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Abstract

Classification of bonds is essential for understanding and predicting the reactivity

of chemical compounds. This classification mainly manifests in the bond order and

the contribution of different Lewis resonance structures. Here, we outline a first prin-

ciples approach to obtain these orders and contributions for arbitrary wave functions

in a manner that is both, related to the quantum theory of atoms in molecules and

consistent with valence bond theory insight: the Lewis structures arise naturally as

attractors of the all-electron probability density |Ψ|2. Doing so, we introduce valence

bond weight definitions that do not collapse in the basis set limit.

Introduction

While modern computers allow for the ever more accurate computation of molecular prop-

erties with advanced quantum mechanical methods, chemists continue to think in Lewis

1



structures and qualitative valence bond concepts like hybridization. This qualitative view of

molecular chemistry, which is often called ‘chemists intuition’, has proven to be an essential

tool in predicting and explaining reactions and is thus unlikely to vanish or substantially

change in the near future.

In order to connect these two worlds of chemistry, the qualitative concepts have to be

redefined and rediscovered in the mathematical framework of quantum mechanics. Reaching

this goal would allow chemists to adapt their intuition to theoretical insight that goes beyond

energies, geometries, and dipole moments.

While a lot has already been achieved—mainly in the context of valence bond (VB)

theory and the quantum theory of atoms in molecules (QTAIM)—there is no method that is

both, universally applicable to any wave function and capable of capturing the many-particle

nature of electronic systems.

In the present work, we will try to take a small step towards the desired redefinition

and universal applicability by investigating the topology of the all-electron probability den-

sity |Ψ|2 and by providing maps to qualitative concepts of bond classification. We call this

approach ‘probability density analysis’ (PDA). In order to gain a comprehensive picture

of chemical bonding, the PDA results are compared with the established VB theory and

QTAIM.

A century ago—and ten years before Schrödinger’s equation1—Lewis laid the foundations

of molecular bond classification.2,3 Heitler and London subsequently developed valence bond

theory by merging Lewis concept of ‘electron pairs’ into wave mechanics.4 Eventually, Pauling

generalized the theory by writing molecular wave functions as linear combinations of Lewis

resonance structures.5 Later work improved the computability6 and accuracy7 of VB theory.

Meanwhile, Bader and Beddall introduced what would later become the quantum theory

of atoms in molecules, a ‘unified theory of atoms, bonds, structure, and structural stability’

which is based on partitioning the 3D real space into topological quantum atoms defined

by the electronic density.8–10 Chamorro et al.11 and later Mart́ın Pendás and coworkers12–17
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integrated the probability density |Ψ|2 over the quantum atoms in order to gain insight into

the all-electron distribution.

More recently, Scemama et al.18 picked up the idea of investigating the maxima of |Ψ|2,

which was pioneered by Artmann19 and by Zimmermann and Rysselberghe.20 However, they

discarded the approach in favor of the maximum probability domains. Lüchow and coworkers

reintroduced the topological analysis of |Ψ|2,21 added the definition of a basin as the 3N-

dimensional analogue to the quantum atom,22 and used this partitioning to investigate the

anomeric effect.23 This topological analysis of |Ψ|2 is now relabelled as probability density

analysis (PDA). It should be noted that Schmidt and coworkers recently and successfully

followed a similar approach.24–27 On the experimental side, Waitz et al. showed that the

many-electron probability density |Ψ|2 is—in principle—measurable.28

In order to obtain a comprehensive picture of chemical bonding in molecules, the three

aforementioned approaches (i.e. VB theory, QTAIM, and PDA) should be combined and

compared. In the present work, this comparison is done in detail for the simplest system H2.

While QTAIM and VB theory have already been compared for this system by Ferro-Costas

and Mosquera,29 we think that their conclusion might be misleading. A range of single

bonds (heteroatomic and homoatomic) are calculated in order to confirm and generalize the

H2 results. Finally, the different approaches are compared for double bonds in ethylene,

ozone, and sulfur dioxide.

Methods

In this section, the term ‘attractor’ is used synonymous with ‘local maximum’. It is borrowed

from dynamical system theory and is linked with the term ‘basin of attraction’.

