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ABSTRACT 

Current administrative controls used to verify geographical provenance within palm oil supply 

chains require enhancement and strengthening by more robust analytical methods. In this study, 

the application of volatile organic compound fingerprinting, in combination with five different 

analytical classification models, has been used to verify the regional geographical provenance 

of crude palm oil samples. For this purpose, 108 crude palm oil samples were collected from 

two regions within Malaysia, namely Peninsular Malaysia (32) and Sabah (76). Samples were 

analysed by gas chromatography-ion mobility spectrometry (GC-IMS) and the five predictive 

models (Sparse Logistic Regression, Random Forests, Gaussian Processes, Support Vector 

Machines, and Artificial Neural Networks) were built and applied. Models were validated 

using 10-fold cross-validation. The Area Under Curve (AUC) measure was used as a summary 

indicator of the performance of each classifier. All models performed well (AUC ≥ 0.96) with 

the Sparse Logistic Regression model giving best performance (AUC = 0.98). This 

demonstrates that the verification of the geographical origin of crude palm oil is feasible by 

volatile organic compound fingerprinting, using GC-IMS supported by chemometric analysis.  
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INTRODUCTION 

Palm oil obtained from the fruit of the oil palm (Elaeis guineensis), is the most 

consumed vegetable oil globally. In 2018 it was estimated that 68 million tonnes were produced 

globally (Statista, 2018). The oil palm plant originates from West Africa, but now grows in 

wild, semi-wild and cultivated states right across the equatorial tropics, including Malaysia, 

Indonesia, Papua New Guinea, Western Africa and South and Central America (Corley & 



Tinker, 2008). Two different oils are extracted from palm fruits, namely Crude Palm Oil (CPO) 

and Crude Palm Kernel Oil. CPO is the main oil of commercial interest, being semi-solid at 

room temperature and containing high proportions of both saturated and monounsaturated fatty 

acids. These properties make for a versatile oil that is predominantly used in foodstuffs as an 

ingredient in thousands of processed foods ranging from noodles to chocolate. Oil palm 

cultivation has grown rapidly in recent decades due to low production costs and high demands 

from the food industry, especially for CPO (Corley & Tinker, 2008; Paddison et al., 2014).  

The initial rapid expansion of the oil palm industry in Malaysia occurred by conversion 

of land from other plantation crops, mainly rubber. However, after 2000 large tracts of primary 

and secondary rainforests, as well as peatlands, were also converted especially in Indonesia. 

This process often occurred in regions of high biodiversity and conservation value (Koh and 

Wilcove, 2008; E. Meijaard et al., 2018). As a reaction to this process, the Roundtable on 

Sustainable Palm Oil (RSPO) was established in 2004 to improve sustainability and traceability 

of the industry. However, to a great extent, current traceability methods are largely based upon 

potentially fallible audit trails. Therefore, it is increasingly important that there are alternative 

methodologies that can be applied reliably within supply chains and which enable 

authentication of geographical provenance, to facilitate current traceability measures.  

Chemically based methods for the authentication of geographical provenance of 

vegetable oils has been well studied in the case of olive oil but less so for other oils (Janin et 

al., 2014; Ou et al., 2015; Portarena, Gavrichkova et al., 2014). All vegetable oils are complex 

natural mixtures comprising of many components. Fatty acid composition is the most studied 

component for vegetable oil authentication (Janin et al., 2014; Korifi et al., 2011; Tres et al., 

2013). However, other important components can also be utilised for authentication including 

sterols, elemental isotope ratios, volatile organic compounds (VOCs) and tocopherols. With 

the exception of isotope ratios, fingerprinting techniques are the most common approach for 



assessing such components, as they provide analytical information about a sample in a non-

selective way (Ruiz-Samblás et al., 2013).  

However, fingerprinting usually generates issues of ‘big data’ analysis, which require 

the use of appropriate multivariate statistics to extract the most important information for 

characterizing a particular sample (Cumeras et al., 2015; Hauschild et al., 2012; Szymanska et 

al., 2014). Other studies have shown that VOC fingerprints can be useful for discerning 

vegetable oils by geographical origin because their quality and composition depend on several 

factors, including genetic variety, growing conditions, processing technologies and storage 

(Alba Tres et al., 2011). In the case of palm oils, the composition may be significantly affected 

by seasonal variation, fertilisation regime, oil processing techniques, etc. 

