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Abstract: COVID19 has caused thousands of deaths worldwide 
within a few months. The rapid spread of this virus that causes 
COVID19, termed SARS CoV2, has been facilitated by the lack of 
effective vaccines and treatments against this virus. In recent months, 
our team has developed a novel deep learning platform, Rosalind, for 
drug design and optimisation, and it enables rapid in silico discovery 
and evaluation of novel chemical designs. In the current work, we 
applied Rosalind for the rapid discovery of SARS CoV2 replication 
inhibitors that target the virus main protease Mpro. Through a series of 
training and optimisation rounds based on reported SARS CoV2 Mpro 
inhibitors helped by docking into the recently reported crystal 
structures of SARS CoV2 Mpro and medicinal chemistry input, we 
identified the a series of promising SARS CoV2 Mpro inhibitors. These 
compounds are presented in this work so they scientific community 
could pursue them while we continue our deep learning-based work 
in a collaborative manner to identify lead SARS CoV2 Mpro compounds 
with excellent drug-like properties that could be developed in a timely 
manner to address the urgent need for new and effective COVID19 
treatments. 

Coronaviruses (CoVs) are distributed in mammals and birds and 
have been known since the mid-1960s.[1] Most of the pathogenic 
CoVs are known to cause nonfatal illnesses.[2] However, in the 
21st century, there have been three CoVs outbreaks, which 
caused serious fatal respiratory infections in humans.[3] The first 
of these three was the severe acute respiratory syndrome 
coronavirus (SARS-CoV), which emerged in China in 2003 and 
spread to five continents affecting over 8,000 individuals with an 
overall fatality rate of 10%.[4] The second was the Middle East 
Respiratory Syndrome Coronavirus (MERS-CoV), which 
appeared firstly in Saudi Arabia in 2012 and spread to many 
places causing a global mortality rate of 35%.[4] The third CoV was 
first reported in December 2019 in the city of Wuhan in China, and 
it was noted as a novel coronavirus that causes severe 
pneumonia.[5]  As the RNA genome of this coronavirus was found 
to be about 82% identical to that of SARS-CoV and both viruses 
belong to clade b of the genus Betacoronavirus,[5] the World 
Health Organization (WHO) named this novel CoV virus SARS-
CoV-2 and its associated disease the 2019-coronavirus disease 
(commonly referred to as COVID19). Due to the rapid spread and 
deadly characteristics of SARS-CoV2, the WHO declared 
COVID19 as a pandemic.  
To date, there is no effective vaccine or treatment for COVID19, 
and this has partly played a role in its rapid spread and high 

mortality rate. In order to address this, and given the urgency of 
discovering new and effective treatments for this infection, we 
sought to apply a deep learning approach in the discovery of new 
treatments for COVID19. The application of deep learning 
strategies in drug design has enjoyed an increasing amount of 
interest over the past few years but it was only until recently when 
this approach started bearing fruit in identifying small molecule 
therapeutics.[6] Notably, deep learning approaches are more 
fruitful when there are large series of hit compounds against the 
drug targets as this facilitates training and optimization of the deep 
learning model. 
In order to choose the SARS CoV2 molecular target for our deep 
learning-driven discovery of anti-SARS CoV2 agents, we 
considered the validated protein targets of its closely-related and 
previously known coronavirus SARS CoV. Indeed, analysis of 
these targets and the available molecules that target them 
highlighted the protease enzymes that play key roles in the 
proteolytic processing of the virus as attractive molecular 
targets.[7] Interestingly, these proteases are similar in both SARS 
CoV and SARS CoV2, and studies have already shown that, akin 
to SARS CoV, the maturation of SARS CoV2 is mediated by two 
cysteine protease enzymes; 3-chymotrypsin-like protease 
(3CLpro, commonly referred to as Mpro) and papain-like protease 
(PLpro).[5, 8] Encouragingly, humans lack proteases with Mpro and 
PLpro cleavage specificity, and this suggests that inhibitors of 
these enzymes would have limited toxicity. In addition, two crystal 
structures of the SARS CoV2 main protease Mpro have recently 
been reported along with some initial hit compounds,[8] Together, 
this made the SARS CoV2 protease Mpro an attractive target for 
drug discovery endeavours that are aimed at developing new and 
effective treatments for COVID19.  
To rapidly discover SARS CoV2 Mpro protease inhibitors, we used 
our deep learning platform, Rosalind, which is being developed 
specifically to deal with small datasets; mainly cases where only 
a limited number of known inhibitors are known. In contrast to 
other approaches, Rosalind’s capabilities are optimised to 
efficiently explore a diverse search space around a specific core 
structure. This is a key feature of Rosalind, which allows it to 
incorporate medicinal chemistry input while retaining the power of 
novel, diverse and rapid chemical design. 
Our pursuit of discovering novel SARS CoV2 Mpro inhibitors 
started by examining the literature to generate a database of 
molecules that have been reported as promising SARS CoV2 Mpro 
inhibitors. In particular, we combined the compounds reported in 
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three different studies,[9] which after removing duplicates, gave a 
library of 535 compounds (Supporting Information, Table S1). 
Analysis of these structures led to two large clusters (small 
molecules heterocycles and peptidomimetics [examples given in 
Figure 1A-B]) as well as few nucleosides/nucleotides. Notably, 
this combined library of 535 compounds contained two molecules, 
namely remdesivir and niclosamide, which have already been 
shown to have potent anti-SARS CoV2 activities.[10] Out of the two 
major clusters of compounds, we decided to focus on the small 
heterocyclic molecules. Analysis of the compounds among the 
library of 535 compounds led us to select 42 compounds 
(Supporting Information, Table S2), and identify a key 
pharmacophore with possible variations (Figure 1C).  
 