All investigated wave functions Ψ(R) are linear combinations of configuration state functions
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(CSFs) ΦK(R). The CSFs themselves are linear combinations of Slater determinants ψk(R).

Ψ(R) =
∑
K

CKΦK(R) =
∑
K

CK

∑
k

cKkψk(R) (1)

In a self-consistent iterative optimization, the so-called configuration interaction coefficients

CK are optimized simultaneously with the orbitals, while the linear coefficients cKk are fixed.

For the complete active space self-consistent field (CASSCF) method, the determinants are

built from an orthonormal set of molecular orbitals and the cKk are called ‘spin coupling

coefficients’. The resulting CASSCF CSFs form an orthonormal basis themselves.

The valence bond self-consistent field (VBSCF) method by van Lenthe and Balint-Kurti6

is an alternative to CASSCF. It is one of the modern valence bond methods which use wave

functions that are built from inactive molecular orbitals and active strictly localized hybrid

atomic orbitals.

In VB terminology, the CSFs are called (VB) structures. In addition to their mathemat-

ical representation, each structure can be depicted in the graphical Lewis representation, see

Fig. 1.
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Figure 1: Example of the Lewis representation—three structures of the π system in ozone
with formal charges. Labels are taken from Bräıda et al.30

The importance of structures is quantified with weights Wk which are (almost) always

positive and sum up to one. In the three most common definitions, the weights depend on

the structure overlap matrix S:

SIJ =

∫
R3N

dR ΦI(R)ΦJ(R) (2)
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The Chirgwin-Coulson weight

WCC
K = CK

∑
L

CLSKL (3)

is the most intuitive definition and follows directly from partitioning the norm of the prob-

ability density: ∫
R3N

dR |ΨVB(R)|2 =
∑
K

CK

∑
L

CLSKL (4)

It is closely related to the Mulliken population analysis: multiplication of the structure

weights with the respective formal charges (e.g. see Fig. 1) produces the Mulliken partial

charges. The Löwdin weight31

W Löw.
K =

(∑
L

CLS
1/2
KL

)2

(5)

is an alternative which is analogous to the Löwdin population analysis. The inverse weight

W inv.
K =

αK∑
L αL

, αK =
C2

K

S−1KK

(6)

by G. A. Gallup and J. M. Norbeck32 is often discussed as another alternative. It should be

noted that for orthonormal CSFs (SIJ = δIJ) like those employed in CASSCF all definitions

give WK = C2
K . The problem of VB weight definition thus arises solely from the non-

orthogonality of the CSFs .

In quantum theory of atoms in molecules, attractors of the electronic density ρ(r) are

denoted nuclear critical points. They partition the real space R3 into their basins of attraction

ω which are commonly referred to as Bader basins. Their surfaces s(ω) are of zero flux in

the gradient vector field of ρ(r):

∇ρ(r) · n(r) = 0, ∀r ∈ s(ω) (7)

with the position vector r ∈ R3 and the unit vector n(r) normal to the surface s(ω).
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The formalism of electron number distribution functions (EDFs) by Mart́ın Pendás and

coworkers12–17—and pioneered by Chamorro et al.11—gives additional insight into the sta-

tistical distribution of electrons. Most commonly, the Bader basins presented above are used

for integration, however any set of basins that partition R3 could be used.

For EDF, every point R in the 3N -dimensional all-electron space is mapped to a partition

S = (n1, n2, . . . , nm) by the partition assignment function σ which assigns every electron in-

dividually to the basin ωI it is found in, then counts the number of electrons nI per basin ωI

for I = 1, . . . ,m.

A 3N -domain Di can be defined for every partition Si:

Di = {R ∈ R3N |σ(R) = Si} (8)

The probability p(Si) of a partition can be calculated by integrating the all-electron proba-

bility density P (R) = |Ψ(R)|2/
∫
R3N dR|Ψ(R)|2 over the domain Di:

p(Si) =

∫
Di

dR P (R) (9)

If it is possible to map a partition to a VB resonance structure (ie. Si → ΦK), an EDF

weight can be defined: WEDF
K = p(Si)

However, with the Bader basins alone, this map does often not exist (eg. for multiple bonds).

