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Abstract

Intensive research in catalysis has resulted in design parameters for many

important catalytic reactions; however, designing new catalysts remains difficult,

partly due to the time and expense needed to screen a large number of potential

catalytic surfaces. Here, we create a general, efficient model that can be used to

screen surface alloys for many reactions without any quantum-based calculations.

This model allows the prediction of the adsorption energies of a variety of

species (explicitly shown for C, N, O, OH, H, S, K, F) on metal alloy surfaces

that include combinations of nearly all of the d-block metals. We find that a

few simple structural features, chosen using data-driven techniques and physical

understanding, can be used to predict electronic structure properties. These

electronic structure properties are then used to predict adsorption energies, which

are in turn used to predict catalytic performance. This framework is interpretable

and gives insight into how underlying structural features affect adsorption and

catalytic performance. We apply the model to screen more than 107 unique

surface sites on approximately 106 unique surfaces for 7 important reactions. We

identify novel surfaces with high predicted catalytic performance, and demonstrate

challenges and opportunities in catalyst development using surface alloys. This
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work shows the utility of a general, reusable model that can be applied in new

contexts without requiring new data to be generated.

Introduction

Metal alloy surfaces can be high-performing, stable catalysts for a variety of reactions, but

the large compositional phase space is difficult to explore, despite significant advances

in developing design principles for these systems. Therefore, novel catalysts are often

developed by taking existing materials that are known to perform well and modifying

them to further improve their performance. Discovering effective catalysts composed of

unintuitive combinations of elements generally requires some form of high-throughput

screening, which is currently expensive and time-consuming. Developing efficient models

can be useful for high-throughput screening, but currently these models must be created

from scratch for each reaction of interest, requiring significant time and effort. Hence, a

general framework that allows initial screening for many different reactions would greatly

streamline the screening process, and would allow significant insight into general trends.

Adsorption energies are the most widely used design parameters in catalyst design.

Adsorption energies are often good descriptors for multiple reasons: they control the rate

of adsorption/desorption as well as the coverage, and differences in adsorption energies

are often related to activation energies through Brønsted-Evans-Polanyi relations.1 This

design paradigm has been successfully used to rationalize catalytic performance2–4 and

to design new catalysts.3,5–7 However, adsorption energies are difficult to measure and

are slow to calculate.

Due to the difficulty of high-throughput screening, significant research has been

devoted to developing efficient, parameterized models to predict adsorption energies

and hence catalytic performance.8–15 These models can achieve high accuracy, and have

resulted in some successes in screening a particular alloy architecture for a particular

reaction. However, past models have generally focused on predicting the adsorption

energies of only one or two species, and hence are not applicable to a wide range

of reactions. Similarly, they generally focus on a relatively small portion of the vast



combinatorial space of alloy surfaces. To screen for a new reaction or study a new set

of surfaces, a new model must be created from scratch, which often requires hundreds

or thousands of calculations. Further, a general framework allows understanding of

general trends. Previous approaches to constructing a general model have required a

DFT calculation for each surface,16,17 which is much slower than a parameterized model

based purely on features that can be extracted from the surface structure.

Indeed, developing general, reusable models is quite difficult in many areas of chem-

istry and materials science.18–21 Fitted models are used in a wide range of applications,

including molecular dynamics, exchange-correlation functionals, and materials design.

These models may be derived from physical theories such as tight-binding,22 or may be

purely based on data-driven approaches such as machine learning.23 Physically motivated

models can have researcher bias, and may miss important features or behaviors. Data-

driven approaches are unlikely to generalize beyond the space spanned by the training

data and often use low-level features that require a large amount of data. To develop

a general, reusable model that is not overly biased by intuition, we used a combined

approach of considering data-driven techniques for model selection, as well as our physical

understanding. The model decouples the surface from the adsorbate, and this novel

architecture allows a significant improvement in generality over previous approaches.