 
Figure 1. Examples of compounds representing the two major clusters of 
molecules within the 535 library of compounds gathered from the literature. 
A. Small heterocyclic molecules. B. Peptidomimetics. C. The key 
pharmacophore identified from the small heterocyclic compounds that 
were in the principal database. 
 
The 42 compounds and the identified key pharmacophore were 
used in the training of the SARS CoV2 Rosalind model. At this 
early stage of employing the deep learning model, we applied a 
number of physicochemical properties filters including molecular 
weight < 500 g/mol and a LogP = 2-3 (see Experimental for full 
details). These were applied at this stage to ensure that from the 
onset of this work, we generate molecules that have key drug-like 
physicochemical properties. The generated compounds were 
then docked using Smina,[11] a fork of Autodock Vina into the 
crystal structure of SARS CoV2 Mpro protease (6YB7)[12] and that 
of ist closely related SARS CoV (3V3M)[13]. The compounds that 
gave an energy binding score of < -8 Kcal/mol on both structures 
were selected (Supporting Information, Table S3), and this gave 
49 compounds, which were subsequently analysed according to 
their drug-likeness, ease of synthesis and presence of known 
toxic groups. The top 20 compounds were identified as promising 
SARS CoV2 Mpro protease inhibitors (Figure 2A, Supporting 
Information, Table S4). 
While conducting this work, the chemical structures of a series of 
covalent and non-covalent binding fragments co-crystalised with 
SARS CoV2 Mpro protease were reported.[14] To capitalise on this 
valuable information, we subsequently analysed these structures 
and selected 21 non-covalent binding fragments (Supporting 
Information, Table S5) and used them in our Rosiland model to 
generate new SARS CoV2 structures based on these fragments. 
In this process, we again applied a number of physicochemical 
properties filters that include molecular weight < 500 g/mol and 
LogP = 2-3 (see Experimental for full details) to ensure that the 
newly designed compounds confine to the most desirable 

physicochemical properties of known drugs. The model 
generated 500 structures, which upon docking into the SARS 
CoV2 (6YB7) Mpro protease, the top 20 compounds in terms the 
energy of binding were chosen (Figure 2B, Supporting 
Information, Table S6).  
Subsequently, we analysed the final 40 compounds shown in 
Figure 2, which represent the combined deep learning-designed 
compounds based on the reported SARS CoV2 Mpro inhibitors and 
the non-covalent binders of SARS CoV2 Mpro, and chose five final 
SARS CoV2 Mpro inhibitors (12, 15, 16, 2´ and 11´, Figure 3). 
Although these five compounds did not necessarily have the best 
binding free energy, they were chosen based on their ease of 
synthesis and lack of functional groups that are known in the 
medicinal chemistry field to be associated with some toxicity (e.g., 
phenols, and anilines).  
 