Instead, a partition can then be mapped to a group of resonance structures, that have the

same formal charges.

In probability density analysis21–23—pioneered by Scemama et al.18—, attractors of the

probability density P (R) partition the all-electron position space R3N into their basins of

attraction Ω. The surfaces S(Ω) of these basins are of zero flux in the gradient vector field

of P (R):

∇P (R) ·N(R) = 0, ∀R ∈ S(Ω) (10)
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with the all-electron position vector R ∈ R3N and the unit vector N(R) normal to the surface

S(Ω). For one-electron systems (e.g. H +
2 ) PDA is identical to QTAIM, since R = r and

thus P (R) ≡ ρ(r). The attractors of P (R) can be assigned to VB structures (more precisely

VB determinants) and the integral of P (R) over a basin of attraction can be interpreted as

a measure of importance. We therefore define the PDA weight of a VB structure

WPDA
K =

∫
ΩK

dR P (R) (11)

where ΩK is the union of all basins Ω around attractors that are assigned to determinants

of the VB structure ΦK .

In general, a good agreement of VB theory and PDA is expected due to the locality of

VB orbitals: if a Slater determinant is built from perfectly localized orbitals (in the sense of

no overlap of the squared orbitals), the squared Slater determinant is the sum of squares of

all possible Hartree products. The attractors of the squared determinant are then composed

of the 3D attractors of the squared orbitals—this has already been pointed out by Scemama

et al.18 While the VB orbitals cannot be perfectly localized (otherwise there would be no

bonding), a good agreement of the all-electron attractors with the squared orbitals attractors

is still expected.

Computational Approach

The VB program XMVB33,34 has been used for all VB calculations. The integrals have

been prepared with Gaussian 16.35 The Molpro36 package has been used for all CASSCF

calculations. Experimental geometries are taken from NIST Computational Chemistry Com-

parison and Benchmark Database37 for the following molecules: HF and HCl from the NIST

Diatomic Spectral Database.38 H2O2 from Redington et al.39 O3, SO2, C2H6, and NH3 from

Herzberg.40 N2H4 from Tsuboi and Overend.41 H2 and F2 from Huber and Herzberg.42 H2O

from Hoy and Bunker.43 BH3 from Kuchitsu.44
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The all-electron triple-ζ Slater type basis set TZPae45 by van Lenthe and Baerends has

been used for the all-electron calculations. For the Gaussian and Molpro calculations the

basis functions have each been expanded into 14 primitive Gaussian type functions.46,47 The

energy-consistent pseudopotentials by Burkatzki et al.48 with the triple-ζ basis set (BFD-

VTZ) have been used for ozone and sulfur dioxide. The PDA as well as the stochastic EDF

analysis have been performed with our in-house codes Amolqc and inPsights. The PDA

integral in Equation 11 is calculated by Monte Carlo integration: samples of the all-electron

position vector R drawn from P (R) are obtained during a variational quantum Monte Carlo

run. Local optimization of P (R) (small-step gradient following) is used to identify the

attractor of the basin each 3N-dimensional sample point is in.

The EDF integral in Equation 9 is also calculated by Monte Carlo integration, but with

local optimization of ρ(r), which is obtained from a B3LYP49–52 density functional theory

calculation (with the VWN(III)53 local correlation energy) with Molpro.

Results and Discussion

Starting Simple: the Ionic Contribution in H2

There are several reasons to start with the sandbox molecule H2: it is easy to understand,

two-particle density surface plots on the bond axis can be visualized, the two-particle density

is simply the probability density (ρ2(r1, r2) = P (R)), and it was investigated by Ferro-Costas

et al. for comparison of QTAIM with VB theory.29

The hydrogen molecule is oriented along the z-axis, with the mass center at the ori-

gin. The protons are labelled A and B and placed at rA (0, 0,−dHH/2) and rB (0, 0, dHH/2)

respectively. The wave function is built from the two 1s orbitals ϕA(r) and ϕB(r) with

overlap s.
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A flexible VB wave function is investigated with all methods:

ΨVB
H2

(R) = NVB
H2

[
(1− η) Ψcov.

H2
(R) + ηΨion.

