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ABSTRACT 

A in silico molecular dynamics (MD) docking investigation was conducted to identify drugs (ligands) which 

could potentially be of interest for repurposing.   We sought ligands which formed the strongest binding 

potential energy with the x-ray crystallography-based active site of the SARS-CoV-2 protease C3Lpro.   A total 

of 11,013 ligands were obtained from DrugBank.  Because of the larger size of the active site of 3CLpro, we 

chose ligands whose molecular weight (MW) was greater than 400 (daltons) and less than 700, which resulted 

in 5,920 ligands.  After correction of bonds and hydrogens, there were 4,634 ligands available for docking.  

Docking results indicate that the top 10 investigational and experimental drugs with binding energy (BE)≤-9 

kcal/mol were Lorecivivint, Tivantinib, Omipalisib, DrugBank B08450, SRT-2104, R-428, DrugBank B01897, 

Bictegravir, Ridinilazole, and Itacitinib, while the top 10 approved drugs with BE≤-8.2 were Olaparib, 

Etoposide, Ouabain, Indinavir, Idelalisib, Trametinib, Lumacaftor, Ergotamine, Canagliflozin, and Edoxaban.  

There were two antiviral drugs among the top 30 hits, which were Bictegravir (investigational) and Indinavir 

(approved).  The top 10 antivirals with BE≤-8.2 were Bictegravir, Tegobuvir, Filibuvir, Saquinavir, Fostemsavir, 

Indinavir, Temsavir, Pimodivir, Amenamevir, and Doravirine.  Interestingly, the antiviral Remdesavir ranked 

low among the top 30 antivirals, since its BE was a low value of -7.5 kcal/mol.   In silico toxicology and ADME 

(absorption, distribution, metabolism, excretion) prediction indicates that only 20% (6/30) of the top ligands 

were “drug-like,” and none were “lead-like,” since the lower bound of MW was 400.   Another interesting 

finding was that the investigational natural supplement Diosmin (DrugBank ID B08995), used without 

prescription for varicose veins, ranked 22 overall (out of 3,896 with BE≤-6) with a strong BE=-8.8, and formed 8 

hydrogen bonds with the active site for the putative best pose.  Its energy-minimized 3D structure deeply 

penetrated and fully covered the width of the active site’s pocket.  Diosmin had a lower BE than 97% of the top 

30 antiviral drugs and formed more hydrogen bonds with the active site than 93% of the top 30 antivirals.  

Diosmin could therefore potentially serve as a strong inhibitor of the 3CLpro protease of SARS-CoV-2 and 

could be investigated in human clinical trials.  Since a prescription is not required for its use, it could also be 

explored as a self-medicating natural alternative to prescribed synthetic drugs.   Lastly, the green tea 

component epigallocatechin gallate (DrugBank ID B12116) also had a low BE=-8.3, and formed 2 hydrogen 

bonds with the active site, which was a BE that was better than 70% of the top 30 antivirals.      
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INTRODUCTION 

 

The December 2019 outbreak of the novel coronavirus disease (COVID-19) in Wuhan, China eventually spread 

worldwide, and became an international pandemic thereafter[1]. The vector of human-to-human transmission 

has been confirmed to be salivary or airway droplets, contaminated hands, and surfaces[2]. Following an 

incubation time of 2-14 days, infection with COVID-19 coronavirus can lead to severe respiratory illness[3]. 

Preventive measures for minimizing the global pandemic include sheltering at home, office closures for non-

essential businesses, closure of schools, universities, and child care facilities, closure of restaurants and pubs, 

cancellation of public sporting events, cancellation of  public ceremonies, election polls and political debates, 

and only performing non-elective (emergency) medical procedures[4].  Medical treatment includes early 

diagnosis, quarantine, and supportive treatments which are essential to cure patients[5].  Historically, the 2003 

severe acute respiratory syndrome (SARS) epidemic resulted in 8400 SARS cases and approximately 800 

deaths[6].  The SARS epidemic was due to a previously unknown coronavirus (SARS-CoV), which was highly 

infectious and fatal. The original source of SARS-CoV was confirmed to be zoonotic, originating from an 

animal reservoir which includes horseshoe bats (Vespertilio ferrum-equinum)[7] and masked palm civets (Paguma 

larvata)[8], although the most recent genomic evidence leads to pangolins (Manis pentadactyla)[9].  The zoonotic 

SARS-CoV continues to be a major threat to humans, and most research groups do not exclude the possibility 

of reemergence of SARS.  

 

The genome of the original SARS-CoV (2003) consists of approximately 30,000 nucleotides, and is a positive-

sense, single-stranded RNA sequence with 14 open reading frames (ORFs)[10]. There are two large ORFs for  the 

replicase gene, which is responsible for viral RNA syntheses[11]. The remaining 12 ORFs encode the 4 structural 

proteins: spike, membrane, nucleocapsid and envelope; and eight accessory proteins[12]. The viral genome and 

its expression within the host cell undergoes extensive translational and enzymatic processing to form the 4 

structural, 8 accessory and 16 nonstructural proteins[13].   The highly similar genome for COVID-19 disease is 

termed SARS-CoV-2[14], which has already been sequenced by numerous labs[15-19].   Within the proteome of 

SARS-CoV-2, one of the best characterized drug targets among coronaviruses is the main protease 3CLpro[20] 

(or MPRO), which is responsible for processing the proteins translated from the viral RNA[21].   3D models of x-

ray crystallography of novel inhibitors bound to the catalytic active site of SARS-CoV-2 protease 3CLpro were 

recently reported[22,23].   

   

Modern drug discovery includes an in silico method known as molecular dynamics (MD) docking, to 

reproduce chemical potentials which determine the bound conformation preference and free energy of binding 

between a ligand and its receptor[24].   The MD docking technique seeks to establish the optimal receptor 

binding pocket (pose) with a minima in the energy profile, shape, and temperature, while assuming 

consistency in the ligand charge distribution and protonation states for the bound and unbound forms.  At 

each receptor pocket identified, several poses are evaluated while iterating through alternative conformations 

of the ligand at its rotatable covalent bonds. At present, there have been several MD docking investigations for 

SARS-Cov-2. Khan et al.[25] investigated chymotrypsin-like protease inhibitors from FDA’s approved antiviral 

drugs, and their in-house database of natural and synthetic drug-like compounds. Results indicate that 3 FDA-

approved drugs (Remdesivir, Saquinavir, and Darunavir) and two natural compounds (flavone and 

coumarine derivatives) were identified as promising hits. Liu et al. [26] introduced the computational technique 

SCAR, for discovering covalent drugs. SCAR was employed to identify possible covalent drugs (approved or 

clinically tested) which targeted the main protease (3CLpro) of SARS-CoV-2. They identified 11 potential hits 

(Itacitinib, Oberadilol, Telcagepant, Vidupiprant, Pilaralisib, Poziotinib, Fostamatinib, CL-275838, Ziprasidone, 

Leucal/folinic acid, ITX5061), among which at least 6 hits were exclusively enriched by the SCAR protocol. 