 
Figure 3. Chemical structures of the top five compounds selected from the 
deep learning-driven SARS CoV2 Mpro inhibitors.  
 
Since in the deep learning-driven design of these compounds we 
docked them in the SARS CoV2 Mpro (6YB7) structure, we docked 
the top five compounds in a different SARS CoV2 Mpro (6w63)[15] 
structure to get a better insight into their binding modes and 
whether they retain good binding energies in their binding to 
SARS CoV2 Mpro (6w63), which is different from the SARS CoV2 
Mpro (6YB7) structure that was used in their design. Notably, the 
SARS CoV2 Mpro (6w63) was obtained in complex with the broad 
spectrum non-covalent inhibitor X77.[15] Thus, we initially 
performed unbias docking of ligand X77 in the SARS CoV2 Mpro 
(6w63) structutre and X77 was docked in the same pocket where 
the co-crystallised X77 was bound (a, Figure 4B) [-8.2 Kcal/mol 
binding energy]. Critically, the docking pose of this ligand matched 
that of the cocrystallised ligand [calculated docking RMSD: 
0.933Å) (a, Figure 4B) and this gave us confidence in our docking 
method. Subsequently, we docked our top five compounds shown 
in Figure 3 in the SARS CoV2 Mpro (6w63) structutre, and these 
compounds were docked in the same pocket where the original 
co-crystallised ligand (X77) was bound (Figure 4A). 
Encouragingly, all of our top five compounds engaged the 
catalytic His41 residue in their binding akin to ligand X77, while 
compounds 2´ and 12 (b and f, respectively, Figure 4B) formed 
further interactions with the catalytic Cys145 of the SARS CoV2 
Mpro. Additionally, out of all the five docked compounds and the 
ligand X77, compounds 2´ formed the most interactions with the 
SARS CoV2 Mpro (Figure S1) and had the best binding energy to 
SARS CoV Mpro (3V3M), SARS CoV2 Mpro (6YB7) and SARS 
CoV2 Mpro (6w63). Together, this makes compounds 2´ a 
promising candidate to investigated for its ability to inhibit SARS 
CoV2 Mpro.         
In conclusion, this work presents the strategy we adopted in 
developing a deep learning approach that will be a powerful tool 
in the rapid discovery of SARS CoV2 Mpro inhibitors. Indeed, 
starting from 535 known SARS CoV2 Mpro predicted inhibitors and 
reported structures of 21 non-covalent binders to SARS CoV2 
Mpro protease, we performed a series of cycles where a human 
chemistry knowledge informed a deep learning model 
optimisation approach towards the identification of forty promising 
SARS CoV2 Mpro inhibitors, which the scientific community could 
now pursue through the various COVID19 open and collaborative 
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initiatives, e.g., the COVID MoonShot project. In particular, we 
highlighted five molecules that could be investigated first for their 
ability to inhibit SARS CoV2 Mpro. Critically, we are continuing the 
training and optimization of our deep learning model in a 
collaborative manner to identify lead SARS CoV2 Mpro  

compounds with excellent drug-like properties that could be 

developed in a timely manner to address the urgent need for new 
and effective COVID19 treatments. 
 