H2
(R)

]
(12)

NVB
H2

is the normalization factor, and η controls the contribution of the two normalized VB

structures (covalent and ionic)

Ψcov.
H2

(R) =
1√

2 + 2s2
[ϕA(r1)ϕB(r2) + ϕB(r1)ϕA(r2)]

Ψion.
H2

(R) =
1√

2 + 2s2
[ϕA(r1)ϕA(r2) + ϕB(r1)ϕB(r2)] .

(13)

For η = 1/2, Equation 12 yields the Hartree-Fock (HF) wave function σ2
g .

QTAIM and EDF

In the electronic density ρVB
H2

(r), the ionic coefficient η appears only in the product η (1− η).

The density is thus equal for η and 1− η:

ρVB
H2

(r) =

(
NVB

H2

)2
s2 + 1

[
(q + 1)

(
ϕ2
A(r) + ϕ2

B(r)
)
− 2 (q − s)ϕA(r)ϕB(r)

]
, q = 2η (1− η) (s− 1)

(14)

Therefore, the ionic and covalent VB structures give rise to an identical electronic density

which is already mentioned in textbooks.54 It also follows, that—for the chosen wave function

ansatz—the mapping ρH2
(r)→ ΨH2

(R) is only unique for the HF wave function (η = 1/2).

For any η, due to symmetry, the real space R3 is trivially divided into two Bader basins:

ωA = {r ∈ R3|r3 < 0}, ωB = {r ∈ R3|r3 > 0} (15)

In order to determine the covalent and ionic contributions of any approximate wave function,
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the norm of the probability density (which is also the two-particle density) can be partitioned:

||PH2
(R)|| = 1 =

∫
R3

dr1

∫
R3

dr2 PH2
(R)

=

(∫
ωA

dr1

∫
ωB

dr2 +

∫
ωB

dr1

∫
ωA

dr2 +

∫
ωA

dr1

∫
ωA

dr2 +

∫
ωB

dr1

∫
ωB

dr2

)
PH2

(R)

= WEDF
cov. +WEDF

ion.

with WEDF
cov. =

(∫
ωA

dr1

∫
ωB

dr2 +

∫
ωB

dr1

∫
ωA

dr2

)
PH2

(R)

and WEDF
ion. =

(∫
ωA

dr1

∫
ωA

dr2 +

∫
ωB

dr1

∫
ωB

dr2

)
PH2

(R)

(16)

Note that this partitioning is actually the application of the EDF method by Mart́ın Pendás

and coworkers with the covalent partition SAB = (1, 1) and the ionic partitions SAA = (2, 0)

and SBB = (0, 2).

Note also that, in contrast to the work by Ferro-Costas et al.,29 the whole two-particle

density is taken into consideration and not just its exchange-correlation component. The

reported conceptual incompatibilities of VB theory and QTAIM are owed to the neglect of

ρ(r1)ρ(r2) which becomes PH2
(R) in the dissociation limit. In accordance with Ferro-Costas

et al., we define

I =

∫
ωA

dr |ϕA(r)|2 =

∫
ωB

dr |ϕB(r)|2 (17)

WEDF
ion. is a function of η, I, and s with the latter two depending on dHH:

WEDF
ion. =

(s− 1)2 η2 − [s2 − 2s− 4I (I − 1)] η + s2

2
− 2I (I − 1)

s2 + 1− 2η (1− η) (s− 1)2
(18)

VB Theory

The structure overlap matrix SH2
is given as

SH2
=

 1 Sic

Sic 1

 , Sic =
2s

s2 + 1
(19)
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with the ionic-covalent overlap Sic. Its inverse and square root can be calculated as:

S−1H2
=

 S−1 −SicS
−1

−SicS
−1 S−1

 , S−1 =
1

1− S2
ic

(20)

S
1/2
H2

=

 S
1/2
+ S

1/2
−

S
1/2
− S

1/2
+

 , S
1/2
± =

1

2

(√
1 + S2

ic ±
√

1− S2
ic

)
(21)

The three VB weights of the ionic structure are calculated according to Eqs. 3-6:

WCC
ion. =

(
N

H2
VB

)2 (
η2 + η (1− η)Sic

)
W Löw.

ion. =
(
N

H2
VB

)2 (
ηS

1/2
+ + (1− η)S

1/2
−

)2
W inv.

ion. =
η2

η2 + (1− η)2

(22)

Note that W inv.
ion. is independent of dHH: S−1 cancels out because S−1H2

is persymmetric. It is

thus for this system equal to the renormalized weight W ren.
K = C2

K/
∑

LC
2
L which is later in

this work omitted due to its independence of the overlap matrix.