Using this approach, we have developed a general, efficient model that is useful for

designing transition metal alloy catalysts for many reactions. The model successfully

predicts adsorption energies for a wide variety of species and is applicable to a wide phase

space of potential transition metal catalysts. Therefore, the model can be reused in new

contexts with no overhead, as there is no need for additional data generation or fitting.

This work addresses a major drawback of most predictive models: their lack of reusability.

This results in a much more efficient and convenient framework for high-throughput

screening for new reactions. In other fields, it has been shown that relatively simple

formulas or tables can be superior to expert judgement.24 Analogously, a general model

for adsorption could, in some cases, replace researcher intuition concerning catalytic

performance.



Methods

DFT calculations were performed using the VASP code.25,26 The PW91 exchange-

correlation functional27 and the projector-augmented wave method28,29 were used. The

plane-wave basis set was cut off at 396 eV, and a 7×7×1 k-point mesh was used. All

calculations were performed with a 3×3 surface cell. Four layers were used, with the

bottom two fixed at their bulk positions. Substitutional doping was performed in the

top two layers. Adsorption energies are given relative to the gas-phase adsorbate, with

the convention that exothermic adsorption is negative. Some calculations reconstructed

significantly, which led to unphysical configurations and difficulty in reaching geometric

convergence. As done in previous work,10,30 these calculations were removed.

For each unique atomic environment, we generated a variety of physically motivated

features. First, we calculated the electronic coupling between each metal atom and its

neighbors, as this has proven useful in previous work predicting electronic structure

properties of transition metal surfaces.9,31 However, instead of assuming a precise

functional form for the coupling, we calculated the coupling using a variety of exponents

in the expression

V 2
ll,i =

∑
j(−rd,i)α/2(−rd,j)α/2

dβi,j
, (1)

analogous to previous work which fit various parameters for tight-binding models.32 The

index i represents the central atom under consideration, while j runs over this atom’s

neighbors. The values for the d-orbital radii rd were taken from previous work, which fit

them to band structures,33 while the values for the atom-atom distances di,j were taken

from unrelaxed surface geometries, so that the final model is truly predictive without

requiring relaxed geometries from DFT. The exponents α and β were varied from 1 to 9.

In our screening process, rates were predicted by extracting relationships from

previous work. Many previous studies have plots of predicted rates as a function of

adsorption energies, and we extracted data from these plots. These datasets were

interpolated using standard techniques, and were extrapolated where necessary. To

account for differences in computational setup, in most cases we used a reference surface



on which the adsorption energy was given in the original work. The adsorption energy

difference on this surface between our DFT calculations and the previous work was added

to our predicted adsorption energies. Because the results from different functionals are

highly correlated,34 we expect this to be reliable. As an example, the optimal catalyst for

the oxygen reduction reaction should bind OH about 0.15 eV less strongly than Pt(111),35

independent of the computational setup. Costs were calculated by taking the average cost

of the atoms in the unit cell, using rough values for the cost per weight of each metal.

Identification of symmetry-inequivalent sites and surfaces was done using PyMatGen.36

Density plots (Figure 4) were created with Datashader.

Results and Discussion

Approach and Data

To create the model, we leveraged previous work17,37 that shows that it is possible to

predict the adsorption energy of a variety of species on transition metal alloy surfaces

using a few electronic structure parameters: the d-band center εd, the number of p

electrons np, the matrix coupling element between the adsorbate and the metal d states

V 2
ad, and the idealized filling of the d-band fd:

Eads = a1 + a2εd + a3np + a4V
2
ad + a5V

2
adfd. (2)

The value of fd is determined by the column of the periodic table that the metal atom

is in. For simplicity, in this work we fit Equation (2) separately for each species and for

each type of site: top, bridge, and hollow. We did not distinguish between fcc and hcp

hollows; fitting these sites separately had little effect on the accuracy.

Therefore, instead of predicting adsorption energies for each species directly from the

surface structure, we predicted the electronic structure parameters in Equation (2), and

then used these parameters to predict adsorption energies for many species (see Figure 1).