Lung et al. [27] performed an MD docking study to target RdRp of SARS-CoV-2, SARS-CoV, and Middle East 

respiratory syndrome coronavirus (MERS-CoV), and found that Theaflavin has a lowest binding energies (BE) 

in the core in the catalytic pocket of RdRp in SARS-CoV-2 (-9.11 kcal/mol), SARS-CoV (-8.03 kcal/mol), and 

MERS-CoV (-8.26 kcal/mol). To confirm the result, they performed blind docking and discovered that 

Theaflavin has lower binding energy of -8.8 kcal/mol when it docks in the catalytic pocket of SARS-CoV-2 

RdRp. Lastly, Shah et al.[28] used blind docking with SAR-CoV-2 proteins, and determined that 37 molecules 

were found to interact with 2 protein structures. Several of the best candidates identified were Methisazone - 

an inhibitor of protein synthesis, CGP42112A - an angiotensin AT2 receptor agonist and, ABT450 an inhibitor 

of the non-structural protein 3-4A might were some of the best candidates identified. 

 

In silico MD docking can only address the theoretical binding between a ligand and its receptor. High 

throughput in vitro screens, in vivo animal xenografts, as well as human clinicals trials are required before 

confirming that a potential inhibitory molecule can effectively be efficacious for disease therapy. Toxicology 

and ADME (absorption, distribution, metabolism, and excretion) prediction is another dimension of drug 

testing, which be accomplished in silico, in vitro, and in vivo[29-33]. It will take some time before candidates from 

the MD docking studies described above[25-28] are tested and evaluated.  In order to establish reproducibility 

and robustness of SARS-CoV-2 MD docking results from multiple studies, we undertook this  investigation to 

report results from docking investigational, experimental, and FDA-approved drugs to the active inhibitory 

site of 3CLpro confirmed by x-ray crystallography (PDB: GLU7)[22].  We also performed toxicology and ADME 

prediction for each of the top candidates to provide a reference frame for safety related issues involved with 

human administration.  

 

 

MATERIALS AND METHODS 

 

Small-Molecule Ligand Library.  FDA-Approved drugs, as well as investigatory and experimental compounds 

were obtained from DrugBank[34,35]. DrugBank (www.drugbank.ca) is a web-enabled database containing 

comprehensive molecular information about drugs, their mechanisms, their interactions, and their targets.  Over 

the last 10 years, the number of investigational drugs in the database has grown by almost 300%, and the number 

of drug-drug interactions has grown by nearly 600%, while the number of SNP-associated drug effects has 

grown more than 3000%. Significant improvements have been made to the quantity, quality and consistency of 

drug indications, drug binding data as well as drug-drug and drug-food interactions. New information in 

DrugBank also includes the influence of hundreds of drugs on metabolite levels (pharmacometabolomics), gene 

expression levels (pharmacotranscriptomics) and protein expression levels (pharmacoprotoemics).  New data 

have also been added on the status of hundreds of new drug clinical trials and existing drug repurposing trials. 

Ligand Selection and Preparation. Starting with a list of 11,013 DrugBank compounds, we filtered on 

molecular weight (MW), and only used drugs whose MW was within the range 100-700 daltons. We also 

required the existence of a SMILES string for each ligand, which when filtered resulted in 5,920 compounds. 

SMILES strings were converted to canonical SMILES using Open-Babel 3.0[36] (OB).  The 2D canonical SMILES 

were first desalted, and OB was used to add hydrogens, and transform to a 3D. The energy of each ligand was 

then minimized using the Amber force field[37,38] from within OB, via conjugate gradients (250 iterations), 

updates at 1 step intervals, and a convergence criterion of 0.0001.   Results were saved into 3D SDF format 

containing partial charges of each atom, in batches of 1000 ligands per SDF file.  PyRx[39] was then used to 

input SDF files to correct bonds and hydrogens, and then save in PDBQT format.  Following correction of 

bonds and hydrogens, there were 4,634 ligands available for docking.   



Active Site (3CLpro) 3D structure.  The 3D x-ray crystallography model of 3CLpro (PDB: 6LU7)[22] bound to a 

novel ligand at the active site was downloaded in PDB format. PyMol was then used to select amino acid 

residues of 3CLpro which were within 5 angstroms (A˚) of the ligand (bound to its active site), and results 

were saved in PDB format.  PyRx was used to merge charges and remove non-polar hydrogens, merge charges 

and remove lone pairs, and remove water molecules from the active site, and results were exported to PDBQT 

format.     

Molecular Ligand-Active Site Docking. Vina [40] was used for ligand-active site docking on Amazon AWS cloud 

formations with Linux high-performance compute clusters.  Batches of 1000 compounds were run sequentially.  

A total of 10 ligand poses were assessed at the active site, and the best pose was assumed to have the lowest 

binding energy (BE) in kcal/mol. BE values less than -6 kcal/mol are considered to represent significant binding 

affinity. 

Drug-like and Lead-like Hit Determination. Ligands that yielded a best docking pose with BE<-6 were 

additionally filtered using physio-chemical properties of compounds. These included lipophilicity (LogP: log of 

octanal-water partition coefficient) and solubility (LogS) using the SMARTS notation available from SILICOS-

IT[41], which were implemented in .NET.   Molecular weight (MW), topological surface area (TPSA), number of 

hydrogen bond donors (HBD), hydrogen bond acceptors (HBA), and number of rotatable bonds (RotB) were 

determined using OB’s .NET assembly. All compounds were kekulized and stripped of salts prior to calculation 

of physio-chemical properties, except for LogS solubility calculations, for which hydrogens were added. Two 

sets of criteria were employed for assessing suitability of ligands for lead discovery: “drug-like” and “lead-like”.  

The drug-like hits were based on the Muegge (Bayer) criteria[42] for which  200≤MW≤600, -2≤LogP≤5, TPSA≤150, 

HBD≤5, HBA≤10, and RotB≤15.  Whereas the lead-like criteria were LogP<3, MW<300, HBD≤3, HBA≤3, and 

RotB≤3.   

Fathead Minnow Toxicity (FMT). The Fathead minnow is an important aquatic and terrestrial toxicity endpoint 

target, and Fathead minnow toxicity data were obtained from Cheng et al. [43]. FMT toxicity data consisted of 188 

FMT- and 366 FMT+ compounds (554 total). The FMT endpoint for each compound was expressed as the 

concentration lethal to 50% of the organisms (LC50) for FMT during 96h flow-through exposure tests. Cheng et 

al. [43] selected a threshold value of LC50=0.5mmol/L to partition the data into low and high acute FMT 

compounds. Compounds with the value of LC50 less than 0.5 mmol/L were assigned as high acute FMT 

compounds, whereas others were assigned as low acute FMT compounds. The chemical name, CAS numbers, 

FMT test results, and SMILES strings were available in the data. 