PDA

Four attractors R1-R4 of PH2
(R) are identified with PDA (see Fig. 2a): R1 = (rA, rB),

R2 = (rB, rA), R3 = (rA, rA), and R4 = (rB, rB). The attractors R1 and R2 have one

electron at each core and can thus be assigned to the covalent structure, while R3 and R4

are assigned to the two ionic structures. A covalent and an ionic basin can be defined as

unions of the respective basins of attraction Ω1-Ω4, which partition R6.

Ωcov. = Ω1 ∪Ω2, Ωion. = Ω3 ∪Ω4 (23)

WPDA
ion. is obtained by solving the integral of Equation 11 for Ωion. with Monte Carlo integra-

tion. Figure 2 shows a comparison of the PDA basins and the QTAIM integration domains
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defined in Equation 16 which are used for EDF.

(a) PDA basins Ω. (b) QTAIM domains D used for EDF.

Figure 2: PH2
(r1, r2) with η = 0.1 and dHH = 1.40 a0 for r1 = (0, 0, z1) and r2 = (0, 0, z2)

(both electrons on the bond axis). The four peaks are the four attractors R1-R4. The
covalent domain is depicted in red, the ionic domain in blue.

Comparison

The presented ionic weight definitions are functions of the ionic coefficient η and of the

proton-proton distance dHH, on which s and I depend. The weight-coefficient dependency is

shown in Figure 3 for all definitions at three distances.
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Figure 3: Different ionic weight definitions as a function of the ionic coefficient η. Comparison
for three different proton-proton distances.

In the dissociation limit, all definitions agree: they converge to C2
ion., since Sic → 0.

In the fused-core limit, W Löw. and WEDF converge to 1/2, WCC converges to η, and WPDA

seems to converge towards the distance-independent W inv..

At all distances, all weight definitions agree for the Hartree-Fock wave function (η = 1/2).

At the equilibrium distance (dHH = 1.40a0), W
PDA is in between WCC and W inv., which are

the most widely used VB weights. The EDF and Löwdin weights are qualitatively different

from the other definitions, since they give a significant ionicity larger than 35% for η = 0.

This qualitative difference should always be kept in mind when discussing VB weights.

A last remark should be added regarding the inverse weights: in contrast to a claim in the

original publication, the inverse weight definition does not—in general—‘diminish the im-

portance of the ionic terms’. It rather—due to the sigmoidal shape of the curve—diminishes

the importance of terms, which already have a low importance.

Ionic Contributions in Single Bonds

The ionic contribution to any single bond can be calculated similarly to the analysis of

H2 described in the previous section. However, the attractors in R3N are not as trivial
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with electron positions away from the nuclei.21,22 The mapping of attractors Ri to VB

determinants can still be done visually, as shown in Figure 4 for difluorine.

(a) covalent (84 %) (b) ionic 1 (8 %) (c) ionic 2 (8 %)

Figure 4: Three attractors of difluorine with VBSCF(2,2). PDA weights in brackets. The
fluorine nuclei are depicted as green spheres, electrons as small red or blue spheres depending
on their ms quantum number. Pairs of spin-up and spin-down electrons are connected by
purple lines in order to highlight the resemblance to the VB structures.

Homoatomic Bonds

The ionicities for the homoatomic bonds in dihydrogen, ethane, hydrazine, hydrogen per-

oxide, and difluorine have been calculated using VBSCF(2,2)/TZPae wave functions (see

Fig. 5). Again, a good agreement can be observed between the PDA and the inverse weight

and between the EDF and the Löwdin weight. The results confirm the qualitative difference

between these two pairs of definitions.

Figure 5: Ionic contribution according to different definitions for homoatomic bonds.

