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ABSTRACT: Metallocages offer a diverse and underexplored region of chemical space to search for novel 

catalysts and substrate hosts. However, the ability to tailor such structures towards applications in binding 

and catalysis is a challenging task. Here, we present an open-source computational toolkit, cgbind, that 

facilitates the characterization and prediction of functional metallocages. It employs known structural 

scaffolds as starting points, and computationally efficient approaches for the evaluation of geometric and 

chemical properties. To illustrate the applicability of cgbind, we evaluate the likelihood of 102 substrates 

to bind within M2L4 and M4L6 cages and achieve accuracy comparable or better than semi-empirical 

electronic structure methods. The cgbind code presented here is freely available at 

github.com/duartegroup/cgbind and also via a web-based graphical user interface at cgbind.chem.ox.ac.uk. 

The protocol described here paves the way for high-throughput virtual screening of potential 

supramolecular structures, accelerating the search for new hosts and catalysts.   
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1. Introduction 

Metal-mediated self-assembly has emerged as a promising approach to develop complex biomimetic 

systems from simple building blocks. The synthetic modularity and tunability, achievable by modifying the 

metal center or organic linkers, has led to the discovery of an immense diversity of supramolecular 

metallocages with applications in molecular separation1,2 medical imaging,3,4 drug-delivery5–7 and 

catalysis.8 Moreover, the dynamic nature of metal–ligand bonds, intermediate in strength between covalent 

bonds and weak non-covalent interactions (NCI), facilitates error correction and reversibility.9,10 The latter 

being more challenging to achieve with covalent organic cages.11  

Despite these attractive attributes, the development of new metallocages and their use in real-life 

applications has been slow, and in many cases driven by trial-and-error rather than rational design. To date, 

most reported binding studies have been limited to a relatively small set of guests and host combinations. 

This is primarily due to current synthetic techniques being time-consuming and expensive; while also 

limited in environmental sustainability.12 To fully exploit their potential, the development of efficient 

methods to identify structures with desirable binding or catalytic properties, without having to synthesize 

all possible structures, is necessary.  

Computational screening offers a path to overcome these limitations and accelerate the discovery process.13 

While reaching chemical accuracy (< 1 kcal mol-1 error), generally required for quantitative comparison to 

experiments remains a challenge,14 current computational and cheminformatic approaches already allow a 

fast sift of the desired space. For example, molecular descriptors15–17 and inverse design methods18 can be 

used to select (with reasonable accuracy) promising regions of the chemical space for further computational 

and eventually experimental study.19 Similarly, efficient electronic structure methods, in particular density 

functional theory (DFT), have enabled the calculation of structure and properties for hundreds of 

compounds in a single study.20,21 While these protocols are accessible for small organic molecules and 

periodic structures, extension of similar approaches in supramolecular assemblies has been much less 

explored.22 We have recently shown that an efficient DFT-based approach can reach a ~2 kcal mol-1 level 

of accuracy in quantifying binding affinities for M2L4 metallocage assemblies.23 However, with a 

sufficiently fast computational approach, the required time to set up and analyze a new set of metallocages 

rapidly increases as the size of the building block library grows. Therefore, methods to automate these steps 

are becoming increasingly valuable.  

In the field of metal-organic frameworks (MOFs), several computational screening tools have been 

developed in recent years.24,25 They include open-source tools to screen existing MOF libraries (Pymatgen26 

and Zeo++27), deconstruct known structures in their building blocks,28 and evaluate their catalytic 
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proficiency for specific reaction (PyMOFScreen29). In the space of metallocages, however, no large already 

synthesized libraries exist; thus, tools that both generate and rank structures for desired properties are 

required. For porous organic cages, in silico toolkits have been developed for constructing and predicting 

their adsorption properties via a combination of building blocks and high-throughput screening (e.g. stk, 

pywindow, Eigencages).17,30–34 Current toolkits to generate structures are, however, not directly transferable 

to metal-containing systems. Therefore, a different methodology is required to further enable high-

throughput analysis of supramolecular metallocages. 

Here, we describe cgbind, an open-source Python API and its web-based graphical user interface (GUI). 