Honey Bee Toxicity (HBT).  195 pesticides or pesticide-like molecules for HBT (96 HBT-, 99 HBT+) were 

collected from Cheng et al. [43], based on data from the US EPA ECOTOX database[44]. The HBT endpoint for Apis 

mellifera bees was expressed as the dose lethal to 50% of the test population (LD50) during a 48h exposure test. 

Cheng et al. [43] selected a threshold value of LD50=100 μg/bee to designate high acute HBT compounds and low 

acute HBT compounds. Compounds with an LD50 below 100 μg/bee were coded as high acute HBT compounds, 

while others were coded as low acute HBT compounds. The chemical name, CAS numbers, HBT test results, 

and SMILES strings were available in the data. 

Tetrahymena Pyriformis Toxicity (TPT).  Tetrahymena pyriformis toxicity (TPT) is often used as a toxicology 

endpoint, and 1571 diverse TPT-tested chemicals were collected from Cheng et al. [45]. Toxicity data was 

expressed as the negative logarithm of 50% growth inhibitory concentration (pIGC50) values and duplicated 

molecules were removed. Xue et al.[46] selected a threshold value of pIGC50=-0.5 for discriminating TPT and non-

TPT compounds (compounds with pIGC50>-0.5 were assigned as TPT, otherwise as non-TPT). The entire dataset 



was then divided into 1217 TPT+ and 354 TPT- compounds. The chemical name, CAS numbers, SMILES strings 

and pIGC50 value of 1571 compounds were available in the data. 

Human Intestinal Absorption (HIA).  The original HIA dataset was collected from Shen et al. [47]. This dataset 

contained n=578 compounds with fraction absorption (%FA) values. Shen et al. also specified a threshold value 

of 30% to partition compounds into HIA+ and HIA- (78 HIA- and 500 HIA+ compounds).  Drugs with oral 

dosage formulations were considered to be HIA+ compounds. The chemical name, SMILES and class labels 

HIA+ and HIA- were available in the data. 

Blood Brain Barrier Penetration (BBB). The BBB dataset contained n=1593 compounds, also obtained from Shen 

et al. [47], and have been categorized into BBB+ (n=1283) and BBB-(n=310).  The chemical name, CAS numbers, 

BBB test results, and SMILES strings were available in the data. 

Cytochrome P450 Inhibition (CYP). A large dataset containing more than 13,445 unique compounds against 

five major CYP isoforms, namely, 1A2, 2C9, 2C19, 2D6, and 3A4, was obtained from the PubChem AID-1851 

database[48].  The assay employed for generation of these data used various human CYP P450 isozymes to 

measure the dealkylation of various pro-luciferin substrates to luciferin. The luciferin is then measured by 

luminescence after the addition of a luciferase detection reagent. Pro-luciferin substrate concentration in the 

assay was equal to its KM for its CYP P450 isozyme. Inhibitors and some substrates limit the production of 

luciferin and decrease measured luminescence.  A compound was classified as a CYP inhibitor if the AC50 (the 

compound concentration leads to 50% of the activity of an inhibition control) value was 10μM. A compound 

was considered as a non-inhibitor if AC50 was >57μM. Regarding samples sizes, for CYP1A2 there were 13,256 

total compounds with 7,256 non-inhibitors and 6,000  inhibitors, for CYP2C9 there were 12,901 compounds with 

8,782 non-inhibitors and 4,119 inhibitors, for CYP2C19 there were 13,445 molecules with 7,532 non-inhibitors 

and 5,913 inhibitors, for CYP2D6 there were 13,910 compounds  11,139 non-inhibitors and 2,771 inhibitors, and 

for CYP3A4 there were 13,017 compounds with 7,751 non-inhibitors and 5,266  inhibitors.  The chemical name, 

CAS numbers, CYP test results, and SMILES strings were available in the data. 

Chemical Fingerprints for Toxicity and ADME Predictions.  One approach to computational ADME and 

toxicity prediction employs chemical substructure analysis of known compounds which have been tested and 

applies the associative rules between structure and outcome to new compounds whose substructure has been 

determined[49].  The traditional method for identifying chemical substructure in compounds has been based on 

the FP2 fingerprint, which yields the presence (absence) of various atoms, bonds, aromaticity and cyclicity, and 

fine structure of a compound.  FP2 fingerprints are in the form of binary 1024-bit vectors which signify presence 

and absence of the various moieties.  It is important to note that while the granularity of FP2 fingerprints is high, 

there is less available information related to copy number of substructure elements, so any exercise is essentially 

hinged to a binary yes/no dilemma. 

Using the toxicity and ADME training data described above, we employed the .NET OB[36] assembly  to 

transform SMILES strings for each training compound into a FP2 1024-bit vector representing chemical 

substructures.  OB yields FP2 fingerprints in the form of 256 4-byte Hex characters were translated to binary bits.  

Bit values were transformed from 0 to -1, and 1 to 1+ and appended to an analytic file with ADME or toxicity 

outcomes of the respective training molecule.  Toxicity and ADME predictions for the selected DTP ligands were 

based on trained logistic regression models using 25-100 fingerprints that achieved an ROCAUC>65% for leave-

one-out cross validation.  Therefore, the predictive results are crude approximations.  Figure 1 illustrates the 

workflow employed for all ligand preparation, active site preparation, docking, drug- and lead-like filtering of 

docked ligands, and computational toxicology and ADME predictions.    

 



RESULTS 

 

Among the 4,634 ligands employed for MD docking, 3,896 (84%) had a BE ≤-6 kcal/mol, indicating significant 

binding at the active site.  Table 1 lists the top 10 investigational, 10 experimental and 10 approved drugs with 

the best BE in the active site of 3CLpro among 3,896 ligands with a BE≤-6.   The rank of each ligand in terms of 

the least BE among ligands is also provided.  The investigative drugs were by far the best performing 

candidates since they ranked 1, 2, 3, 5, 6, 8, 9, 10, 11, 12 among the docked ligands.  The top 10 investigational 

drugs were Lorecivivint, Tivantinib, Omipalisib, SRT-2104, R-428, Bictegravir, Ridinilazole, Itacitinib, 

Tucatinib, and Linsitinib.   Experimental drugs were the next best group among the 3,896, since the ranks of 

the top 10 were 4, 7, 14, 17, 23, 24, 26, 29, 32, and 39.   DrugBank ID and names among the top 10 experimental 

drugs were B08450, B01897, B01349, B03893, B03363, B02449, B04016, B04673, B07152, and B02006.  Altogether, 

the investigational and experimental drugs were in the top 50 drugs among the 3,896 ligands with BE≤-6.  On 

the other hand, the top 10 approved drugs on average had lower ranks of 35, 56, 60, 91, 97, 108, 117, 154, 173, 

and 191.  Names of approved drugs include Olaparib, Etoposide, Ouabain, Indinavir, Idelalisib, Trametinib, 

Lumacaftor, Ergotamine, Canagliflozin, and Edoxaban.  Regarding antivirals, there were two listed in Table 1: 

Bictegravir (investigational) and Indinavir (approved).    The ligands thionicotinamide-adenine-dinucleotide 

(NAD) and 3-acetylpyridine-adenine-dinucleotide had 14 and 15 hydrogen bonds at the active site, which is 

likely due to the two phosphates possessed by each molecular (see Figure 3, described), resulting in 18 and 17 

hydrogen bond acceptors (HBA), respectively (see Figure 7, described later).   Most of the approved drugs 

listed in Table 1 had 4-6 hydrogen bonds at the active site, which, on average, was greater than the number of 

hydrogen bonds for most of the investigational and experimental drugs.    