In this work, gas chromatography-ion mobility spectrometry (GC-IMS) was used to 

generate VOC fingerprints. IMS was initially developed in the 1970s for detection of 

explosives and chemical warfare agents. It relies upon the separation of charged particles in an 

electric field, with separation depending upon mass, shape, size and collisional cross-sectional 

area (Eiceman et al., 2016) of each ion cluster. However, IMS spectrometers typically have 

low resolution due to overlapping signals resulting from ion-ion or ion-molecule reactions in 

the ionisation process (Garrido-Delgado et al., 2011). The method is therefore often coupled 

with other techniques for fast pre-separation, usually a standard GC column, as is the case in 

this study. GC-IMS is now increasingly applied in the environmental, biomedical and food and 

flavour industries due to its selectivity and sensitivity, time of analysis, small footprint, low 

cost and its ability for easy on-site implementation by relatively unskilled operatives, meaning 

it is potentially accessible to laboratories worldwide.  

The present work is one of only a few studies that have sought to characterise CPO 

samples by geographical origin. Four previous studies have sought to do this on a continental 

scale (South-East Asia vs. South America vs. Africa) (Obisesan et al., 2017; Pérez-Castaño et 



al., 2015; Ruiz-Samblás et al., 2013; Tres et al., 2013) and one study was on a regional scale 

(Central Malaysia vs. Northern Malaysia vs. East coast Malaysia vs. Southern Malaysia vs. 

East Malaysia) (Muhammad et al., 2017). While, GC-IMS has previously been used to 

distinguish different olive oil samples by grade (Garrido-Delgado et al., 2015; Garrido-

Delgado et al., 2011), to our knowledge this study is the first time GC-IMS has been used for 

palm oil analysis. Here we describe the application of chemometrics to raw GC-IMS 

chromatograms to successfully establish models for the prediction of regional geographical 

provenance of CPO samples in Malaysia. 

MATERIALS AND METHODS 

Palm oil samples 

A total of 108 palm oil samples were provided by Wageningen University of Research 

(WUR), Netherlands. These samples had been collected from various mills across Peninsular 

Malaysia and the State of Sabah in North Borneo. A total of 32 samples originated from 

Peninsular Malaysia whilst 76 originated from Sabah. Samples were stored at 4 oC until 

analysis.  

 

Sample preparation 

 No pre-preparation or derivatisation of samples is required prior to GC-IMS analysis. 

CPO samples were melted at 45 oC to enable aliquoting of 1 g to a 20 mL glass headspace vial 

and vials were secured with a magnetic screw cap, sealed with a PTFE/silicon septum. Samples 

were pre-conditioned at 60 oC and 275 rpm for 15 minutes, via an integrated sample 

introduction system (SIS) unit (CTC-PAL, CTC Analytics AG, Zwingen, Switzerland) to 

ensure equilibration between the sample and headspace. 200 µL of sample headspace was 

directly injected into the GC-IMS system via a 2.5 mL Hamilton syringe with a 51 mm needle. 

 



GC-IMS analysis  

 All CPO analyses were performed on a commercially available GC-IMS instrument 

(model, FlavourSpec©) from Gesellschaft für Analytische Sensorsysteme mbH (G.A.S., 

Dortmund, Germany). The headspace sample was injected via a heated splitless injector on to 

a low polarity GC column consisting of 9%-diphenyl – 95% dimethylpolysiloxane of 15 m 

length, an internal diameter of 0.53 mm and 1 µm of film thickness (FS-SE-54-CB-1 of CS-

Chromatographie Service GmbH, Düren, Germany) facilitated by Nitrogen (6.0) carrier gas. 

The analytes enter the ionisation region and undergo soft ionisation via a cascade reaction by 

a Tritium H3 radioactive ionisation source of 300 MBq. 

Ion swarms are released into the drift region though a Bradbury Nielsen gate (grid pulse 

width of 100 μs and a sampling frequency of 150 kHz) when the electric field strength of the 

grid set of the shutter is weakened or eliminated. Ions travel towards the detector (Faraday 

plate) against an opposing drift gas (Nitrogen 6.0) and are separated based on mass, charge, 

size and cross-sectional collision surface area, due to the presence of an electric field. 

Subsequently, different ions reach the detector at different times, with each component having 

a specific IMS drift time.  

IMS data were acquired in positive mode using Laboratory Analytical Viewer (LAV) 

software (v.2.0.0) from G.A.S (G.A.S, 2018). Each spectrum had an average of 6 scans, 

obtained using a repetition rate of 30 ms. Instrumental and experimental parameters for CPO 

analysis are displayed in Table 1. Working principles of the FlavourSpec© are displayed in Fig. 

1.  