We first describe the methodology and its implementation and proceed to demonstrate the ability of cgbind 

to explore the space of metallocages by combinatorial cage generation from a building block library. 

Furthermore, we show how cgbind can be used to generate accurate geometries and obtain estimated 

binding affinities.  
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2. Results and Discussion 

2.1 Software Outline 

cgbind is written in object-oriented Python and employs scientific programming libraries, including 

Numpy, Scipy and NetworkX.35–37 The code is built around four key objects (Linker, Cage, Substrate and 

CageSubstrateComplex), the relation and inheritance between which, their attributes, and key methods 

are outlined in Figure 1.  

   
Figure 1. Class structure of cgbind. A solid line from A to B indicates that B inherits from A and a dashed line B is 

built from A.  
 

A homoleptic Cage (MxLy with x metals and y linkers) is initialized from a single Linker object, while 

heteroleptic (e.g. M2L2L’2) variants from a set of different Linkers. All Molecule objects and their 

subclasses are designed to be initialized from SMILES strings,38 with their corresponding 3D structures 

generated using conformer generation algorithms implemented in RDKit.39,40 While this affords rapid 

access to 3D structures, conformers are occasionally not adequately generated (vide infra). Molecules can 

also be initialized from a variety of molecular file formats (.xyz, .mol, .mol2) using the input_output 

module. Upon Cage construction a number of analysis tools are available as class methods. The analysis 
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of cage-substrate complexes (CageSubstrateComplex objects) is also possible. They are built from a Cage 

and one Substrate, where a substrate may contain more than one molecule, thus multiple guests are 

supported. Furthermore, a Substrate can either be a minimum or a transition state (/analogue), providing a 

route to predicting catalytic activity. 

Binding affinities between a substrate (S) and cage (C) [∆EBA = EC-S – (EC + ES)] are calculated in the first 

instance using a simple and general forcefields developed here (vide infra). More accurate estimates can be 

obtained from electronic structure codes, by invoking singlepoint() and optimise() functions, which deliver 

energies (Molecule.energy) and optimized structures (Molecule.xyzs). These functions are currently 

handled through a Calculation object in our Python API autodE, which facilitates the automated generation 

of reaction profiles (github.com/duartegroup/autodE). This enables cgbind to utilize electronic structure 

packages with currently implemented wrappers (inc. GFN2-XTB,41 MOPAC,42 ORCA43 and NWChem44). 

The structure of cgbind benefits from modularity, allowing analysis functions to be implemented by simply 

adding methods to the Cage or CageSubstrateComplex objects. The fragment approach to generating a 

CageSubstrateComplex allows for all the properties of the cage, and constituent linkers to be contained 

within a single object. Linker, Cage and Substrate objects may therefore be reloaded from a saved (e.g. 

Pickled) CageSubstrateComplex object, allowing for data mining within a saved library. Independent 

calculations are parallelized up to the user-defined number of cores set in the Config object. The software 

is distributed under the MIT license and is provided with unit tests and comprehensive online 

documentation including examples. 

 

2.2 Overview of cgbind 

2.2.1 Metallocage Construction 

Broadly, metallocage structures are generated from a SMILES or 3D representation of the linkers, which 

are templated onto known or user defined metallocage templates. The methodology employed is not 

template specific, such that extension to architectures other than those provided with the code (M2L4, M4L6, 

M6L8, M12L24) is straightforward. Figure 2 provides an overview of the workflow behind cgbind, which 

can be broken down into six key steps:  

Step I. Generate n linker (L) conformers from a SMILES string, a common way of representing 

molecules, which can be obtained from online databases (e.g. PubChem) or chemical software (e.g. 

ChemDraw®). 
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Step II. Locate coordinatively unsaturated heteroatoms (X-atoms) in L.  

Step III. Locate possible X-motifs, containing one or more X-atoms and their nearest neighbors in 

L. 

Step IV. Discard any X-motifs with a different number of atoms to the template X-motifs. 

Step V. Minimize the fitting cost with respect to linker & template parameters. The fitting cost is 

defined as the sum squared distance (SSD) between the X-motif atoms in the template and L. 

Step VI. Fit linkers to the expanded/contracted template, controlled by a distance ∆r, while keeping 

steric clashes below a threshold.  