Since the EDF and PDA weights can be calculated for arbitrary wave functions, the

VBSCF(2,2) wave functions are compared with the corresponding CASSCF(2,2) ones in

Figure 6. Except for the PDA weight of the C-C bond in ethane, the results of the different
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wave functions are in good agreement which is expected since both methods are similar and

can even be identical in a minimal basis. The larger difference for WPDA in ethane could

result from the inactive orbitals being delocalized in CASSCF and block localized in VBSCF.

Figure 6: Ionic contribution from EDF and PDA calculations for CASSCF and VBSCF wave
functions.

Heteroatomic Bonds

For hydrogen containing heteroatomic bonds (with VBSCF/TZPae wave functions), the

PDA and inverse weights are again found to be in good agreement (see Fig. 7). In contrast

to the homoatomic bonds the weights of the two ionic structures are no longer identical due

to the lack of symmetry. The PDA and inverse weights are also in good agreement for the

resulting individual ionic structures contributions (‘X|− H+’ and ‘X+ |H−’).
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Figure 7: Ionic contribution according to different definitions for hydrogen containing het-
eroatomic bonds. The darker coloured parts of the bars are the contributions of the respective
hydride ionic structures.

Double Bonds

The characterization of double bonds is only indirectly possible with methods based on the

one- or two-electron density like QTAIM and even EDF.

Ethylene

The double bond in ethylene has two different VB representations: the σ-π picture that is

widely taught and applied in organic chemistry and the τ -bond where sp3 hybrids form two

‘banana bonds’, see Fig. 8.
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(a) sp3-hybrids forming τ bonds (Pauling). (b) σ-π representation (Hückel).

Figure 8: Alternative sets of hybrid atomic orbitals for describing the double bond in ethylene
with VB theory.

VBSCF(4,4) wave functions built according to the two pictures give rise to almost the

same electronic energy. This is expected, since unitary transformation of active orbitals

with a subsequent CI optimization does not alter the wave function. There is thus, at first

sight, no representation generally favorable. However, if restricted to the most important

VB structure, the σ-π wave function is lower in energy by about 13.7 mEh. If restricted to

3 structures, this difference reduces to 2.4 mEh (see Fig. 9). For three structures and for the

full twenty structures, the energies of the VBSCF(4,4) wave functions are in between the HF

energy and the CASSCF(4,4) energy. The energy difference between the CAS and full VB

calculations arises largely due to the block localization of the inactive VB orbitals.

Figure 9: Electronic energies of different wave functions of ethylene. The optimized active
orbitals of the full VB wave functions are shown in Figure 8.
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The three by inverse weight most important VB structures of the τ VB wave function

are depicted in Figure 10.

••
••

(a) cov. (full 55%, 3 str. 84%)

••
••

(b) ionic 1 (full 9%, 3 str. 8%)

••
••

(c) ionic 2 (full 9%, 3 str. 8%)

Figure 10: The three most important VB structures of the τ VB wave function with inverse
weights for both, the full (20 structure) wave function and the three structure wave function.

When applying PDA to the VBSCF(4,4) or CASSCF(4,4) wave functions of ethylene,

three kinds of attractors are found, see Fig. 11. Note that the two ionic structures are

found more frequently in correlated wave functions.22 These attractors can be rationalized

by comparing them to the schematic VB structures of the τ picture in Figure 10. Nearly

identical PDA weights are obtained for the both full VB wave functions and the CAS wave

function.

(a) covalent (97.1 %) (b) ionic 1 (1.4 %) (c) ionic 2 (1.4 %)

Figure 11: Three attractors of ethylene with full VBSCF(4,4). PDA weights in brackets.
The carbon nuclei are depicted as dark grey spheres, protons as light grey spheres, electrons
as small red or blue spheres depending on their ms quantum number. Pairs of spin-up and
spin-down electrons are connected by purple lines in order to highlight the resemblance to
the VB structures.