Thus, instead of predicting many target variables with complicated relationships to each



other, we only needed to predict a few target variables: εd, np, and V 2
ad.
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Figure 1: Schematic of overall screening methodology. For each atom in an alloy surface
structure, we calculated average atomic properties of its neighbors (e.g.,xn) and calculated
the electronic coupling to its neighbors (Vll). Using these properties, we predicted the
atom’s electronic structure properties, and these electronic structure properties were used
to predict adsorption energies for a variety of adsorbed intermediates. These adsorption
energies were used to estimate catalytic performance. Because we can predict adsorption
energies for many species, the framework can be reused for new reactions with no
adjustment.

Our target phase space for this work was fcc(111) and hcp(0001) surfaces with a pure-

metal bulk, where atoms in the top two layers are substituted with another metal. This is

a large phase space that includes important architectures such as single-atom alloys, near-

surface alloys, monolayer overlayers, and monolayer sandwiches. We can also approximate

bulk alloys, because the local surface composition and arrangement generally has a larger

effect on the adsorption energy than longer-range effects. The method is likely applicable

to other structures and architectures as well. Twenty-three metals were included: Cu,

Ag, Au, Ni, Pt, Pd, Co, Rh, Ir, Fe, Ru, Os, Mn, Re, Cr, Mo, W, V, Ta, Ti, Zr, Hf, Sc.

To generate data for our electronic structure model, we calculated the projected

density of states for atoms in 2273 unique environments on 350 different surfaces. For

each of these unique environments, we extracted εd and np. We calculated V 2
ad from the

carbon-metal distance for CH3 adsorbed in the top site, as in our previous work.17,37 335

of these calculations were performed.

We focused on predicting atomic adsorption energies because atomic adsorption



energies are common descriptors for catalysis. We included a set of elements that covers

the vast majority of catalytic reactions: C, H, O, N, S, F, K. We also included OH, to

show that our framework also applies to intermediates other than atomic species. We

calculated 685 adsorption energies total for these species, referenced to the adsorbates in

the gas phase.

Models

As our goal was to maximize the generality of our model, we used a relatively high-bias,

low-variance model—a linear model with only a few features—and combined physical

insight with data-driven insight. A high-bias, low-variance model is particularly useful

for creating more general models with relatively small data sets.38 This framework is less

prone to overfitting and also imbues the model with explanatory power, as differences in

adsorption energy can be traced back to surface properties. To choose our features, we

examined their predictive power in linear models with varying numbers of terms, and also

used regularized regression to examine feature importance. We also carefully considered

the physical justification for each feature, as choosing physically motivated features is

likely to improve the model’s generality. This is particularly useful when many models

have similar accuracy, as is the case here. We fit the electronic structure properties

for each metal element separately, and there was some variation in the most accurate

feature set between different metals. This created further ambiguity in determining the

most important features. Hence, we chose features by hand, considering both data-driven

factors and physical motivation, which resulted in a generally applicable model.

For each unique atomic environment in our dataset, we calculated two types of

features. First, we calculated a variety of features based on a general form for electronic

coupling in a tight-binding model, as a generalization of previous work (see Methods

section).9,31 Additionally, we calculated various property differences between each atom

and the mean value for all of its nearest neighbors, again guided by previous work31

and physical intuition. We denote each of these neighbor properties with a subscript n.

Hence, fd is the d-band filling of a surface atom and is used to predict adsorption energies



(Equation (2)), while fd,n is the average difference in the d-band filling between an atom

and its neighbors and is used to predict electronic structure properties.