 

Figure 2. Methodology used to construct metallocages in cgbind. Centroid–metal distances are denoted as 

r and shifts ∆r. X-motifs are indexed from zero to the total number in the linker. 
 

These steps are discussed in detail below for two architectures, M2L4 and M4L6, already saved in the 

template library. Note that, depending on the input provided by the user, not all steps must be executed. For 

example, if a Linker is initialized from a 3D geometry then the Step I can be skipped. Moreover, if the X-

motifs are specified by the user then steps III and IV may be skipped, as well as minimization with respect 

to X-motif sets in Step V. 

For a bis-pyridine linker found experimentally to form a M2L4 assembly (L1, top Figure 2),45 the first step 

involves generation of 3D conformers using the Experimental-Torsion Distance Geometry (ETDG) 

algorithm40 implemented in RDKit39 (Step I). For this linker, requesting 300 conformers and using a 0.3 Å 
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root mean square displacement (RMSD) threshold to compare them, renders 50 conformers. This provided 

a good balance between speed and high probability of locating a suitable conformer. Subsequently, X-atoms 

are identified as the heteroatoms with at least one ‘lone pair’ capable of metal donation (here the nitrogens, 

Step II). Combining X-atoms and their nearest neighbors afford three X-motifs containing CNC atoms (Step 

III). In the M2L4 template, the X-motifs also contain three atoms; therefore, all X-motifs are kept (Step IV). 

Minimization of the fitting cost is then performed exhaustively with respect to all conformers and X-motif 

sets, and minimization with respect to expansion and contraction of the template is achieved using the 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization algorithm implemented in SciPy36 (Step V). The 

template is expanded/contracted by shifting the X-motifs closest to metal i by the Mi–centroid vector a 

distance ∆r. For L1, there are three X-motifs (top: 0, middle: 1 and bottom: 2, with 0 and 2 being equivalent), 

while there are only two X-motifs in the template linker; therefore, the three X-motifs in L1 can be fitted in 

three different ways, i.e. (0, 1), (0, 2) and (1, 2). X-motif atoms are fit to the template using an 

implementation of the Kabsch algorithm.46 Step V correctly identifies the linker with the most coplanar 

pyridyls as the optimum conformer, the two terminal CNC atom sets (0, 2) as the optimum selection of X-

motifs and a small shift required in the template (∆r1 = –0.0037 Å). Upon sequentially fitting the optimum 

X-motifs in the linker to the adjusted template and adding two metal ions, a metallocage geometry is 

generated (Step VI).  

In an M4L6 structure formed from identical catechol-derived linkers and Fe2+ (L2, Figure 2),47 steps I/II 

proceed as for L1, while identification of X-motifs is slightly more complex. X-atoms are joined by their 

nearest neighbors to generate X-motifs for C-O-, C=O and CN(H)C and those separated by a one bond 

joined generating -OCCO- and O=CN(H)C motifs to give a total of 12 in L2 (Step III). The template contains 

X-motifs with four atoms, thus all but the -OCCO- X-motifs remain upon discarding those with greater and 

fewer than four atoms (Step IV). Steps V and VI proceed as for L1 but requires no enumeration over X-

motif sets as both L2 and the template contain two X-motifs. 

This strategy is amenable to heteroleptic cage generation; different linkers are generated within the same 

architecture and fitted in the order defined by the template. The template shift distance ∆r is taken as an 

average over all linkers, as to accommodate linkers with (slightly) differing lengths. For an experimentally 

accessible cis-M2L2L2’ metallocage48 the process is shown in Figure 3. We note that the trans isomer may 

be generated by simply reordering the linkers in the Cage initialization (i.e. linkers=[linker1, linker2, 

linker1, linker2] in Figure 3). 
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Figure 3. Formation of a heteroleptic cage within cgbind. Total execution time includes XTB optimization. 
 

For a linker with n conformers, j X-motifs in the template and i metallocage X-motifs, the minimization is 

conducted in a ~n×iCj dimensional space. However, despite this large space, generally it is the conformer 

generation in RDKit, rather than minimization which dominates the execution time. Construction of cages 

with non-planar and or conformationally flexible linkers is facilitated by checking on the ordering of X-

motifs and linker conformer as to achieve a threshold in the linker–partial cage repulsion during the build 

algorithm. 