 
Keywords: COVID19 • SARS CoV2 • Mpro Protease • Inhibitor • 
Deep Learning 
 

Figure 2. Chemical structures of the top promising SARS CoV2 Mpro inhibitors derived form reported inhibitors (A) and those based on the non-covalent 
binders of the SARS CoV2 (B). SMILES of these compounds are provided in the Supporting Information (Tables S4 and S6). 
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EXPERIMENTAL 
Data Preparation 
Initially, Rosalind’s deep learning generative models are trained on a 
large set of known active small-molecule drugs. The molecules were 
represented in Simplified Molecular Input Line Entry System  
(SMILES) format.[16] The SMILES dataset was preprocessed by 
applying sequential filters to remove stereochemistry, salts, 
undesirable atoms or groups and to maintain a canonical 
representation throughout the training and validation process. The 
RDKit library in python was used for dataset preprocessing.  
De Novo Training Procedure 
The generative model is initially trained to produce valid SMILES by 
training it on a set of 1.5 million active molecules curated from 
ChEMBL (compounds with a pChEMBL score greater than 7 
(calculated from IC50).[17]  
To produce SARS CoV inhibitors, we focused on reported inhibitors 
on SARS CoV main protease Mpro . There is a reasonable number of 
compounds known to inhibit the SARS CoV main protease Mpro and 
two crystal structures of the SARS CoV2 main protease Mpro have 
recently been reported along with some initial hit compounds.[8, 12] This 
allowed us to curate a set of 535 inhibitors reported SARS CoV main 
protease Mpro. (Supporting Information, Table S1).[9] This set was 
visually inspected to identify promising core structures. A small 
number of 42 prioritised compounds were then further analysed 
(Supporting Information, Table S2) and a handful were manually 
docked using AutoDock Vina software[18] with a known protease 
crystal structure (PDB ID: 3V3M)[13]. After this process, a key 
pharmacophore was identified (Figure 1C) and selected to seed the 
de novo design procedure.  
For inhibition of SARS CoV2, our starting set constitutes 21 non-
covalent binding fragments co-crystallized[14] with SARS CoV2 Mpro 

(Supporting Information, Table S5). Rosalind’s generative models are 
then seeded with the selected fragments and the trained models are 
run for approximately 24 hours rapidly producing millions of design 
ideas and pruning them according to a predefined drug-likeness 
scoring measure. For this study, the fitness score used constitutes  

drug-likeness and medicinal chemistry measures. Drug-likeness 
reward molecules with properties representative for protease 
inhibition; LogP: 2-3; molecular weight (MW: < 500 g/mol). Additional 
drug-likeness filters used include: number of hydrogen bond donors 
(HBD): 0-7; Number of hydrogen bond acceptors (HBA): 4-11; and 
topological polar surface area (tPSA): 60–200 Å. Medicinal chemistry 
filters were applied to incorporate expert insights filtering out 
structures containing rings bigger than six atoms and polypeptides (n 
≥ 4). 
RDKit predictive models were used to predict LogP and molecular 
weights (MW). A deep learning predictive model based on Ramsundar 
B et al.[19] was used for toxicity prediction. 
Given that the system is designed to produce only valid SMILES, and 
because of the use of the above restrictions, Rosalind automatically 
filtered unfit designs and produced a valid set of 500 compounds for 
each strategy followed after 24 hours.  
Docking Procedure      
SARS CoV Mpro (PDB ID: 3V3M),[13] SARS CoV2 Mpro (PDB ID: 
6YB7)[12] and SARS CoV2 Mpro (PDB ID: 6w63)[15] structures were 
obtained from PDB (https://www.rcsb.org/), in .pdb format. The files 
were prepared for docking using AutoDockTools by removing the 
crystallised inhibitors, removing water, adding polar hydrogens to the 
protein structures, defining the dimension and the center of the grid 
box for docking simulation and converting the PDB files into PDBQT.  
Candidate compounds in both sets were docked against the selected 
structures. For automatic docking, we used Smina,[11] a fork of 
Autodock Vina that focuses on improving scoring and minimization. 
Docking was performed at exhaustiveness of 10, and a random seed 
was selected. The docking pipeline was distributed and ran for about 
five hours on a computing cluster with 16 CPUs.  
The generated compound sets were then ordered according to the 
binding energies obtained from the docking. Hits with binding free 
energy higher than -7.5 kcal/mol on either structure were discarded. 
The remaining set contains 100 compounds scoring below -7.5 
kcal/mol on both structures. A final score is given to the remaining set 
of hits that is the sum of both binding energies. This score is used to 
order the set and a final list of top 20 hits (all scoring below -8.5 
kcal/mol on both proteases) is selected for the final manual docking 

Figure 4. A. Molecular surface representation of SARS SRAS-CoV-2  Mpro (6w63) with the re-docked-X77 (green), 2’ (blue), 11’ (yellow), 12 (pink), 15 
(cyan) and 16 (orange). The original co-crystallized ligand (X77) is shown in red sticks. B. Ribbon representation of the binding mode of the docked 
compounds. The catalytic His41 and Cys145 residues are showing in sticks.   
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and visual inspection (Supporting Information, Table S4 and Table 
S6). 
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