To select which of these features to use in predicting each electronic structure property,

we performed LASSO and ridge regression, fit all possible one- and two-term linear

models, and fit a large number of three-term models. This was done for each metal

element, each with different coefficients and accuracies. We examined the coefficients in

LASSO and ridge regression, where the hyperparameters were tuned using cross validation

and accuracy was tested on a separate test set. Three different 20%-80% test-train splits

were used, and the results were averaged. Varying the test set size had little impact on

the results. We also examined the highest-performing linear models with various numbers

of terms, and often checked which features would most improve the test-set errors when

added to postulated models. Because of the differences in results across different elements,

and because many of the features have a high correlation with other features, no single

technique for feature selection was robust and adequate. Further, because of our emphasis

on generality, we considered the physical motivation for each potential feature and set of

features.

Of the surface parameters we predict, the d-band center varied the most across the

dataset and was the most difficult to predict. Based on our data-driven metrics, the

neighbor atoms’ idealized d-band filling fd,n was clearly the most important feature. It

performed noticeably better than any other feature in one- and two-term models and has

the highest weight in ridge regression. It also has strong physical justifications: the filling

of neighboring atoms’ d-bands will affect electron transfer and hybridization. It is related

to the previously developed concept of “diagonal disorder”, which explains interactions

between transition metal atoms partly in terms of the differences between their d bands.39

Our data-driven metrics suggest a few other possible features: neighboring atoms’ bulk

thermal and electrical conductivity, covalent radius, and electronegativity. These are all

tabulated quantities for each element. We examined two- and three-term models that

include fd,n, and found that the neighbor atoms’ electrical conductivity σn consistently

gave the best improvement when added to high-performing models, in addition to having



a large coefficient in ridge regression. The conductivity is related to the electronic

interactions between an atom and its neighbors, and therefore it is reasonable for the

conductivity to affect the d-band. Given fd,n and σn as features, our data-driven metrics

suggested that adding an electronic coupling term (Equation (1)) would improve the

accuracy. While many of these terms are similar, coupling terms with lower exponents

were more accurate. We chose exponent values of α = 1.5 and β = 3.5 as these correspond

to a derived form for V 2
pd, the coupling between d states and p or s states in neighboring

metal atoms.33 Previous studies have generally used V 2
dd, which we found to be somewhat

less accurate. Hence, p-d hybridization—and/or s-d hybridization—may have a larger

effect on the d-band center than d-d hybridization. Within uncertainty, our chosen model

has the highest accuracy of any three-term model (along with many others). Further,

each term in the model has its own data-driven and physical justification.

Somewhat surprisingly, we found that a single-term model for np gave sufficient

accuracy. Adding an additional term gave only a slightly smaller test error and nearly

identical training error. Within uncertainty, V 2
pd is the feature that gives the lowest test

error. The p-d coupling is easy to justify physically, as it will have a strong effect on p-d

hybridization and the p band.

The value of V 2
ad generally varies little for a given metal, and thus it is not surprising

that a single feature suffices to predict it. Our feature selection process suggested that

fd,n gives the most accurate model, and adding an additional feature does not improve

the accuracy. Physically, fd,n correlates with the neighbor atoms’ number of d electrons,

which affects the d electrons through hybridization and electron transfer. This in turn

affects the coupling between the metal atom’s d states and the adsorbate states. The

final features in each model and the data-driven and physical justification for each are

shown in Table 1.

Linear models with the features in Table 1 gave good accuracy for predicting the

electronic structure parameters (see Figure 2a,b,c). The mean absolute error (MAE) and

root-mean-squared error (RMSE) of the test sets, averaged over 3 different test-train

splits, are shown. Further, when combining these models with Equation (2) to predict



Table 1: Features used in models to predict electronic structure parameters.

