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Abstract 

This work presents a machine learning approach for computer vision-based recognition of materials inside              
vessels in a chemistry lab and other settings. In addition, we release a dataset associated with the training                  
of the model for further model development. The task to learn is finding the region, boundaries, and                 
category for each material phase and vessel in an image. Handling materials inside mostly transparent               
containers is the main activity performed by human and robotic chemists in the laboratory. Visual               
recognition of vessels and their content is essential for performing this task. Modern machine vision               
methods learn recognition tasks by using datasets containing a large number of annotated images. This               
work presents the Vector-LabPics dataset, which consists of 2187 images of materials within mostly              
transparent vessels in a chemistry lab and other general settings. The images are annotated for both the                 
vessels and the individual material phases inside them, and each instance is assigned one or more classes                 
(liquid, solid, foam, suspension, powder, …). The fill level, labels, corks, and parts of the vessel are also                  
annotated. Several convolutional nets for semantic and instance segmentation were trained on this             
dataset.​@ The trained neural networks achieved good accuracy in detecting and segmenting vessels and              
material phases, and in classifying liquids and solids, but relatively low accuracy in segmenting              
multiphase systems such as phase-separating liquids. 

 

* Equal Contributions.​  ​ # ​Corresponding author.  @ The dataset and models used for this work are available ​here​. 
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Introduction 
Experimental chemistry consists largely of the handling of materials in vessels​1​. Whether it involves              
moving and mixing liquids, dissolving or precipitating solids, or extraction and distillation, these             
manipulations almost always consist of handling materials within transparent containers and depend            
heavily on visual recognition. For chemists in the lab, it is crucial not only to be able to identify the vessel                     
and the fill level of the material inside it but also be able to accurately identify the region and phase                    
boundaries of each individual material phase as well as its type (liquid, solid, foam, suspension, powder,                
etc.). For example, when a chemist is trying to create a reaction in a solution, it is important to ensure that                     
all materials have been fully dissolved into a single liquid phase. A chemist attempting to separate the                 
components of a mixture will often use phase separation for liquid-liquid extraction or selective              
precipitation; these and many other tasks depend heavily on the visual recognition of materials in               
vessels.​2-6 Creating a machine-vision system that can achieve all this is essential for developing robotic               
lab systems that can perform the full range of operations used for chemical synthesis.​7-14 The main                
challenge in creating an image recognition system that can achieve this is that material phases can have a                  
wide range of textures and shapes, and these may vary significantly even for the same type of material.                  
Classical computer vision algorithms have hitherto mostly relied on edges or colors in order to identify                
objects and materials.​15,16 While these methods can achieve good results in simple conditions and              
controlled environments, they fail in complex real-world scenarios.​17-23 In recent years, convolutional nets             
(CNN) has revolutionized the field of computer vision, leading to the development of a wide range of new                  
applications from self-driving cars to medical imaging.​24 When CNN’s are trained with large numbers of               
examples of a specific task, they can achieve almost human-level recognition of objects and scenes under                
challenging conditions.​25 Training such methods effectively requires a large number of annotated            
examples.​26,27 For our purpose, this means a large number of images of materials in vessels, where the                 
region and the type of each individual material and vessel are annotated.​28 This work presents a new                 
dataset dedicated to materials and vessels with a focus on chemistry lab experiments. The dataset, called                
Vector-LabPics, contains 2187 images of chemical experiments with materials within mostly transparent            
vessels in various laboratory settings and in everyday conditions such as beverage handling. Each image               
in the dataset has an annotation of the region of each material phase and its type. In addition, the region of                     
each vessel and its labels, parts, and corks are also marked. Three different neural nets were trained on                  
this task: a Mask R-CNN​29 and a generator-evaluator-selector (GES) net​30 were trained on a task requiring                
instance-aware segmentation,​31 which involved finding the region and boundaries of each material phase             
and vessel in the image, while a fully convolutional neural net (FCN)​32 was trained for semantic                
segmentation, which involved splitting the image into regions based on their class.​33 