The EDF analysis of the investigated wave functions reproduces the distribution pre-

sented by Mart́ın Pendás and Francisco.17 The EDF analysis with Bader basins cannot dis-

tinguish between the three structures in Figure 10 since they have the same formal charges:

none. Thus—in order to compare PDA and VB weights with the partition probabilities—

the 20 VB structures are grouped according to the distribution of electrons to the CH2

fragments: in 10 structures, they are distributed evenly (i.e. (8,8)). In 8 structures, both
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fragments have an absolute partial charge of 1 (i.e. (7,9) and (9,7)) and in 2 structures, the

absolute partial charge is 2 (i.e. (6,10) and (10,6)). The sum of the weights of the respective

structures can directly be compared to the partition probabilities which are again taken as

EDF weights—e.g. WEDF
(8,8) = p((8, 8)). Note, that the three structures of Figure 10, which

are found as PDA attractors (Fig. 11), are all in the group (8,8).

For the defined groups of structures, the PDA weights again agree best with the inverse

VB weights (Fig. 12). They are however qualitatively different since only (8,8) structures are

found with PDA. The EDF weights are again in good agreement with the Löwdin weights.

The EDF and PDA weights of the groups are equal up to 1% for the two full VB wave

functions and the CAS wave function. The same is true for the VB weights of both full VB

wave functions. Figure 12 thus only shows the results for the full τ VB wave function.

Figure 12: Weights of groups of VB structures for ethylene. The groups are defined to match
with the EDF partitions.

In summary, it can be stated that there are arguments for both double bond pictures in

ethylene. While the σ-π picture allows for more compact wave functions, the τ picture is

found with PDA for both VB wave functions as well as for the CAS wave function. The most

likely arrangement of electrons is thus in agreement with Paulings τ bonds. Furthermore,

the close link between VB theory, QTAIM/EDF, and PDA is confirmed for the double bond

in ethylene.
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Figure 13: Six structures of the π system in general 1,3-dipoles. Labels are taken from
Bräıda et al.30

In VB theory, ozone is described best by six π resonance structures, see Figure 13. Harcourt

was the first to stress the importance of the diradical ‘long bond’ structure D.55 Goddard

et al.56 and later Hiberty et al.57 verified Harcourts assumption with GVB calculations and

CASSCF expansions respectively. Wu et al. were the first to perform modern VB calcula-

tions on ozone and sulfur dioxide.58 Bräıda et al.59 explained the reactivity of 1,3-dipoles

toward ethylene and acetylene with the weight of the diradical structure, but investigated

neither O3 nor SO2. Lan et al.60 then took up that work and investigated ozone and sulfur

dioxide with similar modern VB methods. They found ozone to be similar to the dipoles

calculated by Bräıda et al., but SO2 dominated by the multi-ionic structure MI. Further-

more, they found a good agreement with natural population analysis charges. More recently,

Miliordos and Xantheas found ozone to have more diradical character than sulfur dioxide

with CASSCF-based icMRCI wave functions although with substantially smaller magnitudes

of the diradical contributions.61 In their work, they adjusted earlier diradicality indices.62,63

Even more recently, Bräıda et al. found a good correlation of some of these indices with

VB weights (Chirgwin-Coulson and inverse definition) for 1,3-dipoles built from sulfur and

oxygen.30

For ozone, the structures D, Z1, and Z2 are the three most important structures. Thus,

the VB wave functions with only these three structures are compared with the full VBSCF
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wave functions (six structures) and, additionally, with the CAS and HF wave functions. The

CAS analogue to the VBSCF wave functions built with the six π structures of Figure 13 is

CASSCF(4,3).

The dominant attractors of ozone in PDA with VBSCF(4,3)/BFD-VTZ are shown in

Figure 14. Two σ bond electron pairs, the lone pairs, and one additional pair are indicated

with a line in the figure. These attractors can clearly be identified with the VB structures

D, Z1, and Z2. Since the σ orbitals are inactive in the VB wave function, both covalent and

ionic electron arrangements are found for the two σ bonds, analogously to the attractors in

H2 discussed above. Nonetheless, all ionic and covalent arrangements in the σ bonds can can

still be mapped to the VB structures D, Z1, or Z2, see Figure 16 in the Appendix. Analogous

attractors are found for SO2 with a corresponding three-structure VBSCF(4,3)/BFD-VTZ

wave function (Fig. 17 in the Appendix). Here, the σ electron pairs are always on the oxygen

side, which is expected for polar bonds treated on single-configuration level (i.e. inactive in

the VB wave function). The weights of the VB wave functions for O3 and SO2 are shown

in Figure 15 with the weights for the three-structure VB wave functions displayed on the

left sides of the diagrams. For the three-structure wave functions, the PDA weights are in

good agreement with all VB weights for both systems and, as described in the literature, the

weight of the diradical structure D is larger in ozone.