Model
(Output)
a

Feature
(Input)b

Data-driven Justification Physical Justification

εd fd,n Lowest test error in one-term and two-term
models; highest rank in ridge regression

d-d hybridization, electron trans-
fer, diagonal disorder

εd σn Lowest test error for two term model with fd,n;
low test error for three term model with fd,n
and V 2

pd

Electronic interaction between
neighbors

εd V 2
pd Lowest test error (within uncertainty) for

three term model with fd,n and V 2
pd

p-d and s-d hybridization

np V 2
pd Lowest test error in one-term model (within

uncertainty); two term models provide little
improvement

p-d and s-d hybridization

V 2
ad fd,n Lowest test error in one-term model; two term

models provide no improvement.
d-d hybridization, electron trans-
fer, diagonal disorder

a d-Band center, εd; number of p electrons, np; adsorbate-surface matrix coupling element, V 2
ad.

b Neighbors’ d-band filling, fd,n; neighbors’ bulk electrical conductivity, σn; p-d coupling to neighbors,
V 2
pd.

adsorption energies, we obtain an RMSE of 0.41 eV (see Figure 2). For bridge and

hollow sites, the surface parameter values were averaged over the surface atoms in each

site. The RMSE varies significantly across adsorbates and sites, ranging from roughly

0.15 to 0.6 eV. Adsorbates that adsorb more strongly and have a larger variation in their

adsorption energies have a higher RMSE. However, the root-mean-square percent error

(RMSPE) is much more constant, with a range of roughly 6 to 15%, and an overall value

of 10%. 75% of the data points have a percentage error less than 10%, and 94% of

points have a percentage error less than 20%. Hence, our model is accurate enough to be

quite useful in initial screening. While comparing to previous models is difficult due to

differing data sets, our errors are in the ranges achieved by other models, but less data

is required.10,12 Error distributions are given in Figure S1. We attribute the relatively

low error on a quite heterogeneous dataset to our strategy of decoupling the predictions

of the surface properties, which were fit separately for each metal, from the prediction

of the adsorption energies, which were fit separately for each adsorbate and site. This

addresses the combinatorial challenge of having many metals and many adsorbates, while

still allowing each sub-model to be relatively simple.

Constructing linear models with a small number of features has several benefits, as

this makes the model easier to interpret and fit. Adding additional features beyond those



in Table 1 did not improve the accuracy significantly, and hence we kept the number

of features small in order to preserve these benefits. Further, we tested a few non-linear

models, such as kernel ridge regression, and found that the test error was not significantly

lower than the linear models. Our analysis suggests that the predictions of the adsorption

energies from the electronic structure parameters (Equation (2)) contributes more to the

overall error than the predictions of the electronic structure parameters (Table 1).

a) b)

c) d)

MAE: 0.18 
RMSE: 0.26

MAE: 0.14
RMSE: 0.19

MAE: 0.03
RMSE: 0.03

MAE: 0.29
RMSE: 0.41

Figure 2: The accuracy of our predictions for a) the d-band center (2273 data points); b)
the number of p electrons (2273 data points); and c) the matrix coupling element (335 data
points). Test-set data points are opaque, while training-set data points are translucent.
Test-set errors, averaged over three test-train splits, are shown. d) The accuracy of our
predictions for the adsorption energy from the surface structure, using our predictions for
the electronic structure parameters and Equation (2), as shown schematically in Figure 1
(685 data points).

The model sheds insight into the effect of different structural features on electronic

structure and adsorption. For metals near the lower right part of the d-block, a high

fd,n leads to a lower εd. This weakens adsorption and is likely due to increased d-d

hybridization. The opposite is true for metals near the upper left part of the d-block,

where a high fd,n leads to a higher εd. Hence, metals with mostly empty d bands have little

d-d hybridization with metals with nearly full d-bands, due to differences in electronic



energies. In contrast, increasing σn raises εd (stronger adsorption) for the lower right

part of the d-block but lowers it (weaker adsorption) for the upper left part of the d-

block. A higher V 2
pd leads to a higher np for all metals, which strengthens adsorption. For

most metals, a higher V 2
pd also leads to a lower εd, which weakens adsorption. In most

cases, a higher fd,n of neighboring atoms leads to a higher V 2
ad, which tends to strengthen

adsorptions for adsorbates with no lone pair and/or metals with a low fd,n. Therefore, the

model allows trends in adsorption energies to be traced back to both electronic structure

properties and underlying structural features.