The Vector-LabPics dataset 

Creating a large annotated dataset is a crucial part of training a deep neural net for a specific task. For                    
deep learning applications, large datasets dedicated to specific tasks such as ImageNet​26 and COCO​31 act               
as a basis on which all methods in a given field are trained and evaluated. An important aspect of the                    
dataset for image recognition is the diversity of the images, which should reflect as many different                
scenarios as possible. The more diverse the dataset, the more likely it is that a neural net trained on this                    
dataset will be able to recognize new scenarios that were not part of the dataset. The goal for the                   

 



 
Vector-LabPics dataset and the method described here is to be able to work under a wide range of                  
conditions as possible. Some of the most important sources of images for this dataset include YouTube,                
Instagram, and Twitter channels dedicated to chemistry experiments. The list of contributors that enable              
this work is given in the acknowledgment section. Another source is images taken by the authors in                 
various everyday settings. In total, the dataset contains 2187 annotated images. The annotation was done               
manually using the VGG image annotator (VIA).​34 Each individual vessel and material phase were              
annotated, as were the labels, corks, and other parts of the vessels (valves, etc..). Each instance segment                 
received one or more classes from those shown in Table 1. The dataset has two representations. The                 
non-exclusive presentation is based on overlapping instances (Figure 1a). In this mode, the different              
segments can overlap; for example, when a solid phase is immersed in a liquid phase, the solid and liquid                   
phases will overlap (Figure 1a). In these cases, a priority (front/back) was added to each segment in the                  
overlap region. For example, if a solid is immersed in a liquid, priority will be given to the solid (Figure                    
1a). 

Figure 1: (a) Instance segmentation with overlapping segments. In the case of overlap, the overlapping region                
is marked as either the front (green) or back (red); (b) non-overlapping (simple) instance segmentation: each                
pixel can belong to only one segment, and only the front region of the segment is used. Each segment can have                     
several classes. 

The dataset also contains a simple version with non-overlapping instances. In this case, each pixel can                
correspond to only one vessel instance and one material instance. If there is overlap, the front instance                 
with higher priority is used, and the back instance is ignored, in the overlapping region (Figure 1b). In                  
addition, the pixel can be assigned one label/part instance (Figure 2). Altogether, the simple              
representation has three channels: (i) the vessel instance; (ii) the material instance; (iii) the              
label/cork/vessel part instance. Instances from the same channel cannot overlap; this means that two              
material instances may not overlap, but that the material and vessel instance may overlap. Another               
approach is a semantic representation in which each pixel is assigned several classes but no instance                
(Figure 3). More accurately, each class has a binary map containing all the pixels in the image belonging                  
to this class. This semantic representation is not instance-aware and does not allow us to separate different                 
instances of the same class, such as adjacent vessels or phase-separating liquids (Figure 3). 
 

 



 

Figure 2: Exclusive instance segmentation map from the Vector-LabPics dataset. The segmentation is             
composed of three channels: the vessel, the material phases, and the vessel parts. Segments from the same                 
channel cannot overlap. 

Figure 3: Examples of semantic segmentation maps from the Vector-LabPics dataset. Each class has a binary                
segmentation map that covers all the pixels belonging to the class. Not all classes are shown. 

 
 



 

Results and discussion 
Semantic and instance segmentation 

Finding the region and class of each vessel and material phase in the image can be done using either                   
semantic or instance segmentation. Instance-aware segmentation involves splitting the image into regions            
corresponding to different objects or materials.​31 This method can detect and separate phases of materials               
of the same class, such as phase-separating liquids or adjacent vessels (Figure 2). In addition, the                
segmentation and classification stages in this method can be separated, allowing for the segmentation of               
unfamiliar materials (i.e., materials classes not in the training set). Two types of convolutional nets were                
studied for instance-aware segmentation: a Mask R-CNN​29 and a GES net.​30 Mask R-CNN is the leading                
method for instance-segmentation according to almost all the major benchmarks. GES net is another              
method for both instance and panoptic segmentation and is designed to work in a hierarchical manner.                
Another approach is semantic segmentation,​32 which predicts for each class a binary map of the region in                 
the image corresponding to that class (Figure 3). The main limitation of this class-based segmentation               
method is that it cannot separate different phases or object instances from the same class, such as                 
phase-separating liquids or adjacent vessels (Figure 3). In addition, if the class of the material is not clear,                  
or if it did not appear in the training set, the net will not be able to segment the material region. The only                       
advantage of the semantic segmentation approach is that neural nets for such tasks are much easier and                 
faster to train and run. For this task, we use the standard fully convolutional neural net (FCN) using the                   
pyramid scene parsing (PSP) architecture.​35 

