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ABSTRACT: Isolation of underivatized PACs led to three new, structurally unique PACs (1-3) from
pine bark. Pinutwindoublin (1) is the first known trimer with double A-type interflavanyl linkages
(2a—>0—-5,4a—6 and 2a—>0—7,4a—8). Pinuspirotetrin (2) represents the first PAC tetramer with a
heterodimeric framework consisting of one spiro-type and one A-type dimer. Pinumassohexin (3) was
elucidated as a mixed A + B type hexamer that consists of the tetramer, peanut procyanidin E, and an A-
type dimer (5).

The bark of the pine species, Pinus massoniana, is a rich source of proanthocyanidins (PACs), a
phylogenetically ancient group of polyphenols that occur ubiquitously in vascular plants. Accordingly,
PACs inevitably impact human life via nutrition and medicine. Representing a group of vast structural
diversity, PACs exhibit a broad spectrum of bioactivities.>” Specific to pine bark, a series of tri- and
tetrameric PACs has the demonstrated capability of enhancing the biomechanical properties of dentin and
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instill resistance to proteolytic dentin degradation.®’ Continuing these interdisciplinary efforts at the in-
terface of natural products chemistry and dentistry, exploration of structurally unique compounds from
bioactive PAC oligomer fractions led to three structurally distinctive new PACs (1-3) (Figure 1).
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Figure 1. Novel structures 1-3 with color coded constituent catechol monomers, compared with the
known dimers, 4-7.

Pinutwindoublin (1) is the first A-type-only trimer linked with (2a—0—5,4a—6) and
(2a—>0—7,4a—8) bonds. This unprecedented linkage combination is the plausible reason for the ob-
served atropisomeric line-broadening in its NMR spectra, which otherwise is atypical of A-type PACs.
Pinuspirotetrin (2) represents the first PAC with a heterodimeric framework consisting of a spiro-type
dimer connected with an A-type dimer. Also characterized in underivatized form, and exhibiting dentin
bioactivity, pinumassohexin (3) was elucidated as a hexameric PAC with mixed A+B-type interflavanyl
linkages (IFLs), assembled from the known tetramer, peanut procyanidin E,® and the dimer, epicatechin-
(2—0—7,4—8)-ent-catechin (5),%° via a 436 bond. Structure elucidation of 1-3 utilized 1D/2D NMR,



ECD, *C NMR j-gauche effects, as well as phloroglucinolysis, a recently established toolbox for absolute
stereochemical assignments in PACs.®

The molecular formula CasH34018 of 1 was determined using the 3C NMR carbon counts and the
(+)-HRESIMS ion at m/z 863.1823 [M + H]*. Two pairs of characteristic AX-resonances at o+ 3.87 and
4.26 (both d, J = 4.0 Hz), as well as o+ 4.22 and 4.87 (both d, J = 4.3 Hz), revealed the presence of two
doubly linked interflavanyl bonds and, in connection with the molecular formula, indicated the 2A-type
trimer nature of 1. The NMR data (Table S1) showed the characteristic 'H AMX patterns of the three
1,3,4-trisubstituted aromatic B-, E-, and H-rings. Additionally, a small J coupling (<1 Hz) between I11-H-
2 and I11-H-3 suggested the terminal unit 11l to be 2,3-cis configured (ent)-epicatechin. The IFLs were
elucidated via HMBC and NOESY data (Figure S1): the presence of 2—>0—7/4—8 linkages between
units 1l and 111 was assigned by the HMBC cross-peaks from both 11-H-4 (é+ 4.87) and 111-H-2 (61 4.96)
to 111-C-9 (o&c 152.4). The NOESY correlations from 11-H-8 to 11-H-2" and 11-H-6', and from I-H-2' to I1-
H-4 and 111-H-2 indicated that 2—0—5/4—6 bonds connected units | and I1. This established the planar
structure of 1.