 

 

Top 10 Investigative Drugs   

 

Figure 2 illustrates the 2D molecular structure of the top 20 investigative drugs, while only the top 10 are 

described below with citations.  Lorecivivint (Rank 1, BE=-9.3, B14883) is being investigated for osteo-arthritis, 

and is an inhibitor of CLK2 and DYRK1A in the Wnt pathway, enhancing chondrogenesis, chondrocyte 

function, and anti-inflammation.[50]  Tivantinib (Rank 2, BE=-9.3, B12200) is being studied in a randomized 

phase 2 network trial of tivantinib plus cetuximab versus cetuximab in patients with recurrent/metastatic head 

and neck squamous cell carcinoma[51]  Omipalisib (Rank 3, BE=-9.2, B12703) otherwise, known as GSK2126458, 

is a potent inhibitor of PI3K/mTOR, and was used in a randomized, placebo-controlled, double-blind, repeat 

dose escalation, experimental medicine study of subject with idiopathic pulmonary fibrosis (IPF) was 

conducted (NCT01725139) to test safety, tolerability, pharmacokinetics and pharmacodynamics. Results 

demonstrated acceptable tolerability of Omipalisib in subjects with IPF at exposures for which target 

engagement was confirmed both systemically and in the lungs[52].  SRT-2104:GSK-2245840 (Rank 5, BE=-9.1, 

B12186) otherwise known as GSK-2245840, has been studied in Type 2 diabetes[53], neurodegenerative 

disease[54,55], psoriasis[56], depression[57], and ulcerative colitis[58].  R-428 (Rank 6, BE=-9.1, B12411) has been 

studied in experimental models of breast[59], esophogeal[60], and renal cell carcinoma[61].   Bictegravir (Rank 8, 

BE=-9.1, B11799) is an HIV-1 anti-retroviral developed by Gilead[62,63].  Ridinilazole (Rank 9, BE=-9, B15308) is 

a narrow-spectrum, non-absorbable antimicrobial with activity against Clostridium difficile undergoing 

clinical trials[64,65].  Itacitinib (Rank 10, BE=-9, B12154) is a JAK-1 inhibitor that has been studied in phase 1 and 

2 trials of B-cell lymphoma and advanced solid cancers[66,67].   Tucatinib (Rank 11, BE=-9, B11652) is indicated 

for HER-2 positive metastatic breast cancer[68].   Linsitinib (Rank 12, BE=-9, B06075) was investigated for GI 

stromal, adrenocortical, breast, and prostate cancers[69-72]. 

 

 

 



Top 10 Experimental Drugs 

 

Figure 3 illustrates the 2D molecular structure of the top 20 experimental drugs; the top 10 are described below 

with citations.  n-1h-indazol-5-yl-2-(6-methylpyridin-2-yl)quinazolin-4-amine (Rank 4, BE=-9.1, B08450) is an 

TGF-β type 1 receptor ALK-5 inhibitor[73], which has been investigated in models of renal fibrosis[74,75], and 

DMN-induced liver fibrosis[73].  2-(2f-benzothiazolyl)-5-styryl-3-(4f-phthalhydrazidyl)tetrazolium chloride 

(Rank 7, BE=-9.1, B01897) was the first inhibitor discovered that complexed with human hematopoietic 

prostaglandin D synthase[76], and as such it is an antiasthmatic[77].  Tasosartan (Rank 14, BE=-8.9, B01349) is an 

angiotensin II antagonist employed for antihypertension[78,79].  Thionicotinamide-adenine-dinucleotide (Rank 

17, BE=-8.8, B03893) targets glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and inhibition of GAPDH 

was shown to decrease incorporation of human proteins into HIV-1 virions[80].  3-acetylpyridine-adenine-

dinucleotide (Rank 23, BE=-8.8, B03363) is a coenzyme composed of ribosylnicotinamide 5'-diphosphate 

coupled to adenosine 5'-phosphate by pyrophosphate linkage. It targets 4-hydroxy-tetrahydrodipicolinate 

reductase in E-coli, so it would have antibacterial properties.   It is found widely in nature and is involved in 

numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) 

and reduced (NADH)[81].  3-(1h-indol-3-yl)-2-[4-(4-phenyl-piperidin-1-yl)-benzenesulfonylamino]-propionic 

acid (Rank 24, BE=-8.8, B02449) targets stromelysin-1, which degrades fibronectin, laminin, gelatins of type I, 

III, IV, and V; collagens III, IV, X, and IX, and cartilage proteoglycans, and activates procollagenase[82].  2-[3-

({methyl[1-(2-naphthoyl)piperidin-4-yl]amino}carbonyl)-2-naphthyl]-1-(1-naphthyl)-2-oxoethylphosphonic 

acid (Rank 26, BE=-8.7, B04016) is a novel, potent dual inhibitor of neutrophil cathepsin-G and chymase.  

Leukocytes release serine proteases that sustain inflammatory processes and cause disease conditions, such as 

asthma and chronic obstructive pulmonary disease. These findings demonstrate that it is possible to inhibit 

both cathepsin G and chymase with a single molecule and suggest an exciting opportunity in the treatment of 

asthma and chronic obstructive pulmonary disease[83].  4-[(5-chloroindol-2-yl)sulfonyl]-2-(2-methylpropyl)-1-

[[5-(pyridin-4-yl)pyrimidin-2-yl]carbonyl]piperazine (Rank 29, BE=-8.7, B04673) was found to inhibit and 

complex with coagulation factor Xa[84],  which is a vitamin K-dependent glycoprotein that converts 

prothrombin to thrombin in the presence of factor Va, calcium and phospholipid during blood clotting.   n-[4-

(5-fluoro-6-methylpyridin-2-yl)-5-quinoxalin-6-yl-1h-imidazol-2-yl]acetamide (Rank 32, BE=-8.7, B07152) 

was found to inhibit and complex with TGF-beta receptor type-1[85], and therefore for would be employed in 

oncologic research.  Br-coeleneterazine (Rank 39, BE=-8.7, B02006) is a luciferin, which is employed in various 

bioluminescence assays, especially for Ca uptake[86].        