Figure 4: (a) Single-step segmentation using Mask R-CNN to find both the vessel and material instances                
simultaneously; (b) Hierarchical segmentation, in which an FCN finds the general region of the vessels in the                 
image and this region is then transferred to a GES net for vessel instance detection. Each vessel instance                  
segment is transferred to a second GES net for the segmentation of the material instance. 

Hierarchical versus single-step segmentation 

The problem of recognition of materials in the vessel can be solved either by finding the vessel and                  
materials in a single step (Figure 4a) or hierarchically, by first finding the vessel using one system and                  
then the materials inside the vessel using a second system (Figure 4b).​28,36 The single-step approach was                

 



 
applied using Mask R-CNN and FCN, which traces both vessels and materials simultaneously (Figure              
4a). The alternative hierarchical image segmentation approach involves three steps (Figure 4b): (1)             
finding the general region of all vessels using FCN for semantic segmentation; (2) splitting the vessel                
region (found in Step 1) into individual vessel instances using a GES net for vessel instance segmentation;                 
and (3) splitting each vessel region (found in Step 2) into specific material phases using another GES net                  
for material instance segmentation (Figure 4b). 

Evaluation metrics 

In this work, we employed two standard metrics for evaluating segmentation quality. The intersection              
over union (IOU) is the main metric for the evaluation of semantic segmentation and is calculated                
separately for each class.​32 The intersection is the sum of the pixels that belong to the class, according to                   
both the net prediction and the ground truth (GT), while the union is the sum of pixels that belong to the                     
class according to either the net prediction or the GT. IOU is the intersection divided by the union. The                   
recall is the union divided by the sum of all pixels belonging to the class according to the GT annotation.                    
Precision is the union divided by the sum of all pixels belonging to the class according to the net                   
prediction. For instance-aware segmentation, we choose to use the standard metric of ​Panoptic quality              
(​PQ​).​37 ​PQ consists of a combination of recognition quality (​RQ​) and segmentation quality (​SQ​), where a                
segment is defined as the region of each individual object instance in the image. ​RQ is used to measure                   
the detection rate of instances and is given by , where ​TP (true positive) is the         QR = T P

T P +(F P +F N )×0.5        
number of predicted segments that match a ground truth segment; ​FN (false negative) is the number of                 
segments in the ground truth annotation that do not match any of the predicted segments, and ​FP (false                  
positive) is the number of predicted segments with no matched segment in the ​GT annotation. Matching is                 
defined as an IOU of 50% or more between predicted and ground truth segments of the same class. ​SQ is                    
simply the average IOU of matching segments. PQ is calculated as .Q Q QP = R × S  

