. (B) Graphene oxides. (C) Oxygen-de-

fected rutile TiO2(110) surface. 

The GMs of graphene oxide-supported Au8 , Au8GrD-0 and 

Au8GrU-0, both contain two Au-O bonds and have 3D geom-

etries. In the case where epoxy groups from islands, the gold 

clusters Au8 can land over either oxygen islands or graphene-

like areas. In general, landing over the oxide areas is energeti-

cally unfavorable. Since the distribution of epoxy or other func-

tional groups can be complicated,118 gold cluster structures may 

be used to fine-tune the physicochemical properties of graphene 

oxides. For example, anchoring gold clusters on epoxy sites 

would favor 3D structures instead of flakes, promoting larger 

interlayer spaces in functionalized graphene membranes and 

higher separation performance. 

Figure 10 suggests that the oxygen-defects also have large elec-

tronic effects on the gold clusters. On rutile TiO2(110) surface, 

the GM Au8Rut-0, Au8 has a three-dimensional structure, with 

an Au-Au bond pointing towards the oxygen-defect. Substantial 

flow of electron density towards Au8 is observed, especially on 

the gold atom occupying the O-vacancy bound to the two five-

coordinated titanium atoms (Ti5c in Figure 8 and 10). Moreo-

ver, the Ti-Au distance is 2.60 Å, being smaller than the sum of 

their covalent radii 2.96 Å.119 Both observation indicate the for-

mation of strong Ti-Au bonds. For the LM Au8Rut-1 and 

Au8Rut-2, Au8 takes a geometry similar to its gas phase LM 

Au8-2 and GM Au8-0, respectively. In both cases, one gold 

atom forms Ti-Au bond at the oxygen-defect. The energy dif-

ference becomes much smaller on surface than in gas phase. For 

example, while Au8-2 is 11.62 kcal mol-1 higher in energy than 

Au8-0 in the gas phase, on the O-defected rutile TiO2(110) 

surface, the difference is reduced to 2.07 kcal mol-1. The elec-

tron difference map shows transfer from the adjacent titanium 

and oxygen atoms,120 and on to the cluster.121 Therefore, Au8 

will become a charge reservoir upon absorption and the PES on 

the oxygen-defected rutile TiO2(110) surface becomes flatter 

than that in gas phase, in compatible with that observation that 

gold clusters on this surface are very flexible, being liquid-like 

in dynamics.121 Such charge reservoirs play essential roles in 

heterogeneous catalysis. 

To sum up, surfaces can significantly affect the stability order 

and chemical properties of metal clusters, especially when 

chemical bonds form or charge transfer occurs. NWPEsSe can 

be a powerful tool to obtain reliable structures of surface-sup-

ported clusters that reveal their electronic and structural diver-

sity. 

3.4 Cluster Assemblies 

Building functional materials often relies on cluster assemblies, 

.122 many of which are stable units functioning as “super-

atoms”.123 For example, the electron-rich Co6Te8(PEt3)6  can 

reversibly donate up to 5 electrons124 and fullerene C60 acts as 

an electron acceptor. Assemblies of these clusters are believed 

to be precursors to interesting materials. Solids of similar com-

position, [Co6Se8(PEt3)6][C60]2  and [Cr6Te8(PEt3)6][C60]2 

have been synthesized and were shown to be good electrical 

conductors even at room temperature.125 We put NWPEsSe to 

the test to explore: how many C60 can Co6Te8(PEt3)6 accom-

modate in its first coordination sphere? We examined GMs of 

[Co6Te8(PEt3)6][C60]𝑛 for various n. Due to the large size of 

this system (~3.1 nm or 1000 atoms), local optimizations were 

only performed with xTB. For each system, we set 𝑔max = 30. 

Initial exploration for smaller 𝑛 values (n =5, 12, 17 and 19) 

showed that all C60 superatoms remain in the first coordination 

shel. For 𝑛 = 20, the first coordination sphere becomes full, 

forming a large cluster of about 3.1×3.1×3.1 nm. The C60 units 

tend to agglomerate instead of adopting a more uniform distri-

bution, the likely result of the strong dispersion interactions be-

tween fullerenes.126 For 𝑛 = 21, the last C60 starts populating 

the outer coordination. The composition of these clusters can be 

adjusted and manipulated in gas phase as molecular devices to 

trap or transfer electrons. 125, 127 Tailoring these types of materi-

als rely on understanding their bonding and assembly into oli-

gomers and extended structures. However, predicting and ex-

ploring their properties largely depends on efficient ways to de-

termine global and local minima and NWPEsSe is a robust and 

promising tool towards the exploration of very large systems. 
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Figure 9. The GM and some LMs of Au8 on graphene oxides. 

 

 

Figure 10. The GM and some LMs of Au8 on oxygen-defected rutile TiO2(110) surface, and the isosurface (value: +0.001 au) of electron 

density difference of Au8Rut-0. The difference is defined as 𝜌[Au8@TiO2] − 𝜌[Au8] − 𝜌[TiO2]. 
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Figure 11. The GMs of [Co6Te8(PEt3)6][C60]20/21. 

Table 2. Performance of the global optimizations (SE: semi-empirical).ss 

Systems # atoms gmax # calculations Resources 

Au55 55 3000 3000 SE + 30 DFT 24 CPU cores 

Au8L𝑛
2+ 60~100 500 500 SE + 30 DFT 24 CPU cores 

Surface-supported Au8 100~400 100 100 DFT 192 CPU cores 

[Co6Te8(PEt3)6][C60]𝑛 ~1300 30 30 SE 24 CPU cores 

 

3.5 Summary of Performance 

Table 2 summarizes performance details of NWPEsSe for the 

systems tested here. The complexity of the global optimization 

depends on both the number of atoms and the nature of the in-

teraction. NWPEsSe is robust for a wide range of chemical clus-

ters containing up to 1300 atoms: gas phase, ligated or surface-

supported clusters and large molecular assemblies. In practice, 

homogeneous clusters dominated by short-ranged interactions, 

like Au55, a large 𝑔max is needed for reliable global optimiza-

tion. In other cases, a moderate 𝑔max proportional to the number 

of active degrees of freedoms is sufficient. Although it is not 

trivial to make a fair comparison of the performance of NWP-

EsSe with other heuristic ones, Table 2 reveals that reliable 

global optimizations for a wide range of clusters can be per-

formed with ordinary hardware at an acceptable cost. 

4 Conclusions and Outlook 

In this paper, we discuss a new implementation of the ABC al-

gorithm tailored for optimization of nanosized clusters. Tested 

on a variety of systems of varying chemical nature, the new al-

gorithm exhibits excellent performance. In particular, the GMs 

located for Au55 and Au8
2+ are comparable or better than those-

ones reported in literature. This algorithm is avialable in NWP-

EsSe, with interfaces to several computational chemistry pro-

grams and can be downloaded at https://store.pnnl.gov/catalog-

products/open-source at no cost. NWPEsSe can also be used as 

a stand-alone fast generator of complicated structures. The 

ever-present challenge of global optimization is particularly 

prominent when confronted with a large number of expensive 

quantum mechanical calculations or when classical force fields 

are inaccurate or unavailable. NWPEsSe could be used to over-

come this barrier, by screening with a reliable but inexpensive 

methods, such as xTB available in the code. We are currently 

working on incorporating data science methods, like machine 

learning, to improve the global optimization algorithm.128, 129  
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