 

 

Top 10 Approved Drugs 

 

Figure 4 shows the top 20 approved drugs, and the top 10 are described in detail as follows.  Olaparib (Rank 

35, BE=-8.7, B09074) is a PARP inhibitor primarily indicated for the treatment of ovarian cancer, but has been 

useful for pancreatic cancer, advanced solid tumors, and gallbladder cancer[87-92].  Etoposide (Rank 56, BE=-8.6, 

B00773) is for use in combination with other chemotherapeutic agents in the treatment of refractory testicular 

tumors and as first line treatment in patients with small cell lung cancer. Also used to treat other malignancies 

such as lymphoma, non-lymphocytic leukemia, and glioblastoma multiforme[93-96].  Ouabain (Rank 60, BE=-8.6, 

B01092) is indicated for treatment of atrial fibrillation and flutter and heart failure[97-102], and has been 

investigated in oncology[93,103].   Indinavir (Rank 91, BE=-8.5, B00224) is an antiretroviral drug for the treatment 

of HIV infection[104-106].   Idelalisib (Rank 97, BE=-8.4, B09054) is indicated in the treatment of chronic 

lymphocytic leukemia (CLL), relapsed follicular B-cell non-Hodgkin lymphoma (FL), and relapsed small 

lymphocytic lymphoma (SLL), and has been of interest for renal cell cancer[107-110].  Trametinib (Rank 108, BE=-

8.4, B08911) is indicated for the treatment of unresectable or metastatic melanoma [107], advanced rectal[111], 

breast[112], biliary[113], colorectal, non-small cell lung, and pancreatic cancer[114].  Lumacaftor (Rank 117, BE=-8.4, 



B09280) is indicated for the treatment of cystic fibrosis (CF) in patients age 6 years and older who are 

homozygous for the F508del mutation in the CFTR gene[115-117]. Ergotamine (Rank 154, BE=-8.3, B00696) is for 

use as therapy to abort or prevent vascular headache, e.g., migraine, migraine variants, or so called "histaminic 

cephalalgia"[118-120].  Canagliflozin (Rank 173, BE=-8.2, B08907) is used in conjunction with diet and exercise to 

increase glycemic control in adults diagnosed with type 2 diabetes mellitus major cardiovascular events 

(myocardial infarction, stroke, or death due to a cardiovascular cause) in patients with type 2 diabetes, as well 

as hospitalization for heart failure in patients with type 2 diabetes[121,122].  Edoxaban (Rank 191, BE=-8.2, 

B09075) is indicated for reducing the risk of stroke and systemic embolism (SE) in patients with nonvalvular 

atrial fibrillation (NVAF)[123-126].  

 

Figure 5 shows the putative binding poses of the Table 1 candidate hits.   Each image shows the structure of 

the substrate binding pocket of the active site of the SARS-CoV-2 3CLpro protease (PDB ID: 6LU7).  The white 

surface in each image represents the surface of the active site of 3CLpro that would be traced out by water 

molecules in contact with the protein at all possible positions.  The inhibitors (ligands) are shown in molecular 

stick format.   As one can notice, many of these ligands in their energy-minimized conformation bind deeply at 

the active site of 3CLpro, as well as span the distance of the entire outside distance.     

 

Lastly, we noticed that the investigational natural supplement Diosmin (DrugBank ID B08995), used without 

prescription for varicose veins, had an overall rank of 22 among all docked ligands with a strong BE=-8.8 and 

formed 8 hydrogen bonds with the active site for the putative best pose.   The 2D molecular structure of 

Diosmin is shown in Figure 2 – which shows the top 20 docked investigational ligands.   A series of docking 

images for Diosmin bound to the active site of 3CLpro are shown in Figure 6, which illustrates that Diosmin 

covers the entire width and penetrates deeply into the active site with hydrogens throughout its molecular 

backbone.  When compared with the top 30 antiviral drugs, only Fostemsavir and Raltegravir had 8 hydrogen 

bonds for their putative best pose at the active site, but their BE values of -8.5 and -8.1 were greater (worse) 

than the -8.8 for Diosmin.   Accordingly, Diosmin’s BE was lower than 97% of the top 30 antiviral drug and 

formed more hydrogen bonds with the active site than 93% of the top 30 antivirals.  This indicates that 

Diosmin could potentially serve as a strong inhibitor of 3CLpro and could be investigated in human clinical 

trials.  Since a prescription is not required for its use, it could also be explored as a self-medicating natural 

alternative to prescribed synthetic drugs for inhibiting the 3CLpro protease of SARS-CoV-2.  Finally, the green 

tea component epigallocatechin gallate (DrugBank ID B12116) also had a low BE=-8.3, and formed 2 hydrogen 

bonds with the active site, which was a BE that was better than 70% of the top 30 antivirals.   

 

Toxicology and ADME 

 

Toxicology and ADME prediction (Figure 7) indicate that 6 of the 30 ligands (20%) in Table 1 were drug-like, 

and none were lead-like, due the MW exceeding 300.   The majority of ligands that were not drug-like had 

values for LogP, MW, LogS, number of hydrogen bond donors (HBD), number of hydrogen bond acceptors 

(HBA) out of range for drug-like characteristics.   The first drug-like candidate was the antiviral Bictegravir, 

which has a lower MW of 449.4 daltons and only 4 rotatable bonds.  Its probabilities for HBT and TPT were 

greater than 95%, and the probability of CYP inhibition was above 50% for several enzymes.   The structural 

alerts for Bictegravir were not any worse than the majority of the drugs listed.  The remaining 5 drug-like 

ligands were Itacitinib, Olaparib, Ergotamine, Canagliflozin, and Edoxaban.   These 6 drug-like candidates 

could possibly surpass any off-label usage concerns for treating COVID-19 by regulatory agencies, since 4 are 

already approved (Olaparib, Ergotamine, Canagliflozin, Edoxaban), and the remaining 2 (Bictegravir, 

Itacitinib) are investigational and are being used in human clinical trials.   



 

Comparison of Antivirals 

 

Table 2 lists the top 30 antivirals that were docked with the active site of the 3CLpro protease.  The top 10 

antivirals yielding the lowest BE were Bictegravir, Tegobuvir, Filibuvir, Saquinavir, Fostemsavir, Indinavir, 

Temsavir, Pimodivir, Amenamevir, and Doravirine.  Interestingly, Remdesavir was among a set of 5 antivirals 

that ranked 12 with a much worse BE of -7.5 kcal/mol.   Overall, the top antivirals were the investigational 

Bictegravir (BE=-9.1) and the approved Indinavir (BE=-8.5).    Figure 8 shows the putative binding poses of the 

antivirals at the active site of the 3CLpro protease.    Many of the antivirals bind deeply at the active site of 

3CLpro, as well as span the distance of the entire outside distance.   However, some do not, like Remdesavir, 

which only partially cover the entire width of the active site pocket.    