Class-agnostic PQ metric 

The Standard ​PQ ​metric is calculated by considering only those segments that were correctly classified.               
This means that if a predicted segment overlaps with a ground truth segment but has a different class, it                   
will be considered mismatched. The problem with this approach is that it does not measure the accuracy                 
of segmentation without classification; a net that predicts the segment region perfectly but with the wrong                
class will have a ​PQ value of zero. One method to overcome this problem is to pretend that all segments                    
have the same class, in this case, the ​PQ quality will depend only on the region of the predicted segment.                    
However, given the class imbalance, this will increase the weight of the more common classes, and will                 
not accurately measure the segmentation accuracy across all classes. To measure class-agnostic            
segmentation in a way that will equally represent different classes, we use a modified ​PQ metric. The ​PQ​,                  
RQ​, and ​SQ values for the class-agnostic method are calculated as in the standard case, while the                 
definitions of ​TP, FP​, and ​FN are modified. The ​TP for a given class is the number of GT instances of                     
this class that match predicted instances with ​IOU​>0.5 (regardless of the predicted instance class). The               
FN for a given class is the number of GT instances of this class that does not match any predicted                    
segment (regardless of the predicted segment class). If an instance has more than one class, it will be                  
counted independently for each class separately. The ​FP for a given class is the fraction of GT segments                  
that belong to this class multiple by the total number of class agnostic ​FP segments. The total number of                   
class agnostic ​FP (false positive) is the number of predicted segments that do not match any ground truth                  

 



 
segments regardless of class (as before matching means ​IOU​>0.5 between segments). For example, if              
20% of the GT instances belong to the solid class, and there are 1200 predicted segments that do not                   
match any GT segments, the FP for the solid class would be: . In other words, to avoid            200 .2 401 × 0 = 2       
using the predicted class for the FP calculation, we split the total FPs among all classes according to the                   
class ratio in the GT annotation. 

Semantic segmentation results 

The results of the semantic segmentation net are shown in Table 1 and Figure 5. It can be seen that the net                      
achieved good accuracy ​(IOU > 0.8, Table 1) for segmentation of the vessel region, fill region, and liquid                  
regions in the image, and a medium accuracy for solid segmentation (​IOU​=0.65). As can be seen from                 
Figure 5, these results are consistent across a wide range of materials, vessels, angles, and environments,                
suggesting that the net was able to achieve a high level of generalization when learning to recognize these                  
classes. For the remaining subclasses, the net achieved low accuracy (​IOU​<0.5, Table 1). The more               
common subclasses, such as suspension, foam, and powder, were recognized in some cases, while the               
more rare subclasses (gel, vapor) were completely ignored (Table 1). It should be noted that some of these                  
subclasses have very few occurrences in the evaluation set, meaning that their statistics are unreliable.               
However, the low detection accuracy is consistent across all of the subclasses. This can be attributed to                 
the small number of training examples for these subclasses, as well as the high visual similarity between                 
different subclasses. 

Instance segmentation results 

The results of instance-aware segmentation are shown in Table 2 and Figure 6. It can be seen from Table                   
2 that the nets achieve good performance in terms of recognition and segmentation for most types of                 
materials in the class-agnostic case (​PQ​>0.5). This is true even for relatively rare classes such as vapor                 
and granular phases, implying that the net is able to generalize the recognition and segmentation process                
such that it does not depend on the specific type of material. The nets achieve low performance in the                   
recognition of foams and chunks of solid, which usually contain small instances with wide variability in                
terms of shape. For class-dependent PQ​, the main classes of vessels, liquids, and solids were detected and                 
classified with fair accuracy (​PQ​>0.4, Table 2). However, almost all subclasses gave low ​PQ ​values; the                
only subclass that was classified with reasonable quality was Suspension, which had a relatively large               
number of training examples (Table 2). For multiphase systems containing one or more separate phases of                
materials in the same vessel, the quality of recognition was significantly lower than that of one-phase                
systems (Table 2). In multiphase systems, there is a tendency to miss one of the phases: for a solid                   
immersed in liquid, the tendency is to miss the solid (Figure 6). One reason for this is that the phase                    
boundaries between materials and air tend to be easier to see than those between liquids and materials.                 
Another reason is that instances in multiphase systems tend to be smaller than instances in single-phase                
systems. The quality of recognition strongly depends on the segment size, and the larger the segment, the                 
higher the quality (Table 2). This is true for both single-phase and multiphase systems (Table 2). It can                  
also be seen from Table 2 that the hierarchical segmentation approach (using the GES net) gave better                 
results than single-step segmentation using Mask-RCNN, although this was at the cost of a much longer                
running time of around three seconds per image compared to 0.2 seconds for the single-step approach  

Results on videos: ​The nets were demonstrated by running them on videos containing processes like               
phase separation, precipitation, freezing, melting, and foaming. The annotated videos are available as             

 



 
supporting materials​. It can be seen from these videos that the nets can detect processes like precipitation                 
freezing and melting by detecting the appearance of new phases like suspension, solids, and liquids. Also,                
processes such as phase separation and pouring can be detected by detecting the new phases and the                 
change in the liquid level. 