 

2.2.5 Adding New Template Architectures 

Extensibility to new architectures is an essential feature of the code. The inclusion of new architectures by 

the user is achieved as follows: A 3D structure file (.mol2) is used for initialization of a Template. This 

structure can be downloaded from the CSD, or provided by the user (from non-deposited crystal structures 

or e.g. Spartan49 generated constructs).  
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(1) Utilizing NetworkX a molecular graph of the system is generated;  

(2) A metallocage is identified as the molecular component with the largest number of metal atoms. All 

other molecules (ions, substrates) are stripped out; this step is required if the template is initialized from a 

crystal structure;  

(3) The donor (X-) atoms bonded to the metal atoms are located;  

(4) Linkers are identified by deleting metal atoms and determining its connected components using 

NetworkX; 

(5) Within the linkers, and from the previously located X-atoms, X-motifs are located as the maximally 

connected set of X-atoms and their nearest neighbors; 

(6) The shift vector for each X-motif is calculated to enable symmetric expansion of the template controlled 

by ∆r as above.  

Overall, this workflow facilitates the addition of novel architectures into the code with minimal human 

intervention (i.e. a single command and a canonical template) and without structures needed to be 

hardcoded. 

2.2.2 Analysis Tools  

Upon generation of a metallocage structure, cgbind provides several geometry-based parameters that can 

be used to analyze and select metallocages for further binding and/or catalysis studies (Figure 4a). These 

include:  

a. Number of rotatable bonds; which may be used as a proxy for cage flexibility (by default, the M-L 

bonds are not included). 

b. Total number of H-bond; which can be used as a proxy for hydrophilicity. They include H-bond donors 

(non-coordinatively saturated heteroatoms) and acceptors (hydrogens bonded to a heteroatom).  

c. Cage size metrics. They include: 

(i) Average M–M distance, 

(ii) (Maximum enclosed sphere, defined as the largest sphere centered on the cage centroid that does 

not contain any atomic (van der Waals) volume. The cage centroid is defined as the mean position 

of the metal atom centers; 

(iii) Maximum escape sphere, defined the largest sphere that may be removed from the cavity. This 

volume is determined by maximizing the sphere size at a distance r from the cage centroid and 

taking the minimum sphere size along the path to the outside of the cage.  

The latter process can be performed with a basin-hopping algorithm from the SciPy library, which 

provides a more accurate estimate of the extrema but is computationally demanding.50. If the cage is 
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symmetric, initializing with a random vector generally affords the largest escape sphere. However, for 

asymmetric cages the use of a basin-hopping algorithm is necessary. This methodology is similar to 

that employed in pywindow34 and may be used as a proxy for window size, and so substrate diffusion 

rates into the interior of the cage.  

d. Electrostatic potentials (ESP), which can be used to identify favorable guest-host complexes by 

maximizing electrostatic interactions between them. By interfacing with the open-source tight binding DFT code 

XTB,41,51 ESP are also available for metallocages in seconds (Figure 4b) in the standard Gaussian cube format, 

which may be visualized in PyMOL or other graphical software. This is achieved by performing a single point 

energy evaluation on the structure, retrieving the partial atomic charges and constructing the ESP on a uniform 

grid as ESP(r) = Σi qi/|r – ri| in atomic units, where i enumerates over atoms. Note that this approximation does 

not result in any loss in qualitative accuracy compared to the true integral over the electron density (Figure S1).  
 

 
Figure 4. Calculated metallocage properties for an archetype M2L4 cage. (a) Geometrical properties: (1) rotatable 

bonds, (2) H-bond donors, (3) metal-metal distance, (4) maximum enclosed sphere and (5) maximum escape sphere. 