The absolute configuration of 1 was gleaned from ECD and NOESY data (Figure S1). Due to a high-
amplitude negative Cotton effect (CE) in the diagnostic region 220~240 nm (Figure 2A), the C-4 aryl
functionalities in both units I1 and 111 were determined to be a-configured.1%2 The absolute configuration
of C-4 in units I and Il were, thus, assigned as S and R, respectively (note the change in Cahn-Ingold—
Prelog priorities due to different connections, causing different stereodescriptors for spatially identical
configurations at both C-4).22 Taking into account the 2,4-cis configuration in A-type PACs,* units /11
and I1/111 had to be doubly connected via (2a—0—5,4a0—6) and (2a—0—7,4a—8) IFLs, respectively.
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Figure 2. Full ECD spectra (A) of 1, 5, and 7 with expansions for the diagnostic range 260—320 nm (B).

A NOESY correlation between 11-H-3 and I11-H-6 indicated a 3,4-trans configuration in the F-ring, thus
11-C-3 was S-configured.'* Comparison of the tendency of ECD curves of 1 in the diagnostic region
280~300 nm with those of procyanidin A2 (5)8 and procyanidin A5 (7)8 revealed that 1 is closely mirror
symmetric to 7 (Figure 2B). Thus, the partial structures of units Il and I11 in 1 were assigned to be enan-
tiomeric to those in 7. This was consistent with the R-configuration of 111-C-2 deduced from the negative
CE at 280~300 nm,'%!! and the NOESY correlation of I1-H-4 and 111-H-6'. Finally, 1-H-3 had to be £



oriented based on NOESY correlations between 1-H-3 and both 111-H-2 and I11-H-6". Accordingly, 1 was
assigned as ent-epicatechin-(2a—>0—5,4a—6)-ent-epicatechin-(2a—>0—7,4a—8)-epicatechin.

This makes 1 the first reported double A-type trimer with an unusual (2a—>0—5,4a—6) IFL. Re-
stricted rotation along the C-4 aryl (sp3-sp?) carbon-carbon bond is otherwise only typical for B-type
PACs, thereby giving rise to atropisomerism and often severe NMR line broadening at ambient tempera-
ture. In contrast, A-type PACs, with two IFLs, generally do not exhibit atropisomerism due to the rigidity
of the double linkage.®***> Improving *H NMR lineshapes of 1 required acquisition at low temperature
(255 K; Figure 3). The unexpected dynamic peak broadening of 1 despite its two double linkages indicated
that the combination of (2a—>0—5,4a—6) and (2a—0—7,4a—8) IFLs poses sufficient steric hindrance
for restricted rotation between rings B and H to generate observable atropisomers, thus leading to NMR
line-broadening.
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Figure 3. The *H NMR spectra of 1 acquired in CD30D under the following conditions: A) 298 K at 400
MHz, NS = 64; B) 278 K at 800 MHz, NS = 64; C) 255 K at 800 MHz, NS = 128.

PAC tetramer 2 exhibited a molecular ion at m/z 1149.2291 [M + HJ* in the (+)-HRESIMS, corre-
sponding to a molecular formula CeoH44024, as supported by the 3C NMR data. Lower temperature (255
K) was applied during the 1D and 2D NMR experiments to overcome line broadening due to atropisom-
erism (Figure S10).514® Analysis of the *H NMR spectrum showed four AMX spin systems, correspond-
ing to four 1,3,4-trisubstituted aromatic rings (B/E/H/K). Three singlets at o+ 5.90, 5.96, and 6.16, as well
as two meta-coupled doublets at o4 6.02 and 6.03 (J = 2.3 Hz) showed the presence of aromatic rings J,
G, D, and A, and further confirmed the tetrameric nature of 2. Two sequential spin systems (o4 3.70 and
4.44, both d, J = 3.5 Hz; and 61 5.30, 3.95, and 4.47, each brs) that assigned by the COSY data (Figure
4A), indicated the presence of one double (A-type) and one single (B-type) IFL of 2. Units Il and IV were
identified as (ent)-epicatechin and (ent)-catechin, respectively, based on the J2,3 values of ~0 and 6.3 Hz.