 

   

DISCUSSION 

 

COVID-19 disease is highly transmissible and has been shown to result in acute respiratory failure in patients 

who are elderly, immune-compromised, and have pre-existing conditions. Two important hallmarks of COVID-

19 are the rapidity in the onset of symptoms and the magnitude of resources required for intensive care for 

patients. Together, these factors directly and indirectly support the need for prevention of pandemics on a global 

scale which may occur in the future.   

 

Our approach employed two in silico levels of computation, one that involved MD docking on high-performance 

compute clusters, and another based on toxicology and ADME predictions.  MD docking results indicate that 

many ligands yielded high-quality BE’s which were less than the assumed threshold of -6 kcal/mol, for which 

significant binding is assumed.   Specifically, MD docking was considered significant for 10% of the ligands 

employed.  It is important to realize that our approach to MD docking was targeted and hypothesis-driven, in 

that we focused on ligand binding within in the known inhibitory active site based on x-ray crystallographic 

data and not on a 3D model of a consensus sequence based on Blasting or alignment.   We also did employ a 

data-driven approach that is similar to “blind” docking, in which BE’s are sought for ligands binding in any 

pockets found on the surface of a 3D proteomic model.      

 

We also predicted toxicology and ADME for ligand with significant binding to the active site. The predictions 

indicate that 23% of the top 30 ligands were drug-like, and only one was lead-like.   Experimental laboratory in 

vitro and in vivo toxicology and ADME studies using animal models of SARS-CoV-2 could be used to support 

the findings that were reported. The clinical value of our results is established by the potential for repurposing 

drugs for treating COVID-19, which could prove useful in animal studies, transgenics, and xenograft models, 

etc., to confirm results of this study and the other docking studies which have been recently been reported.   Due 

to the expediency in finding optimal treatments for the global COVID-19 disease pandemic, initiation of human 

trials for compassionate use with one or more of the compounds identified in this investigation could also be 

undertaken, given that several of the compounds are now used in human trials.   

  

There were several differences between our study and the other docking reports which were recently published. 

Liu et al. [26] employed targeted docking of the active sit of 3CLpro, but used an additional enrichment protocol 

called SCAR (steric clashes alleviating receptors), and none of their top compounds were listed among our top 

30.  Lung et al.[27] used a ligand library that consisted of 83 traditional Chinese medicinals, and in addition to 

SARS-CoV-2 employed SARS-Cov and MERS proteins. Shah et al. [28] employed a ligand library of 61 antivirals, 

and reported that several of the compounds had significant binding with more than two “protein structures” of 

COVID-19, but did not report the specific antivirals. Khan et al. [25] used the 3CLpro protein, and reported that 



three antivirals (Remdesivir, Saquinavir and Darunavir) and two natural compounds (flavone and coumarine) 

had significant binding.   In light of what has been reported thus far, the only antivirals in our top 30 hit list were 

Bictegraivir and Indinavir, although there were other antivirals whose BE with the active site of 3CLpro was less 

than -6 kcal/mol.   

     

Lastly, we did not comparatively assess numerous MD docking and toxicological/ADME prediction techniques 

for their computational efficiency, scalability, or differences.  We also did not evaluate differences between 

targeted active site and blind docking, or bootstrapping effects on results.  
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Table 1. List of top 10 investigational, experimental, and approved drugs having the best binding energy (BE) at the active site of 3CLpro protease of SARS-CoV-2 

proteome.   Ranks listed are among the 3,896 ligands whose BE≤-6 kcal/mol.    Number of hydrogen(H) bonds represent all polar contacts at all angstrom lengths. 

DrugBank 

ID 

 

Rank 

 

Name/structural formula 

 

BE(kcal/mol) 

Number 

H-bonds 

 

Usage 

 

Status 

B14883 1 Lorecivivint -9.3 2 Osteoarthritis Investigational 

B12200 2 Tivantinib -9.3 3 Oncology Investigational 

B12703 3 Omipalisib -9.2 3 Pulm. fibrosis Investigational 

B08450 4 N-1h-indazol-5-yl-2-(6-methylpyridin-2-yl)quinazolin-4-amine -9.1 2 Renal fibrosis Experimental 

B12186 5 SRT-2104 (GSK-2245840) -9.1 2 Dyslipidemia Investigational 

B12411 6 R-428 -9.1 1 Oncology Investigational 

B01897 7 2-(2f-benzothiazolyl)-5-styryl-3-(4f-phthalhydrazidyl)tetrazolium_chloride -9.1 2 Antiasthmatic Experimental 

B11799 8 Bictegravir -9.1 4 Antiviral(HIV1) Investigational 

B15308 9 Ridinilazole -9 2 Antimicrobial Investigational 

B12154 10 Itacitinib -9 2 Oncology Investigational 

B11652 11 Tucatinib -9 2 Oncology Investigational 

B06075 12 Linsitinib -9 1 Oncology Investigational 

B01349 14 Tasosartan -8.9 3 Hypertension Experimental 

B03893 17 Thionicotinamide-adenine-dinucleotide (NAD) -8.8 14 Antiviral(in 

vitro) 

Experimental 

B03363 23 3-acetylpyridine-adenine-dinucleotide -8.8 15 Antibacterial Experimental 

B02449 24 3-(1h-indol-3-yl)-2-[4-(4-phenyl-piperidin-1-yl)-benzenesulfonylamino]-propionic acid -8.8 2 Osteoarthritis Experimental 

B04016 26 2-[3-({methyl[1-(2-naphthoyl)piperidin-4-yl]amino}carbonyl)-2-naphthyl]-1-(1-naphthyl)-2-

oxoethylphosphonic acid 

-8.7 1 Asthma/COPD Experimental 

B04673 29 4-[(5-chloroindol-2-yl)sulfonyl]-2-(2-methylpropyl)-1-[[5-(pyridin-4-yl)pyrimidin-2-

yl]carbonyl]piperazine 

-8.7 2 Anticoagulant Experimental 

B07152 32 n-[4-(5-fluoro-6-methylpyridin-2-yl)-5-quinoxalin-6-yl-1h-imidazol-2-yl]acetamide -8.7 3 Oncology Experimental 

B09074 35 Olaparib -8.7 4 Oncology Approved 

B02006 39 Br-coeleneterazine -8.7 4 Luciferins Experimental 

B00773 56 Etoposide -8.6 6 Oncology Approved 

B01092 60 Ouabain -8.6 5 Atrial fib/flutter Approved 

B00224 91 Indinavir -8.5 6 Antiviral(HIV1) Approved 

B09054 97 Idelalisib -8.4 6 Oncology Approved 

B08911 108 Trametinib -8.4 1 Oncology Approved 

B09280 117 Lumacaftor -8.4 5 CF Approved 

B00696 154 Ergotamine -8.3 2 Migraine Approved 

B08907 173 Canagliflozin -8.2 3 Type 2 DM Approved 

B09075 191 Edoxaban -8.2 4 Atrial fib. Approved 



 

Table 2. Top 30 Antiviral drugs and their binding energy (BE) at the active inhibitory site of 3CLpro protease 

of SARS-Cov-2 proteome.   Rank sets represent groups of antivirals having the same BE.  Number of 

hydrogen(H) bonds represent all polar contacts at all angstrom lengths. 