(b) Electrostatic potential (ESP) calculated from XTB partial atomic charges enumerated over a grid where blue/red 

corresponds to low/high values of the ESP. 
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2.2.3 Substrate Encapsulation and Binding affinity prediction 

Once a metallocage is constructed, a substrate can be added to generate a cage-substrate complex. This is 

achieved by adding the substrate such that its center of mass (COM) is located at centroid of the cage. The 

system is then energy minimized with respect to the substrate rotation and conformer, i.e. the global 

minimum on the rigid-body PES for each conformer is located (Figure 5). To obtain the global minimum 

a simple (random + BFGS) optimization algorithm implemented in RDKit is employed,36 requiring ~n×m×o 

energy evaluations, where n is the number of conformers, m the number of initial rotations and o the number 

of BFGS optimization steps (~20). We have found that m = 50 affords the global minimum with probability 

~0.8 for the systems tested (Figure S3). The number of conformers to screen is of course substrate 

dependent and is, as such, user specified. 

Considering the rather large number of energy evaluations that would be required to evaluate binding of 

each conformer, electronic structure theory is not viable. To speed up this process we instead resort to 

empirical forcefields (FF). While a number of general FFs are available, their use is labor-intensive, 

requiring the tabulation of parameters and/or the use of specific molecular simulation packages. 

Furthermore, inherent approximations in their development limit their accuracy. To circumvent and 

simplify this problem, and assuming that substrates-cage interactions are dominated by sterics, we 

employed the following empirical energy function:  

                                      Eint(r+k) = Σi,j ∈	pairs  c exp(a – |ri – rj|/b) +  k	×	Satoms   (eq. 1) 

Where the first half is a pairwise repulsive term, similar to the one found in a Buckingham potential, with 

c = 1 and with units of energy. Using noble gas dimers as as a model for closed shell repulsion, we found 

that a and b are roughly linearly dependent on the sum of van der Waals radii (Figure S2). The second term 

is a constant attractive contribution (k) based on the number of substrate atoms (Satoms). k = 0.4 kcal mol-1 

atom-1 was derived as the optimum classifier for the set of binary binding data outlined in Table S2 (Figure 

S4). This approximation is considerable, as the attractive terms are dependent on the nature of non-covalent 

interactions (NCI) between the substrate and the cage (dispersion, H-bonding, etc.). Therefore, we only 

suggest using this FF to generate cage-substrate complexes where there the attractive term is expected to 

be small. We refer to this method as ‘repulsive’ (r+k) and the binding energies arising from it as Eint(r+k) 

(energy_method=’repulsion’). 

We have also considered a more physical FF, which utilizes repulsive and electrostatic terms. The latter is 

calculated using either Gasteiger atomic partial charges from RDKit, which do not account for polarization 

of the atomic centers due to the surrounding environment (fe, energy_method=’electrostatic_fast’), or 
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alternatively, charges derived from an XTB single point calculation which account for polarization effects 

(e, energy_method=’electrostatic’). These methods more accurately account for NCI between the substrate 

and the cage. For example, within [PdII
2L4]4+ metallocages, both schemes delivers the expected binding 

modes, which involves hydrogen bond interactions between the quinone oxygen and the α-C-H groups at 

the top/bottom of the cage (Figure 5).  

Quantifying the binding affinity of a given cage for a substrate is key in determining their applicability in 

real-world applications. However, its quantification is challenging as key sources of errors in the 

calculations of free energies include inadequate quantification of entropy, sampling and errors in the 

methodology used. We recently showed that potential energy difference is sufficient to obtain quantitative 

agreement with experimental binding free energies for M2L4 architectures.23 The calculation of thermal 

contributions to the enthalpy is more computationally demanding, requiring calculation of the Hessian 

matrix (i.e. requiring frequency calculations), while estimation of binding entropies is difficult.52  

In cgbind, once the cage-substrate complex has been generated, an approximate interaction energy (Eint) 

based on a simple FF above, is available immediately, as it is minimized in the construction. This gives a 

rough estimate of the binding affinity and the likelihood of a cage to bind/not-bind a given substrates (vide 

infra). A more accurate estimate can be obtained from an electronic structure theory, calculating either 

potential or Gibbs free energies.  
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Figure 5. Metallocage-substrate complex construction and Interaction energy calculation for benzoquinone inside a 

[PdII2L4]4+ cage using the simple repulsive (r+k) and electrostatic forcefields (fe and e). Interaction energy predictions 

are quoted in kcal mol-1 and do not include thermal or entropic contributions. Hydrogen atoms omitted for clarity. 