Unusual features involved an oxygenated methine (61 5.81, s, and o&c 88.2) that showed HMBC corre-
lations with the carbonyl carbon at 6c 177.0 assigned to a j-lactone, and a spiro carbon resonating at oc
61.4. Both are characteristic for a spiro-biflavanoid similar to larixinol.}"*® Linkages between the four
units were further elucidated by HMBC and NOESY (Figure 4). Units I and Il were recognized as being
connected by double (2—>0—7/4—8) IFLs based on the I-H-4/11-H-2 NOESY correlation, as well as shift
of 11-C-8 (¢ 106.3).7° The presence of a 4—8 linkage between units 11 and 111 was deduced from the
cross-peaks between Il1-H-2 and both I11-H-2" and I11-H-6" in NOESY spectrum. The spiro-biflavanoid
arrangement of units 111 and 1V was corroborated by the HMBC correlations from I11-H-2 to 111-C-3, I11-
C-4, 111-C-10, 111-C-2', 111-C-6', and IV-C-8; from 1VV-H-2 to IV-C-9; and from IV-H-6 to IVV-C-5 and IV-
C-7. Thus, the planar structure of 2 had to be the first tetrameric spiro-PAC, consisting of one A-type and



one spiro-type dimer. Analysis of its ECD spectrum showed a high-amplitude positive Cotton effect in
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Scheme 1. Proposed biosynthetic pathway for the formation of the spiro element in PAC tetramer 2.

the region 220~240 nm (Figure S2), characteristic for p-substituted flavan-3-ol moieties,*®*2 confirming
the absolute configuration of the spiro center 111-C-3 as being S.*® The absolute configurations of the C-4
centers in both units I and 11 were thus assigned as R-configured. I-C-2 was S-configured based on the
inherent 2,4-cis configuration in A-type PACs.®®* A NOESY correlation between 1-H-3 and 11-H-6 indi-
cated H-3 and H-4 in the C-ring to be trans, thus I1-C-3 was R-configured.!! The upfield shift of 11-C-2 (&
78.7) suggested a 2,4-trans-configuration in the F-ring based on the j~gauche effect.2%2! Unit 1l was,
therefore, epicatechin (2R, 3R), which was confirmed by the NOESY correlations between I1-H-2/111-H-
2' and I11-H-6". NOESY correlations from Il1-H-2 to 1V-H-3, IV-H-2', and 1V-H-6" assigned I11-C-2 as
R-configured, which determined the terminal unit IV as catechin (2R, 3S). In conclusion, the structure of
2, was assigned unambiguously as shown and named as pinuspirotetrin.

The molecular formula CeoHesO36 gleaned from (+)-HRESIMS and *C NMR carbon counts identi-
fied 3 as a hexamer with 3A+2B IFLs. The close resemblance of the *H and *3C NMR resonances of units
I/1V and 111/V, as well as their congruence with reported data of the major tetramer from peanuts, peanut
procyanidin E,® suggested this tetramer plus an additional A-type dimer as building blocks of 3. Its H
NMR spectrum revealed three AX-type doublet pairs (o1 4.13 and 4.47,J = 3.4 Hz; o1 4.17 and 4.38, J =
3.6 Hz; and o1 4.12 and 4.23, J = 3.6 Hz), which corroborated the presence of three doubly linked A-type
motifs. Similarly, two B-type single bond linkages were assigned by the observed two sets of three cou-
pled methines resonating as broad singlets at o4 5.27, 4.04, and 4.74 as well as on 5.42, 3.89, and 4.78.
All three A-type IFLs were assigned as 2/—~>0—7/4—8 via NOESY correlations (Figure S22) from H-
4 (rings C, I, and O) to H-2 (rings F, L, and R), as well as a strongly positive Cotton effect in the region
220~240 nm (Figure S2). The 3-OH functional groups in rings C, I, and O had to be trans-oriented relative
to H-4 based on the NOESY correlations from H-3 (rings C, I, and O) to H-6 (rings D, J, and P). The two
43—6 linkages were deduced from the chemical shifts of C-6 (oc 110.5 in the G-ring, and 6c 111.0 in the
M-ring) and ECD evidence. Units Il and 1V were both elucidated as epicatechin by the singlet signals of
I1-H-2 and 1VV-H-2, and the upfield shifted C-2 (&c 78.7 in F-ring, and &c 79.9 in the L-ring) to the corre-
sponding carbon in 4 (& 81.6).8 Phloroglucinolysis® confirmed the absolute stereochemical assignments.
Analysis of the reaction products used a combination of chiral HPLC and MS (Figure S24) to verify that
4 and 5 are the basic components of 3. Collectively, this assigned the structure of pinumassohexin (3)
unambiguously as [PAC 5]-(44—6)-[PAC 5]-(45—6)-[PAC 4].
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Figure 4. (A) Selected COSY (bold bond), HMBC, and (B) NOESY correlations in 1.