  

 

Rank set DrugBank ID Antiviral  

BE 

(kcal/mol) 

Number 

H-bonds Status 

1 B11799 Bictegravir -9.1 4 Investigational 

2 B11852 Tegobuvir -8.6 1 Investigational 

 B11878 Filibuvir -8.6 7 Investigational 

 B01232 Saquinavir -8.6 4 Investigational 

3 B11796 Fostemsavir -8.5 8 Investigational 

 B00224 Indinavir -8.5 6 Approved 

4 B14675 Temsavir -8.4 3 Investigational 

 B14974 Pimodivir -8.4 6 Investigational 

 B11701 Amenamevir -8.4 3 Investigational 

5 B12301 Doravirine -8.2 2 Investigational 

6 B06817 Raltegravir -8.1 8 Approved 

7 B15145 Ziresovir -8.0 1 Investigational 

 B06414 Etravirine -8.0 2 Approved 

 B12225 Beclabuvir -8.0 1 Investigational 

 B12051 Setrobuvir -8.0 2 Investigational 

 B11751 Cabotegravir -8.0 4 Investigational 

8 B08639 Dapivirine -7.9 0 Investigational 

 B08864 Rilpivirine -7.9 4 Approved 

9 B12178 Telinavir -7.8 6 Investigational 

10 B14850 Deleobuvir -7.7 4 Investigational 

 B08930 Dolutegravir -7.7 3 Approved 

 B14929 Elsulfavirine -7.7 0 Investigational 

11 B00220 Nelfinavir -7.6 4 Approved 

12 B13997 Baloxavir Marboxil -7.5 5 Investigational 

 B15550 Pradefovir -7.5 2 Investigational 

 B00932 Tipranavir -7.5 3 Investigational 

 B14761 Remdesivir -7.5 4 Experimental 

 B04835 Maraviroc -7.5 2 Investigational 

13 B00701 Amprenavir -7.4 5 Investigational 

14 B06166 Fosdevirine -7.3 4 Investigational 



 

 

Figure 1.  Workflow for ligand-active site docking and drug- and lead-like hit identification. 

  



 

 

Figure 2.  Top 20 investigational drugs and their ranks among 3,896 ligands with binding energy (BE) less than 

-6 kcal/mol. 

  



 

 

 

Figure 3.  Top 20 experimental drugs and their ranks among 3,896 ligands with binding energy (BE) less than -

6 kcal/mol. 

  



 

 

 

Figure 4.  Top 20 approved drugs and their ranks among 3,896 drugs with binding energy (BE) less than -6 

kcal/mol. 

  



 

 

Figure 5.  Putative binding poses of the Table 1 candidate hits.   Each image shows the structure of the 

substrate binding pocket of the active site of the SARS-CoV-2 3CLpro protease (PDB ID: 6LU7).  The white 

surface in each image represents the surface of the active site of 3CLpro that would be traced out by water 

molecules in contact with the protein at all possible positions.  The inhibitors (ligands) are shown in molecular 

stick format.   

 

 

  



 

 

 

Figure 6.  Putative docking pose for the natural supplement Diosmin (DrugBank ID B08995), shown in its 

energy-minimized state forming 8 hydrogen bonds and binding with the active site of SARS-Cov-2 3CLPro  

protease with a binding energy of -8.8 kcal/mol.    

 

  



Figure 7.  Predicted toxicology and ADME of ligands listed in Table 1. 

 

 

Name Status MW LogP LogS TPSA Rotb HBD HBA BBB HIA HERG AMES FHM HBT TPT CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 BE Drug-like Lead-like Promiscuity Genotoxic Skin Aquatic

Lorecivivint investigational 505.55 0.63 -10.12 29.1 7 3 5 0.86 0.98 0.17 0.17 0.78 0.01 0.95 0.91 0.45 0.49 0.08 0.67 -9.3 0 0 32 hits 4 hits 8 hits 3 hits

Tivantinib investigational 369.42 3.23 -6.02 46.17 2 2 2 0.94 0.93 0.1 0.1 0.09 0.2 0.98 0.15 0.51 0.48 0.43 0.68 -9.3 0 0 31 hits 0 hits 8 hits 2 hits

Omipalisib investigational 505.5 10.97 -9.18 191.68 6 1 7 0.83 0.97 0.51 0.51 0.44 0.1 0.98 0.72 0.44 0.58 0.13 0.64 -9.2 0 0 38 hits 4 hits 13 hits 3 hits

n-1h-indazol-5-yl-2-(6-

methylpyridin-2-yl)quinazolin-

4-amine

experimental 352.39 -0.55 -7.85 12.03 3 2 4 0.21 0.97 0.2 0.2 0 0.17 0.86 0.93 0.14 0.24 0.47 0.72 -9.1 0 0 17 hits 0 hits 5 hits 2 hits

SRT-2104 investigational 516.64 -1.81 -6.75 41.57 7 1 6 0.96 0.98 0.18 0.18 0 0.05 0.95 0.56 0.59 0.71 0.11 0.89 -9.1 0 0 32 hits 0 hits 8 hits 2 hits

R-428 investigational 506.64 0.02 -7.35 41.29 4 2 5 0.4 0.88 0.49 0.49 0 0.41 0.95 0.48 0.61 0.46 0.33 0.51 -9.1 0 0 17 hits 1 hits 5 hits 2 hits

2-(2f-benzothiazolyl)-5-styryl-

3-(4f-phthalhydrazidyl) 

tetrazolium chloride

experimental 466.49 -4.68 -6.32 34.14 4 2 5 1 1 0.36 0.36 1 0.97 0.89 0.71 0.66 0.66 0.01 0.6 -9.1 0 0 19 hits 0 hits 4 hits 0 hits

Bictegravir investigational 449.38 2.59 -3.35 95.94 4 2 5 0.08 0.71 0.04 0.04 0 0.99 0.95 0.14 0.64 0.61 0.07 0.72 -9.1 1 0 32 hits 4 hits 8 hits 3 hits

Tucatinib investigational 480.52 -0.57 -7.74 54.88 6 2 6 0.46 1 0.63 0.63 0 0.15 0.95 0.89 0.18 0.47 0.33 0.73 -9 0 0 0 31 hits 0 hits 8 hits