Conclusion 
In this paper, we introduce a set of new computer vision methods tailored to chemical matter and the                  
Vector-LabPics dataset. These were designed for the recognition and segmentation of materials and             
vessels in images, with an emphasis on a chemistry lab environment. Several convolutional neural nets               
were trained on this dataset. The nets achieve good accuracy for the segmentation and classification of                
vessels as well as liquid and solid materials in a wide range of systems. However, the nets ability to                   
classify materials into more fine-grained material subclasses such as suspension, powder, and foam was              
relatively low. In addition, the segmentation of materials in multiphase systems, such as phase-separating              
liquids, had limited accuracy. The major limitation on increasing the accuracy of the net is the relatively                 
small size of the dataset. Major datasets for image segmentation such as COCO and Mapillary consist of                 
tens of thousands of images, while the Vector-LabPics dataset contains only 2,197 images thus far. We                
also prioritized the creation of a general system that operates under a broad range of conditions over a                  
system with higher accuracy that works only under a narrow set of conditions. It is clear that in order to                    
achieve high accuracy under general conditions, the size of the dataset needs to be significantly increased.                
Alternatively, it is well established that a net that gives medium accuracy in a general setting can achieve                  
a high level of accuracy under specific conditions by fine-tuning it on a small set of images containing                  
these conditions. To conclude, image recognition of vessels and material phases is an essential part of                
chemistry laboratory work. Developing a machine vision system that can achieve this is likely to play an                 
important role in automating lab systems. While the accuracy of our system is still below what is required                  
for a truly autonomous lab, this work demonstrates many of the key image-recognition aspects needed for                
such a system. Increasing the dataset size and the system accuracy, as well as integrating it with robotic                  
systems, is our next goal. 

Table 1: Results for the semantic segmentation net 
Class IOU Precision Recall N Eval​1 N Train​2 

Vessel 0.93 0.96 0.97 497 1669 
Filled 0.85 0.92 0.92 497 1660 
Liquid 0.81 0.89 0.90 452 1419 
Solid 0.65 0.82 0.75 108 512 

Suspension 0.46 0.68 0.59 132 519 
Foam 0.26 0.47 0.37 31 283 

Powder 0.18 0.28 0.35 46 269 
Granular 0.26 0.72 0.29 21 74 

Gel 0.00 0.00 0.00 1 49 
Vapor 0.00 0.00 0.00 4 29 

Large chunks (solid) 0.00 0.00 0.00 7 38 
Cork 0.20 0.33 0.35 15 329 
Label 0.07 0.09 0.33 12 227 

Vessel parts 0.15 0.23 0.31 112 536 
1. Number of images, in the evaluation set, that contain the class. 
2. Number of training images that contain the class. 
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Figure 5: Results of semantic segmentation. The prediction (Pred) results are marked in red while the ground truth (GT)                   
annotations are marked in green. Not all classes are shown. Images were taken from the Nile Red YouTube channel. 

 

 



 

Figure 6: Ground truth and predicted results for instance segmentation. 