To demonstrate the utility of our model, we tested whether it can be used to

predict experimental trends. We also compared our adsorption energy predictions to

experimental measurements of catalytic activity. To do this requires a volcano plot (or

other relationship) that can predict the catalytic performance for a particular reaction and

set of experimental conditions based on the adsorption energies of the relevant species.

Hence, we developed volcano plots using our model predictions and the experimental

data, and then tested how well this scheme predicts catalytic performance.40–42 As shown

in Figure S2, our model accurately captures experimental trends in catalytic performance

for pure metals for ammonia synthesis, and for Pt alloys of two different architectures

for the oxygen reduction reaction. Our predictions also reproduce previous trends for Pt

monolayers on Os43 and Ru,44 both of which were shown to be consistent with experiment.

More details are given in the Supporting Information.

Application to a Reaction Pathway

Because our model can predict the adsorption energy of various reaction intermediates,

it can be used to generate energetics along a reaction pathway. As a simple example

of this, we predicted the energetics of H2O decomposition on a variety of surfaces. We

took a 3 × 3 surface cell of the close-packed surfaces of all of the fcc and hcp metals

included in our fitting, and substitutionally doped into the surface layer each other metal

included in our fitting. Up to three dopant atoms were included, in all symmetry-unique

configurations. This results in 2612 surfaces. On each of these surfaces, we estimated the



adsorption energies of H, O, and OH across all sites, and took the minimum values. The

thermodynamics of this reaction pathway vary quite significantly, and we can quickly

predict the behavior of various surfaces for reactions that consume or produce water (see

Figure 3).

a) b)

Figure 3: Predicting energetics along a reaction pathway. a) Energetics of H2O
decomposition on surfaces with up to 3 substitutional dopants (2612 surfaces). b)
Minimum O adsorption energies as a function of minimum OH adsorption energies on
these surfaces. The dashed line is a linear fit.

Because this framework does not assume the validity of scaling relations, which are

linear relationships between adsorption energies,4,45 it can be applied to surfaces that

break these relationships.4,46 Most of the 2612 surfaces examined here closely obey the

scaling relation between O and OH, but many do not (see Figure 3). The maximum

deviation from the fitted line is 1.2 eV for O and 0.8 eV for OH. Because strongly

inhomogeneous surfaces are the most likely to break scaling relations, this gives an

estimate for the maximum deviation from this relationship that can be achieved by

alloying in close-packed surfaces.

Application to Catalyst Screening

To understand general opportunities and challenges in catalyst design, we performed

simple screenings for several important reactions on a large number of surfaces. We

used our model to predict adsorption energies, which were used in conjunction with

previously developed relationships between adsorption energies and catalytic activity.

We took a 3 × 3 surface cell of the close-packed surface of each fcc and hcp metal in



our set and substitutionally doped each other metal in our set into the top two layers.

Up to 9 dopant atoms were included, and all symmetry-inequivalent configurations were

included. Each symmetry-inequivalent hollow site on each surface was screened, for a

total of approximately 1.6 × 107 unique surface sites on 106 unique surfaces. Using our

model, we estimated the adsorption energy of all 8 adsorbates in each of these sites. Then,

we extracted relationships from the literature—generally volcano plots—that allow rates

to be predicted from adsorption energies (see Figure 4h for an example). As shown in

Figure 4, the surface sites generally span many orders of magnitude in predicted activity,

as well as several orders of magnitude in estimated cost. Some pure metal surfaces in

Figure 4 are shown as points of comparison, using the DFT-calculated adsorption energies

in the lowest-energy site.

For two of the reactions, ammonia synthesis and hydrogen evolution, we performed

additional DFT calculations of the adsorption energies to confirm that the predictions

are reasonable (see Supporting Information). These calculations, which were performed

after the model creation process was completed, demonstrate that the model is indeed

useful for quickly estimating activity. The RMSPE of these 26 calculations of N and H

adsorption energies is 6%, similar to that for the data in Figure 2d. This corresponds to

an RMSE of 0.26 eV. Hence, our model is indeed useful for narrowing down a large phase

space into a much smaller number of promising candidates.