 

Data analysis 

GC-IMS spectral data was exported into CSV format for data processing (typically 

11,000,000 data points per file). The general workflow is summarised in Fig. 2 and was 



developed in R (v 3.0.2). A number of pre-processing steps were undertaken prior to 

chemometric analysis. The first step cropped an area of interest, reducing data points by a factor 

of ten. All data were aligned in the x axis relative to the Reactant Ion Peak (RIP) position of 

the first file and thresholding to remove background was followed by x/y realignment, further 

reducing the number of data points to below 100,000. At this stage, a tenfold cross validation 

technique was applied. In each fold around 90% of the data was used as the training set. Within 

the training set, features were identified using a Wilcoxon rank-sum between the two groups 

(Sabah vs. Peninsular Malaysia). 100 features (data points) with the lowest p-values were 

retained and used to construct the models. This model was then applied to the remaining test 

set and this was repeated until each sample has a prediction as a test sample (Martinez-vernon 

et al., 2018). The five classification models used in this study are listed below: 

• Sparse Logistic Regression 

• Random forests 

• Gaussian Processes 

• Support Vector Machines 

• Artificial Neural Networks 

RESULTS AND DISCUSSION  

 Examples of the GC-IMS spectra obtained from Sabah and Peninsular CPO samples 

are shown in Fig. 3. GC-IMS analysis results in a three-dimensional topographic plot where 

the x-axis represents IMS drift time (ms), the y-axis represents GC retention time (s) and the 

z-axis represents peak height/intensity (V). Due to the three-dimensional nature of the data, 

each spectrum contains around 11 million data points making visual comparison of different 

samples arduous and inefficient. Furthermore, distinguishing less intense but perhaps 

important signals is not possible as they may not be readily apparent above the background 

noise. This is why the application of chemometrics was required in order to process data 



automatically, to reduce dimensionality and size, and to build classification models for 

discerning CPO samples by geographical origin (Sabah vs. Peninsular Malaysia). 

The five different classification models (Sparse Logistic Regression, Random Forests, 

Gaussian Processes, Support Vector Machines, Artificial Neural Networks) include both linear 

and non-linear methods. A single classification model was not selected for this study as the 

dataset was relatively small and until larger data sets can be tested, it is recommended that 

multiple classifier models should be used. In order to quantify the quality of classification 

results, several performance features were proposed as metrics. The estimation of such metrics 

is based upon the classifiers ability to distinguish classes correctly and to subsequently avoid 

classification failure (Martinez-vernon et al., 2018). The different quality metrics used in this 

paper for evaluating the classification results are shown below (Pérez-Castaño et al., 2015): 

1. Area under curve (AUC): the area under the ROC (Receiver Operating Characteristic) 

curve is a measure of the quality of classification models that can summarise the 

performance of a classifier into a single metric. Its value varies between 0 and 1, 

although values should generally be greater than 0.5. 

2. Sensitivity: also known as the true positive rate and measures the proportion of actual 

positives that are correctly identified as such. The range of values for this feature is 0 

to 1. 

3. Specificity: also known as the true negative rate and measures the proportion of actual 

negatives that are correctly identified as such. The range of values for this feature is 

between 0 and 1.  

4. p-value: a measure to determine the significance of the results. p ≤ 0.05 typically 

indicates strong evidence against the null hypothesis meaning the result is significant. 

All five models produced strong results for discerning Sabah and Peninsular Malaysia 

CPO samples (AUC ≥ 0.96) meaning they could correctly distinguish between samples at least 



96% of the time. However, the Sparse Logistic Regression method performed best (AUC 0.98) 

(Table 2 and Fig. 4). Since GC-IMS is a rapid, sensitive and selective, cost-effective and non-

destructive technique, which can be readily implemented on-site, it could be proposed as an 

initial screening technique for the geographical origin of crude palm oil, prior to the utilisation 

of more costly and time-consuming targeted techniques. 

Whilst the aim of this study was to assess the use of GC-IMS as a fingerprinting 

approach for discerning samples by origin, the pipeline used in this study allowed for feature 

extraction to identify significant data points involved in the classification. For example, several 

data points may have formed a single peak that was only present in one group of samples and 

not the other, therefore it might have been of interest to identify this peak using the NIST2014 

database and IMS library. However, in this study, there was no correlation between specific 

features and individual spectral peaks. The features with the greatest variance were spread 

across the spectra and likely represented global changes in total profiles, making peak picking 

and subsequent compound identification difficult. Nevertheless, this study has shown GC-IMS 

combined with chemometrics to be a feasible fingerprinting approach for discerning between 

CPO samples from Sabah and Peninsular Malaysia. Further work should be conducted on a 

larger sample size to increase the likelihood of detection of a specific geographical marker 

using feature extraction, followed by compound identification using NIST2014 and IMS 

databases. 

Sample and group size have been major limitations in all previously published studies 

in this area. Our study is only one of two which has successfully discerned CPO samples by 

region of origin and is the first to do so using a fingerprinting approach combined with 

chemometrics, on a much larger sample set. Nevertheless, even in this work, sample set is still 

a limitation because recommended minimum group size for chemometric analysis to be 

statistically significant is 30, which is close to that of the Peninsular Malaysia group (n=32). 



Furthermore, due to the availability of samples, group size in this study is not optimally 

balanced, meaning bias may be introduced. Any further work should be conducted on larger 

and better balanced groups. Nonetheless, this study has demonstrated promising results using 

the provided sample set and has shown that increased spatial specificity can be obtained. 