  

 



 

 

 
Table 2: Instance-segmentation  per class 

 

 Hierarchical segmentation (GES net) Single step segmentation  (Mask RCNN) Number of 
instances with 

class  Class agnostic​1 Class dependen​t​2 Class agnostic​1 Class dependen​t​2 

Class PQ RQ SQ PQ RQ SQ PQ RQ SQ PQ RQ SQ Test set Train set 

Vessel 84 93 91 84 93 91 76 85 89 76 85 89 629 2696 
Liquid 56 69 81 54 67 81 45 54 82 42 51 82 658 2347 
Solid 48 57 83 44 52 85 31 38 80 13 15 84 100 758 

Suspension 63 74 84 43 50 87 52 61 85 10 12 82 136 708 
Foam 24 28 86 17 19 88 14 18 80 03 04 69 28 317 

Powder 40 48 83 30 36 83 27 35 77 13 15 84 42 344 
Granular 77 90 86 16 17 91 38 47 81 08 09 93 21 97 

Large chunks 23 37 62 00 00 - 27 34 80 00 00 - 7 44 
Vapor 71 81 88 62 67 93 67 75 88 00 00 - 4 39 

Gel 84 95 89 00 00 - 00 00 - 00 00 - 1 115 

Mean all  subclasses 54 65 82 24 27 88 32 38 82 05 06 82   

Single Phase​3 70 82 86 64 74 87 57 66 86 46 54 86 377 1551 

Multiphase​4 39 53 74 35 47 76 30 40 76 20 27 75 440 1810 

For instance size larger than 5000 pixels 

Single Phase​3 75 86 87 68 78 88 60 69 87 50 57 87 323 1286 

Multiphase​4 47 63 75 44 57 77 37 48 77 26 34 76 289 1440 

For instance size larger than 10000 pixels 

Single Phase​3 77 87 88 70 79 89 62 71 87 50 58 87 269 1126 

Multiphase​4 51 68 75 45 59 76 41 54 76 30 40 75 206 1240 
1. Matching between GT and predicted segments depends only on segments  overlap and not on class. 
2. Standard metrics, i.e., matching GT and predicted segments must have the same class. 
3. Single-phase system: only one material phase in a given vessel. 
4. A multiphase system: more than one separate material phase in the vessel. 

Methods 

Training and evaluation sets 

The Vector-LabPics dataset was split into training and evaluation sets by selecting 497 images for the                
evaluation set and leaving 1691 images for the training set. The images for both sets were taken from                  
completely different sources so that there would be no overlap in terms of the conditions, settings, or                 
locations between the evaluation and training images. This was done in order to ensure that the results                 

 



 
from the neural net for the evaluation set will represent the accuracy that is likely to be achieved for an                    
image taken in a completely unfamiliar setting. 

Training with additional datasets 

Two existing image datasets are dedicated to materials in vessels. The Materials In the Vessel dataset                
contains only semantic maps of materials in glassware vessels and is contained within the Vector-LabPics               
dataset.​28 The Containers Of liQuid contEnt (COQE) dataset contains images with liquids in containers              
but with no semantic or instance segmentation maps.​2 The COCO dataset​31 is the largest and most general                 
image segmentation dataset and contains several subclasses of vessels, such as cups, jars, and bottles. We                
speculated that training with Vector-LabPics and related vessel classes from the COCO dataset could              
improve the accuracy of our nets. The main nets were co-trained with subclasses of vessels from the                 
COCO panoptic dataset and gave the same accuracy as the nets trained on Vector-LabPics alone,               
implying that the addition of new data did not improve or degrade the performance. However, it should be                  
noted that for most images in the Vector-LabPics dataset, the vessel is the main or only object in the                   
image. A net co-trained on the COCO dataset has an advantage in more complex environments where it is                  
necessary to separate vessels from various other objects in the image. 

Semantic segmentation using FCN 

The semantic segmentation task involves finding the class for each pixel in the image (Figure 3). The                 
standard approach is the fully convolutional neural net (FCN). We have implemented this approach using               
the PSP architecture.​32,35 Most semantic segmentation tasks involve finding a single exclusive class for              
each pixel; however, in the case of Vector-LabPics, a single-pixel may belong to several different classes                
simultaneously (Figure 3). The multi-class prediction was achieved by predicting an independent binary             
map for each class. For each pixel, this map predicts whether it belongs to the specific class (Figure 3).                   
The training loss for this net was the sum of the losses of all class predictions. Other than this, the training                     
process and architecture were those of the standard approach used in previous works.​32,35 