Pinuspirotetrin (2) represents the first heterodimeric framework in any PAC, consisting of a spiro-
type dimer (2a) and an A-type dimer (5). Scheme 1 shows a plausible biosynthetic pathway for 2, which
rationalizes the spiro dimer 2a as resulting from intermediates (i—ii—2a) via oxidative flavanone-flavo-
nol conversion.?

While all isolates stemmed from a bioactive fraction, only 3 could be evaluated for dentin bioactivity
due to limited yields. Hexamer 3 increased the modulus of elasticity of dentin by 4.3-fold, a value between
those of A-type dimers (4-7) and the most highly potent trimer and tetramers. This further supports the
overall hypothesis that medium-size (n = 3 and 4) PACs elicit the highest increase in key mechanical
properties of dentin. These enhancements to the dentin have promising therapeutic application for the
development of novel dental biomaterials. A comprehensive structure and bioactivity relationships of
PACs will be reported in due course. While the structural novelties of 1 and 2, and the unusual size and
complexity of 3 did not infer bioactivity in the dentin bioassays, they contribute valuable SAR information
and expand the 3D chemical diversity space of condensed tannins.
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Table S1. *H (800 MHz) and 3C NMR (100 MHz) data of 1-3 in CD3OD.
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1a

H (mult., J in Hz)

3.87,d (4.0)
4.26,d (4.0)

5.92, d (1.9)

5.87,d (1.9)

7.29,d (2.1)

6.76,d (8.2)

6.90, dd (8.3, 2.1)

4.22,d (4.3)
4.87,d (4.3)

6.25,s

6.98,d (2.2)

6.74,d (8.1)
6.92,dd (8.1, 2.2)
4,96, s
4.28, m

13C
100.5
65.1
29.7
155.2
97.3
157.9
96.1
154.8
105.3
131.7
116.1
145.2
146.6
1151
120.3
101.1
68.7
30.4
150.8
108.5
153.1
97.4
154.6
105.9
131.5
1154
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Data were acquired at 255 K and 278 K.
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Figure S1. (A) Selected COSY (bold bonds), HMBC, and (B) NOESY correlations (arrows) in 1.
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Figure S2. The ECD spectra of 2 and 3.
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m EXPERIMENTAL SECTION
General Experimental Procedures

HRESIMS measurements were carried out using a Bruker (Billerica, MA, USA) Impact Il
quadrupole time-of-flight (qTOF-) spectrometer. The ECD spectra were acquired on a JASCO-
715 spectrometer. Samples for ECD experiments were prepared in MeOH at < 0.1 mg/mL, and a
0.2 cm path length quartz cuvette was used. All *H 1D/2D NMR spectra were acquired at 255 K
or 278 K on an 800 MHz Bruker (Billerica, MA, USA) Avance spectrometer equipped with a 5
mm triple resonance inverse TCI RT probe. The C NMR experiments of all compounds were
performed on a JEOL (JEOL Resonance, Peabody, MA, USA) ECZ 400 MHz spectrometer. Silica
gel (230—400 mesh) was used for column chromatography. Cis reversed-phase (RP-18) silica gel
(20-45 um, MACHEREY-NAGEL, Bethlehem, PA, USA) and Sephadex LH-20 gel (Amersham
Biosciences) were used for column chromatography. Pre-coated silica gel GF2s4 plates
(MACHEREY-NAGEL, Bethlehem, PA, USA) were used for TLC monitoring. Semi-preparative
HPLC was performed on a Shimadzu HPLC (Kyoto, Japan) connected to a PDA detector
(Shimadzu, model SPD-20A) and equipped with a YMC-Pack ODS-AQ (250 x 10 mm, S-5um,
120 A; YMC America, Allentown, USA) or Chiralpak 1A (250 x 10.0 mm, S-5 um; Chiral
Technologies, West Chester, PA, USA) column. All solvents were of analytical grade from Fisher
Scientific (Hanover Park, IL, USA) or Sigma-Aldrich (St. Louis, MO, USA).

Plant Material

Extract powder of the inner bark of Pinus massoniana was purchased from Xi’an Chukang
Biotechnology in China in 2012 (No. PB120212).