Our model allows us to quickly identify promising candidates for further study. For

example, the map of activity vs. cost for ammonia synthesis (Figure 4a) suggests that

there are possibilities for designing catalytic surfaces that are cheaper and at least as

active as Ru, the most active monometallic catalyst. For example, some CuFe surfaces

are significantly cheaper and predicted to be slightly more active than Ru. Therefore, we

calculated the N adsorption energies on two of these CuFe surfaces using DFT and found

that the model predictions were accurate, and these surfaces indeed have higher activity

than Ru based on the underlying volcano plot (see Figure 4a). We also performed a

simple check of the stability of these surfaces. These surfaces have three to four Fe atoms

in the surface, surrounding the N atom. We calculated the energy for these Fe atoms



Figure 4: Density plots of screening for estimated catalytic activity and cost for
1.5 × 107 surface alloy sites. Dark blue indicates that there are many sites in that
region. a) Ammonia synthesis;47 b) only a subset of surfaces are shown, with those
that include particular metals colored separately; c) hydrogen evolution;48 d) the oxygen
reduction reaction (rate defined relative to Pt(111));35 e) aqueous-phase hydrogenation
of acetaldehyde;49 f) NO decomposition;50 g) the solid oxide fuel cell anode reaction
(hydrogen oxidation), where activity is defined as the reaction energy of the rate
determining step;51 h) methane oxidation in a solid oxide fuel cell.52 i) Activity for
methane oxidation as a function of predicted O and C adsorption energies.52



residing in the subsurface, still in the presence of adsorbed N, and found that the Fe

atoms are most stable on the surface. This suggests that the Fe surface sites may be

stable under reaction conditions. We also identified a few surfaces that are predicted to

be cheaper and more active than Pt for hydrogen evolution, such as NiCu (Figure 4c),

and confirmed their adsorption energies using DFT. We can also see the range of possible

activities and costs for alloys involving a particular metal. For example, there are few

surfaces containing Ag that are highly active for ammonia synthesis (Figure 4b).

Screening of a large number of surfaces and sites allows broad insights into catalyst

design and suggests where to focus for developing improved catalysts. For example, there

are approximately 106 sites that have an estimated exchange current greater than 10−5

A cm−2 for hydrogen evolution and a cost less than 103 $/kg. All of these sites are on

surfaces with either Cu or Ag. Hence, out of the phase space we consider here, it may

be difficult to find a highly active, low-cost catalyst that does not contain Cu or Ag.

For the oxygen reduction reaction, all of the less expensive surfaces (less than roughly

$100/kg) are quite inactive, and have estimated activity below the bottom limit shown

in Figure 4d. Hence, it may be difficult to find an effective alloy catalyst for this reaction

that is very low in cost. For NO decomposition, there is a clear tradeoff between cost

and activity, such that it may be difficult to achieve both high activity and low cost.

For some reactions, such as NO decomposition and hydrogen oxidation in a solid oxide

fuel cell, it is difficult to significantly outperform the pure metal surfaces in both cost and

activity. Hence, using the design strategy of tuning adsorption energies by alloying, it may

be difficult to make significant improvements on catalysts for these particular reactions.

In the case of NO decomposition, the maximum rate reached on any of the surface alloys

is still significantly lower than the theoretical maximum given by the volcano plot. This

is due to the correlation between the adsorption energies of N and O.17 To illustrate an

additional challenge, we show the O vs. C adsorption energies, along with the estimated

methane oxidation activity (Figure 4h). Only 20% of our data is shown, but this is

representative of the full dataset. The optimal adsorption energies are on the edge of the

region of Figure 4h that is accessible by these surface alloys. In the vast majority of cases,



C binding is weaker than optimal, and most sites that bind C with the optimal strength

for methane oxidation also bind O too strongly. This suggests that other strategies to

stabilize C relative to O may be needed to achieve the optimal catalyst.