Linsitinib investigational 421.49 1.08 -7.04 46.25 3 2 4 0.99 0.99 0.46 0.46 0.02 0.04 0.95 0.98 0.15 0.51 0.09 0.63 -9 0 0 0 31 hits 1 hits 8 hits

Ridinilazole investigational 388.42 -0.45 -9.02 0 3 2 4 0.96 0.98 0.09 0.09 0.2 0.28 0.88 0.84 0.16 0.4 0.26 0.34 -9 0 0 4 hits 0 hits 1 hits 0 hits

Itacitinib investigational 553.51 -1.9 -5.68 47.34 7 1 7 0.04 0.98 0.01 0.01 0 0.35 0.44 0.15 0.39 0.26 0.12 0.73 -9 1 0 32 hits 4 hits 8 hits 3 hits

Tasosartan experimental 411.46 -1.64 -7.24 20.31 4 1 6 1 0.98 0.25 0.25 0 0 0.96 0.81 0.52 0.77 0.28 0.77 -8.9 0 0 31 hits 0 hits 8 hits 2 hits

Thionicotinamide-adenine-

dinucleotide
experimental 679.49 6.14 3.24 503.18 11 8 18 0 0.56 0.02 0.02 0.01 0.93 0.36 0.05 0.18 0.07 0.09 0.49 -8.8 0 0 37 hits 1 hits 13 hits 2 hits

3-acetylpyridine adenine 

dinucleotide
experimental 662.44 9.41 2.42 499.23 11 6 17 0.02 0.79 0.01 0.01 0 0.93 0.36 0.04 0.21 0.08 0.07 0.67 -8.8 0 0 31 hits 1 hits 8 hits 2 hits

3-(1h-indol-3-yl)-2-[4-(4-

phenyl-piperidin-1-yl)-

benzenesulfonylamino]-

propionic_acid

experimental 503.61 13.09 -7 222.99 8 3 5 0.67 0.99 0.01 0.01 0 0.16 0.95 0.17 0.78 0.66 0.29 0.74 -8.8 0 0 37 hits 0 hits 13 hits 2 hits

2-[3-({methyl[1-(2-

naphthoyl)piperidin-4-

yl]amino}carbonyl)-2-naphthyl]-

1-(1-naphthyl)-2-

oxoethylphosphonic_acid

experimental 670.69 15.73 -9.25 241.04 9 2 6 0.99 0.84 0.66 0.66 0 0.13 0.98 0.27 0.26 0.3 0.31 0.25 -8.7 0 0 29 hits 0 hits 8 hits 2 hits

4-[(5-chloroindol-2-yl)sulfonyl]-

2-(2-methylpropyl)-1-[[5-

(pyridin-4-yl)pyrimidin-2-

yl]carbonyl]piperazine

experimental 539.05 9.86 -6.74 193.97 7 1 7 0.93 0.96 0.23 0.23 0.05 0 0.9 0.19 0.69 0.84 0.11 0.66 -8.7 0 0 65 hits 13 hits 40 hits 28 hits

n-[4-(5-fluoro-6-methylpyridin-

2-yl)-5-quinoxalin-6-yl-1h-

imidazol-2-yl]acetamide
experimental 362.36 -0.96 -6.76 29.1 4 2 5 0.27 0.99 0.02 0.02 0.01 0.03 0.95 0.95 0.27 0.37 0.15 0.37 -8.7 0 0 32 hits 4 hits 8 hits 3 hits

Olaparib approved 434.46 1.8 -4.86 60.85 6 1 5 1 0.99 0.34 0.34 0.6 0.31 0.95 0.48 0.3 0.36 0.34 0.27 -8.7 1 0 32 hits 4 hits 8 hits 3 hits

Br-coeleneterazine experimental 520.37 4.12 -6.49 94.39 6 3 5 0 0.99 0.4 0.4 1 0.75 0.95 0.16 0.8 0.34 0.51 0.74 -8.7 0 0 90 hits 24 hits 34 hits 15 hits

Etoposide approved 588.56 1.93 -1.57 160.83 5 3 12 0.36 0.71 0.08 0.08 1 0.88 0.94 0.16 0.45 0.29 0.16 0.4 -8.6 0 0 16 hits 0 hits 6 hits 0 hits

Ouabain approved 584.65 -0.23 1.94 206.6 4 8 11 0.48 0.56 0.01 0.01 1 0.97 0.69 0.01 0.02 0.06 0.02 0.03 -8.6 0 0 14 hits 0 hits 3 hits 2 hits

Indinavir approved 613.79 3.24 -6.76 105.14 14 4 7 0.44 0.99 0.03 0.03 0 0.97 0.95 0.06 0.39 0.32 0.14 0.65 -8.5 0 0 31 hits 0 hits 8 hits 2 hits

Idelalisib approved 415.42 -1.53 -7.08 29.1 5 2 5 0.51 0.85 0.25 0.25 0 0.17 0.99 0.72 0.24 0.13 0.24 0.57 -8.4 0 0 32 hits 4 hits 8 hits 3 hits

Trametinib approved 615.39 3.07 -6.28 92.34 6 2 4 0 0.82 0.63 0.63 0.97 0.14 0.95 0.72 0.75 0.8 0.09 0.81 -8.4 0 0 42 hits 6 hits 20 hits 3 hits

Lumacaftor approved 452.41 4.05 -6.5 84.86 6 2 6 0.84 0.43 0.15 0.15 0.01 0.02 0.96 0.77 0.57 0.92 0.25 0.89 -8.4 0 0 32 hits 4 hits 8 hits 3 hits

Ergotamine approved 581.66 2.12 -5.01 102.42 5 3 6 0.24 0.95 0.23 0.23 1 0.93 0.95 0.18 0.58 0.37 0.15 0.87 -8.3 1 0 31 hits 0 hits 8 hits 2 hits

Canagliflozin approved 444.52 2.68 -4.45 90.15 5 4 5 0.93 0.99 0.19 0.19 1 0.57 0.94 0.68 0.4 0.45 0.15 0.32 -8.2 1 0 18 hits 4 hits 4 hits 1 hits

Edoxaban approved 548.06 -1.94 -3.88 110.85 10 3 7 0.55 0.59 0.43 0.43 0.09 0.18 0 0.06 0.68 0.66 0.02 0.83 -8.2 1 0 61 hits 13 hits 35 hits 28 hits

Structural Alerts



 

 

 

 

Figure 8.  Putative binding poses of the 30 antivirals listed in Table 2.   Each image shows the structure of the 

substrate binding pocket of the active site of the SARS-CoV-2 3CLpro protease (PDB ID: 6LU7).  The white 

surface in each image represents the surface of the active site of 3CLpro that would be traced out by water 

molecules in contact with the protein at all possible positions.  The antivirals are shown in molecular stick 

format.   