Extraction and Isolation of PACs

12 g of enriched tri- and tetrameric proanthocyanidins, separated into 6.5 g of fraction A and 5.6
g of fraction B, were prepared from 200 g pine bark extract by centrifugal partition
chromatography (CPC) as described previously.! Both fractions A and B were chromatographed
on a Sephadex LH-20 column (ethanol), affording six (A1-A6) and seven subfractions (B1-B7),
respectively. Fraction B5 (800 mg) was separated over a RP-18 silica gel column (MeOH/H:20,
20-80%), and the two major subfractions B5b and B5c were then purified via semi-preparative
HPLC (18% ACN in 0.1% formic acid H20, 2.5 mL/min) to afford 1 (0.7 mg) and 2 (0.8 mg).



Compound 3 (20 mg) was purified from fraction B7 by semi-preparative HPLC (20% ACN in 0.1%
formic acid H20, 2.5 mL/min) after enrichment via a RP-18 silica gel column.

Phloroglucinolysis

Phloroglucinolysis was performed as described previously? to corroborate the absolute
configuration of 3. The identity of the reaction products was confirmed by chiral HPLC and MS
analysis (Figure S24).

Compounds properties

Pinutwindoublin (1): ent-epicatechin-(2a—>0—5,4a—6)-ent-epicatechin-2a—0—7,4a—8)-
epicatechin: light brown, amorphous solid; ECD (MeOH) Amax (Ag) 211 (+21.6), 232 (—20.8), 287
(-0.8) nm; *H and *3C NMR (CD30D, 255K), see Table 1, (+)-HRESIMS [M + H]* m/z 863.1823
(calcd for CasHss01s, 863.1818).

Pinuspirotetrin (2): Light brown, amorphous solid; ECD (MeOH) Amax (Ag) 207 (-3.2), 232 (+9.4),
270 (-0.8); *C NNMR (CDs0D, 255K), see Table 2; (+)-HRESIMS [M + H]* m/z 1149.2291
(calcd for CsoHas5024, 1149.2295).

Pinumassohexin (3): epicatechin-(2—0—7.4/—8)-epicatechin-(4 f/—6)-epicatechin-
(2p—0—17,4—8)-epicatechin-(2—0—7.,4 3—8)-epicatechin-(4f—6)-catechin: light brown,
amorphous solid; ECD (MeOH) Amax (A¢) 210 (=17.3), 228 (+19.3), 274 (-1.0); *H and *3C NNMR
(CDsOD, 278K), see Table 2; (+)-HRESIMS [M + H]* m/z 1725.3589 (calcd for CgoHe9Oss,
1725.3563).
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Figure S3. *H NMR spectrum of 1 in CD30D (800 MHz, 255 K).
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Figure S4. 13C NMR spectrum of 1 in CD3OD (100 MHz, 255 K).
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Figure S5. HSQC spectrum of 1 in CD3OD (255 K).

Figure S6. HMBC spectrum of 1 in CD3OD (255 K).
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Figure S7. NOESY spectrum of 1 in CD3OD (255 K).
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Figure S9. 'H NMR spectrum of 2 in CDs0D (800 MHz, 255 K).
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Figure S10. Comparison of the *H NMR spectra of 2 in CD30D at 278 K and 255 K (800 MHz).
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Figure S11. 3C NMR spectrum of 2 in CD30D (100 MHz, 255 K).
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Figure S12. *H-'HCOSY spectrum of 2 in CD30D (255 K).
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Figure S13. HSQC spectrum of 2 in CD3OD (255 K).
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Figure S15. NOESY spectrum of 2 in CDsOD (255 K).
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Figure S17. *H NMR spectrum of 3 in CD30D (800 MHz, 278 K).
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Figure S18. 13C NMR spectrum of 3 in CD3OD (100 MHz, 278 K).
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Figure S19. 'H-tHCOSY spectrum of 3 in CD30D (278 K).
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Figure S20. HSQC spectrum of 3 in CD30OD (278 K).
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Figure S21. HMBC spectrum of 3 in CDsOD (278 K).
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Figure S22. NOESY spectrum of 3 in CDsOD (278 K).
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Figure S24. Phloroglucinolysis products of 3 identified by chiral phase HPLC and MS
analysis.
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