 

2.2.2 Web app GUI 

Alongside the Python interface we have also developed a web application as a GUI to the module. This 

approach allows a user to interact with key components of the code within a web browser, thereby reducing 

the activation barrier to its utilization. Furthermore, by developing a web app the user does not need to 

download or install any packages/dependencies, which in many cases can be limited to specific platforms 

(Windows/Mac/Linux). The app is currently available at cgbind.chem.ox.ac.uk and provides the ability to: 

a) generate and visualize a selection of metallocages, b) perform analysis of metallocage size, c) compute 

and visualize electrostatic potential maps, and d) perform substrate binding calculations. SMILES strings 

of linkers can be imported from chemical software packages, or generated in the cgbind GUI using the 2D 

drawing tool Kekule.js.53 Interactive molecular visualization of the generated cage is enabled using the 

open-source 3Dmol.js package, allowing useful actions such as rotating and zooming.54 The whole app 
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distributed in a microservice architecture [front-end (Flask), web-server (Gunicorn/nginx), message-broker 

(Redis), database (PostgreSQL) and task queue (Celery)] using Docker. 

 

2.3 Examples 

 

2.3.1 Geometric Accuracy  

 To explore the ability of cgbind to generate cages with varied topologies and linker functionalities we 

generated nine metallocages (a–i, Figure 6) and computed the root mean squared displacement (RMSD) 

of the heavy atoms to known crystal structures. With the exception of Lh (vide infra) all the metallocages 

were successfully generated from just the linker SMILES string all with RMSD < 1.5 Å. Geometry 

optimization of the structures at the tight-binding DFT level did, in some instances, improve RMSDs while 

for others (d, g, i) a larger deviation was obtained with the structure falling into a different local minimum. 

Similarly, optimization at the DFT level of theory (PBE-D3BJ/def2-SVP) provides no improvement in 

RMSD. This observation highlights the importance of accounting for the conformational flexibility of the 

linker and cage when constructing and analysing metallocages and their properties. We believe that this 

conformational variability provides an interesting avenue to explore substrate-dependent metallocage 

structure and function as well as a variety of allosteric effects.  

To generate a cage, the algorithm requires a conformer with donor atoms in the correct orientation. While 

conformational generation algorithms available in RDKit (ETKDG, ETDG) are generally adequate, for Lh 

(Figure 6), they do not afford a conformer with the adequate torsions to generate a reasonable metallocage 

of M6L8 geometry, even with 104 conformers requested. This may be due to the RMSD threshold employed 

(>0.3 Å RMSD), which may remove relevant conformers or to the lack of a much more extensive sampling 

of the conformational space. Similarly, the open-source conformer generation implemented in OpenBabel 

(CONFAB),55 which performs well at generating structures close to that found in the crystal structure, does 

not afford the correct conformer from the RDKit initialized 3D structure.56 We note that the required 

conformer of Lh is 0.6 kcal mol-1 more stable than the first RDKit generated analogue (Figure S5) and 

therefore should be generated in the conformer ensemble. Cage h was therefore constructed from Lh built 

manually in the correct conformation and a Linker object initialized from an xyz file. Nevertheless, we 

consider our methodology to be robust in generating metallocages for varying architectures and multiple 

possible donor atoms. We also note that cgbind provides reasonable structures in seconds to minutes rather 

than in hours (XTB) or weeks (DFT) for the largest metallocages shown in Figure 6. 
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Figure 6. Root mean squared deviation (RMSD, Å) and their mean absolute deviations (MAD) of cgbind-generated 

metallocage structures relative to available crystal structures in the CSD as a function of increasing computational 

expense, only heavy atoms were considered for the RMSD calculation. Counterions/solvent molecules in the crystal 

structures were removed for the analysis. Data in Table S1. a. DFT geometries converged to a criteria only on forces 

(RMS(grad) < 5 mHa a0-1).  