(a) D (88.2 %) (b) Z1 (5.7 %) (c) Z2 (5.7 %)

Figure 14: Three attractors of ozone with VBSCF(4,3). PDA weights in brackets. The
oxygen nuclei are depicted as red spheres, electrons as small red or blue spheres depending
on their ms quantum number. Pairs of spin-up and spin-down electrons are connected by
purple lines in order to highlight the resemblance to the VB structures.

The additional three structures (Z3, Z4, MI) do not change the picture for ozone as

the additional weights are small. For sulfur dioxide however, the multi-ionic structure MI
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is roughly as important as the diradical structure D according to the three established

VB weight definitions. In contrast to these definitions, the PDA weight of the multi-ionic

structure MI is nearly 100% (only the zwitterionic structures Z1 and Z2 have a non-zero

PDA weight of ≈ 0.03%). The dominating MI attractor is shown in Figure 17b in the

Appendix.

(a) ozone (b) sulfur dioxide

Figure 15: Structure weights for the VB wave functions of ozone and sulfur dioxide. Weights
of the three-structure wave functions on the left, respectively.

For the CAS wave function of ozone, the weights are in almost perfect agreement with

the full VB wave function weights shown in Figure 15a. The HF wave function of ozone

is qualitatively different with the multi-ionic structure MI and the zwitterionic structures

(Z1, Z2) dominating by PDA weight. HF, CAS, and the full VB wave function for sulfur

dioxide all result in a multi-ionic (MI) PDA weight of 100%. The agreement of HF with

CAS is not surprising as the weight of the HF determinant in the CASSCF function is 96%

compared to 80% for ozone. Overall, PDA confirms the qualitative difference between ozone

and sulfur dioxide described by VB methods with ozone dominated by the diradical electron

arrangement while in sulfur dioxide the multi-ionic arrangement is important.
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Conclusion

In order to compare real space methods with VB theory, EDF and PDA structure weights

have been defined. There are three notable advantages of these definitions over the estab-

lished VB weights: first, they are applicable to any wave function. Second, they are still

meaningful in the basis set limit where VB theory collapses. And third, they are (theoreti-

cally) applicable to experimental probability distributions. Both real space weight definitions

give results comparable to VB theory.

The analytical calculations for H2 showed that the EDF weight is close to the Löwdin

one, but qualitatively different from the other definitions. This result was confirmed for

the homoatomic single bonds and for the partitions in ethylene. The PDA weight is best

compared to the inverse weight of VB theory.

While the PDA results for ozone agreed well with the VB weights and the contributions

discussed in the literature, the results for SO2 show a large deviation from the VB weights.

Yet, the PDA results can also explain the different reactivities of the two 1,3-dipoles.

Overall, PDA has proven to be a powerful tool that captures the many-electron nature

of molecular wave functions and may become an important contribution to modern bond

classification.
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Appendix

(a) D – left covalent (b) D – left ionic 1 (c) D – left ionic 2

Figure 16: Three attractors of ozone with VBSCF(4,3). The oxygen nuclei are depicted as
red spheres, electrons as small red or blue spheres depending on their ms quantum number.
Pairs of spin-up and spin-down electrons are connected by purple lines in order to highlight
the resemblance to the VB structures.

(a) D (13 %, 3 strs.) (b) MI (100 %, full)

(c) Z1 (43 %, 3 strs.) (d) Z2 (43 %, 3 strs.)

Figure 17: Four attractors of sulfur dioxide with VBSCF(4,3). PDA weights in brackets.
The oxygen nuclei are depicted as red spheres, the sulfur nucleus as a yellow sphere, electrons
as small red or blue spheres depending on their ms quantum number. Pairs of spin-up and
spin-down electrons are connected by purple lines in order to highlight the resemblance to
the VB structures.
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