This work shows the utility of having a very general model, despite the somewhat

lower accuracy as compared to a more specific and complex model. A general model

makes high-throughput screening easy for many reactions, and very high model accuracy

is not needed as promising candidates can be explicitly checked using DFT. Indeed, we

were easily able to identify promising candidates for ammonia synthesis and hydrogen

evolution. Further, the large-scale conclusions we draw on the various reactions are

insensitive to the error sizes that are present in the model. For example, it is clear

that performing the corresponding DFT calculations would not affect our conclusion

concerning inexpensive surfaces for the oxygen reduction reaction. For these types of

conclusions, the ability to make efficient estimates for a large number of surfaces is more

useful than a very low error for a smaller number of surfaces.

Our model also allows the use of a more careful screening methodology, with a

negligible additional computational cost. For example, accounting for various sites and

the heterogeneity of the surface or using a larger number of adsorption energies as

descriptors may somewhat alter the trends shown in Figure 4. Nevertheless, our results

show what is possible using high-throughput screening and existing descriptor sets.

Conclusions

In this work, we have developed a general-purpose, reusable framework for high-

throughput screening for catalyst design. We decoupled the prediction of the surface

properties for various metals from the prediction of the adsorption energies from the

surface properties. This novel, decoupled framework results in a data-efficient model

that can be used in new contexts with no additional fitting or data generation. Adding

additional species to further increase the generality requires a relatively small amount of

additional data. We were able to use the model to quickly identify promising candidates



for highly active sites for ammonia synthesis and hydrogen evolution. As with all efficient

models, promising candidates should be checked with DFT prior to experimental synthesis

and testing.

This framework may also be useful in related applications, such as corrosion, surface

stability, and electrochemistry, where adsorption is important. It can also be used to

help detect errors when performing high-throughput calculations. Additionally, it can be

used to increase the efficiency of DFT calculations in a variety of situations, by quickly

eliminating sites or mechanisms that are very high in energy. In many studies, a large

number of DFT calculations are performed, but in the end only a few are used: the lowest

energy sites, configurations, or pathways, or the most promising candidates. Having a

method to quickly estimate energies can significantly cut down the number of calculations

that are needed.

Approximate screening of a large number of surfaces gives insight into what adsorption

energy combinations are possible for surface alloys. For methane oxidation, these surface

alloy sites barely reach the edge of the volcano-plot maximum, suggesting that other

strategies for stabilizing C may be needed to develop the optimal catalyst. For NO

decomposition, none of these surface alloy sites approach the volcano plot maximum,

and other strategies for stabilizing N and/or destabilizing O are needed for further

improvements. Additionally, we gained new insight into the cost-performance possibilities

for surface alloys. For example, if a very low-cost catalyst for the oxygen reduction

reaction is required for a particular application to be feasible, our results suggest that

surface alloys may not be a promising set of materials to focus on. These insights allow

design efforts to be focused where they are most likely to be fruitful.

Aside from its practical utility in screening, our framework provides links between alloy

surface structure, electronic structure, adsorption, and catalytic properties. Differences

in adsorption energies can be traced back to either electronic structure properties or

to underlying structural features. This is in contrast to DFT calculations or complex

models, which are not directly interpretable.

This work shows how data-driven techniques can be combined with physical insight



and physical models to efficiently generate fitted models with general applicability. In

many cases, it is more convenient and efficient to use a pre-built model than to develop a

complex, custom built model for each application, despite the somewhat lower accuracy

that comes with a more general model. Further, the relatively small number of parameters

needed for our framework allows fitting with a relatively small amount of data, which

requires less effort and may allow the use of more computationally intensive techniques

to generate the underlying data. Because of its generality and easy implementation, this

model can act as a consistent, efficient substitute for researcher intuition.
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