 

2.3.2 Binding Accuracy  

To assess the accuracy of the classification of substrates into binding and non-binding, we studied the 

binding of 102 host-guest complexes reported in literature, including M2L4 and M4L6 host architectures and 

a wide range of polar and apolar substrates and solvents (dichloromethane, acetonitrile and water; Figure 

6, Table S2). They include: 
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1. 12 quinone-type guests which host–guest properties with two different PdII
2L4 cages (24 host-guest 

complexes in total), in dichloromethane and acetonitrile, were studied by Lusby et al.57 Depending on 

the nature of the quinone guest, binding constants of up to 108 M-1 have been observed for these systems. 

Many of them have also been found to be useful substrates in Diels-Alder reactions and cofactors in 

radical-cation cycloadditions.45,58 

2. Six different guests, including polycyclic aromatic hydrocarbons and steroids, with a series of nine 

aromatic-panelled FeII
4L6 tetrahedral cages studied by Nitschke et al. (54 hots-guest complexes in 

total).59 In this cage series, the size and arrangement of the aromatic panels were found to dictate guest 

binding propensity.  

3. 24 neutral and charged guests bound to FeII
4L6 tetrahedral cages studied by Nitschke et al.,60 of 

which 21 were experimentally found to bind with binding constants ranging from 3 up to 104 M-1. The 

host-guest properties of these systems in aqueous solution were found to strongly dependent on the 

hydrophobicity of the guest. 

Several practical obstacles make it difficult to quantitatively determine and compare binding strength across 

different studies, including guest solubility and the use of different techniques. Therefore, as a first 

approximation, we consider the experimental data and our prediction as binary classifiers, i.e. either the 

guest is observed to bind or not within the cage. The binding affinity is considered to be accurate if Eint < 0 

and experimentally the substrate binds, or alternatively Eint > 0 where experimental binding is not observed. 

Cage substrate complexes were thus initialized using a single conformer in most cases, with the exception 

of cholesterol where 50 conformers were considered. Interestingly, our simple repulsive (r+k) and both fast 

and normal electrostatic forcefields (fe and e, respectively) perform as well as calculating the interaction 

energy at the tight binding DFT level of theory (Figure 7), and considerably better than single point 

calculations at the semiempirical PM7-COSMO(solvent) level of theory, which provides a statistically 

different prediction and is considerably worse than our forcefields and XTB. Optimizations at the PM7 

level were not performed as we have previously found that this leads to unphysical metallocage 

geometries.23 

The accuracy of our prediction is overall modest, ~60 %, in particular with M4L6 cages aqueous solution, 

even at the tight binding DFT level of theory. Here the validity of a number of approximations needs to be 

considered. Among them is the assumption that both host and guest are soluble under experimental 

conditions. Additionally, it is assumed that conformational flexibility of the guest molecule is accurately 

sampled in the optimisation process.  Significant errors are also expected to arise from entropic and thermal 

terms, which in principle should lead to an increase in accuracy but are computationally more demanding. 
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Finally, solvation effects, which are currently only included implicitly through the GBSA method when 

XTB calculations are performed, are expected to play an important role, especially in aquous or other protic 

solvents. Taking into account these approximations, the confidence in our prediction was estimated using 

an inverted gaussian function [(1 – exp(–(∆E/5k)2), k = 1 kcal mol-1] which value between 0 and 1. In 

general, true positives (TP) in the dataset have a high confidence, and consistently true negative (TN) 

predictions have a higher confidence than false negatives (FN), such that true binders are unlikely to be 

missed (Figure 7b). Therefore, these results provide a promising starting point from which further binding 

studies can be performed.  

 
Figure 7. (a) Accuracy (%) in predicting a substrate binds or not considering 102 host-guest complexes reported in 

literature. Experimental data tabulated in Table S2. All binding calculations were performed within the cgbind module 

interfaced through autodE to MOPAC and GFN-XTB. Error bars are plotted as a combined standard deviation, 

considering a small statistical error (~2 kcal mol-1, Figure S6) with an assumed implicit normal error (σ = 2 kcal mol-

1) and bootstrapping with replacement (10,000 resamples) on the dataset. (b) Confidence for true positives (TP), false 

positives (FP), true negatives (TN) and false negatives (FN) calculated as: C = 1 – exp(–(∆E/5k)2) where k = 1 kcal 

mol-1. 
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2.3.3 Combinatorial Metallocage Library  