Further work should be conducted using CPO from the same mills/regions, but further studies 

should also ensure that samples are collected and analysed continuously over long term periods 

of several months to years in order to capture as much variation as possible. In this way it will 

be possible to successfully validate such approach and train predictive models more effectively. 

 Analytical methods for verification of geographical provenance of palm oils will have 

positive implications within the industry and will support and strengthen the current 

administrative controls in place. Whilst VOC fingerprinting is a well-studied approach and has 

been successfully used for other vegetable oils, further work should be undertaken annually, 

using as many authentic samples as possible, to assess the impact of seasonal variation, changes 

in fertilisation regime, changes in processing etc.  

CONCLUSIONS 

Fingerprinting approaches combined with use of appropriate multivariate statistics 

(chemometrics) is common practice for authentication of foodstuffs. However, this is the first 

study of its kind that has shown that the application of chemometrics to raw chromatograms of 

GC-IMS data, is effective for discerning CPO samples by regional geographical provenance.  

A single classification model was not selected for this study as the dataset is relatively 

small, alternatively five different models (linear and non-linear) were used and should continue 

to be used until a large enough dataset has been analysed. All models were successful in 

discerning CPO samples from Sabah and Peninsular Malaysia. Since GC-IMS is a rapid, 

sensitive and selective, cost-effective and non-destructive technique, which can be readily 

implemented on-site, it could be proposed as an initial screening technique for the geographical 



origin of crude palm oil, prior to the utilisation of more costly and time-consuming targeted 

techniques.  

 Such analytical methods for verifying the geographical provenance of palm oils will 

have positive implications within the industry and will support and strengthen the 

administrative controls currently in place (Goggin & Murphy, 2018). This is only one of a few 

which have sought to distinguish CPOs by geographical origin and is only the second to do so 

on a regional level and the only one using GC-IMS. Whilst VOC fingerprinting is a well-

studied approach and has been successfully used for other vegetable oils, further work should 

be undertaken annually to assess the impact of seasonal variation, changes in fertilisation 

regime, changes in processing etc. A larger sample set should also be studied to determine 

whether further spatial specificity can be obtained (i.e. at mill or plantation level). 
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Figure 1. A diagrammatic overview of the working principles of GC-IMS.  
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Figure 2. An overview of the general workflow used for classifying GC-IMS data into Sabah 
or Peninsular Malaysia classes. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A side-by-side comparison of typical GC-IMS spectra from Sabah (A) and 

Peninsular Malaysia (B) crude palm oil samples. 
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Figure 4. Examples of the ROC curves, summarising the performance of each model used 

in study 
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Table 1. Instrumental and experimental parameters for CPO analysis  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter Values and units 
SIS  
Sampling type/volume Headspace (200 µL) 
Agitation time 15 min 
Incubation temperature 60  oC 

Syringe temperature 80  oC 

Column  
Injector temperature 80  oC 
Capillary Column SE-54 (low polar) ID 0.53 mm, 1 μm 
Column Length 15 m 
Column Temperature 40  oC 
GC Run time 16 min 

Carrier gas flow rate T= 0-10 min: 2 mL min-1  to 50 mL min-

1 

T= 10-15 min: 50 mL min-1 to 150 mL 
min-1 

T= 15-16 min: 150 mL min-1 

 

(N2 6.0) 

IMS  
Ionization source Tritium (30 MBq) 
Voltage Positive drift 
Drift length 9.8 cm 
Electric field strength 510 V cm-1 

Drift gas flow rate 150 mL min-1 
IMS temperature 45  oC 



Table 2. Model performance comparison for 100 features. 

 

 
 

Model AUC Sensitivity Specificity p-value 
Sparse 
Logistic 
Regression 

0.98 
(95% CI: 
0.96-0.99) 

0.94 (95% CI: 
0.87-0.98) 

0.92 (95% 
CI: 0.88-
0.95) 

<0.01 

Random 
Forest 

0.97 
(95% CI: 
0.96-0.99) 

0.96 (95% CI: 
0.90-0.99) 

0.84 (95% 
CI: 0.84-
0.93) 

<0.01 

Gaussian 
Process 

0.96 
95% (CI: 
0.95-0.98) 

0.91 (95% CI: 
0.83-0.96) 

0.91 (95% 
CI: 0.87-
0.95) 

<0.01 

Support 
Vector 
Machine 

0.96 
(95% CI: 
0.93-0.99) 

0.95 (95% CI: 
0.88-0.98) 

0.95 (95% 
CI: 0.92-
0.98) 

<0.01 

Neural 
Net 

0.97 
(95% CI: 
0.96-0.99) 

0.95 (95% CI: 
0.88-0.98) 

0.95 (CI: 
0.92-0.98) 

<0.01 