To demonstrate the ability of cgbind to construct a library of cages from which subsequent property, 

screening and filtering calculations can be performed a library of Pd2L4 metallocages were generated 

(available for download as part of the Supporting Information). Employing linkers comprised of three ends 

(E), 12 links (Z) and 29 centres (C) building blocks, join linearly in a E-Z-C-Z’-E’ pattern and PdII as the 

metal centre, a theoretical total of 13,572 homoleptic cages are possible (building blocks tabulated in Table 

S3). From these, using linkers initialized with 200 conformers, 5,639 metallocages were constructed with 

‘reasonable’ geometries (defined to be the minimum pairwise distance above 0.8 Å).1 Considering binding 

of benzoquinone as a guest, cages with cavity radii smaller the centroid–O distance were removed to afford 

1,353. This dataset was further reduced by eliminating those cages that were found to be much too 

accommodate this substrate (cavity volume >2× substrate), leading to 914 cages. Employing the algorithm 

electrostactic_fast to determine the optimal binding mode, 489 cages were removed based on Eint > –15 

kcal mol-1. Cages with formation energy [∆Ef = EC – (2EPd + 4EL)] above 50 kcal mol-1 of an optimised 

reference Pd2L4 cage reported in ref. 57 calculated using XTB single point calculations were removed 

affording 275 cages. The most strongly binding hosts (∆Eint < –12 kcal mol-1) were then taken and the three 

most synthetically accessible determined using the method from ref. 61 assuming the most accessible linker 

molecules lead to the most accessible metallocages (Figure 8b). From these core structures monovalent 

atom functionalization e.g. H → Me, Et, Ph, CF3 etc. may be performed using our Python module for 

molecular functionalization (github.com/duartegroup/molfunc) to afford a vast library of heteroleptic cages. 

 

                                                   
1 A higher proportion of cages would be constructed in a reasonable geometry were the linkers initialized with more 

conformers 
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Figure 8. Filtering process used to find the three optimal hosts for benzoquinone based on simple geometric criteria, 

tight-binding DFT calculations and synthetic accessibility of the constituent linker molecules. 

 

3. Conclusion 

Here we have described a modular and extensible Python module cgbind for the automated construction 

and analysis of metallocage structure with arbitrary architecture (MxLy). Metallocages are constructed using 

a templating strategy and host-guest complexes generated by minimizing the energy of a simple forcefield 

developed here. Methods are available to analyze the resulting structures both qualitatively (electrostatic 

potential) and quantitively (e.g. cavity size, window size) to analyze the resulting structures. We anticipate 

cgbind to see utility in high-throughput metallocage screens and, through the web-app 

(cgbind.chem.ox.ac.uk), facilitate the rational design of metallocage with functional properties. Further 

work towards the reverse design of metallocages is ongoing, where rather than modifying linkers to 

subsequently build metallocages and search for tight complexation the cage is built around the substrate to 

maximize binding. 
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Computational Methods. 

Root mean squared deviations (RMSD) were calculated using the Kabsch algorithm implemented in the 

rmsd Python module,62 reordering atoms and not considering hydrogens, all other parameters were set to 

their defaults. Metallocages had to be approximately aligned manually by fitting metal atoms prior to 

RMSD calculation, i.e. the reordering of atoms was not completely effective. All cgbind computations were 

performed with v. 1.0.0 beta. Tight binding (TB-)DFT calculations were performed using GFN2-XTB v. 

6.2,41 PM7 using MOPAC2016,42 and resolution of identify DFT using ORCA v. 4.2.43 the latter using the 

PBE functional,63 in combination with the D3BJ dispersion correction,64,65 def2-SVP basis set66 (which 

employs effective core potentials for all metals used here)67 and the default auxiliary basis sets.68 

 

Supporting Information. Information on the empirical force fields, experimental data and estimated 

interaction energies for the 102 complexes discussed in section 2.2.3. Root mean squared displacement 

values reported in Figure 6 (PDF). Coordinates of geometries obtained from cgbind for the [PdII
2L4]4+ 

benzoquinone complex using the simple repulsive (r+k) and electrostatic forcefields (fe and e) (Figure 5) 

(ZIP). The full library of 5,639 cages is also provided (ZIP) 
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