Hierarchical instance segmentation using a unified GES net 

The generator evaluator​30 approach for image segmentation is based on two main modules: (1) a generator                
that proposes various regions corresponding to different segments of vessels or materials in the image;               
and (2) an evaluator that estimates how well the proposed segment matches the real region in the image                  
and selects the best segments to be merged into the final segmentation map. Although previous studies                
have used different nets for the generator and evaluator,​30 this work uses a single unified net for both, i.e.,                   
one net that outputs the segment region (generator), its confidence score (evaluator), and it’s class (Figure                
7). In this case, the generator net consists of a convolutional net that, given a point in the image, finds the                     
segment containing that point (Figure 7).​38,30,39 Picking different points in the image will lead the net to                 
predict different segments. This can occur even if the point is in the same segment. Another input for the                   
net is the region of interest (ROI) mask (Figure 7), which limits the region of the image in which the                    
output segment may be found.​28,38 Hence, the output segment must be contained within the ROI mask. In                 
addition to the output segment and its class, the GES net also predicts the confidence score for this                  
segment, which simply represents how well the prediction fits the real segment in the image in terms of                  
the intersection over union (IOU). The net was run by picking several random points inside the ROI                 

 



 
region and selecting the output segments with the highest scores (Figure 7a,b). Two different nets for                
vessel segmentation and material segmentation were trained separately and used hierarchically (Figure            
4b). Hence, the region of all vessels was first found using FCN for semantic segmentation and was then                  
transferred to a GES net for vessel instance segmentation (as an ROI input), to identify the regions of                  
individual vessels (Figure 7a). The region of each vessel was transferred (as an ROI mask) to another                 
network that finds the region and class of each material phase inside the vessel (Figure 7b). 

Figure 7: (a,b) GES net for vessel and material instance segmentation. The net receives an image, an ROI                  
mask, and a pointer point in the image, and outputs the mask instance containing the point within the ROI,                   
for (a) the vessel and (b) the material. The net also outputs the confidence score, which is an estimation of                    
how well the predicted region matches the real region in terms of the IOU. In the case of the material (b), the                      
net also predicts the material class. The predictions with the highest scores are merged into the final                 
segmentation map (a,b). (c) Unified GES net architecture. 

Single-step Instance Segmentation using Mask-RCNN 

The Mask R-CNN model was used to predict both the vessel and the materials instances in a single step.​29                   
Following the previous work, the model uses ResNet as a backbone,​40 followed by a Region Proposal                
Network (RPN) provides a list of candidate instances. Given such candidates, both the instance binding               
box and class are predicted by the box head. In addition, masks for both vessel and material classes are                   

 



 
generated. As the mask loss only considers the prediction corresponds to the class label, it enables the                 
model to predict highly overlapped masks correctly as inter-class competition is avoided. This is              
especially important for our case, as most of the material instances are stored inside a vessel, which leads                  
to almost complete overlap. Since an instance in the Vector-LabPics dataset could belong to multiple               
subclasses, the original Mask-RCNN is modified to handle multi-label classification. Such function is             
enabled via additional subclass predictor, it takes the same ROI feature generated by box head, and output                 
label powerset as the multi-label subclass prediction. This predictor takes the same feature vector from the                
box head and uses a single fully connected layer to do the classification. The subclass loss is defined as a                    
binary cross-entropy loss. As Mask-RCNN is designed to do instance segmentation, the results of the net                
need to be merged into the panoptic segmentation map. Two separate panoptic segmentation maps are               
created for the material and vessels. Proposed instances for each map are filtered by removing low                
confidence instances. After that, all the remaining instances are overlaid on the corresponding             
segmentation map. In the case of overlapping masks, the mask with the higher confidence will cover the                 
one with the lower confidence. 

Supporting material: 
The codes and trained models for all the nets used for this work are available from this URL: 

https://github.com/aspuru-guzik-group/Computer-vision-for-the-chemistry-lab 

The full Vector-LabPics dataset is available is freely available to download from this URL: 

https://drive.google.com/file/d/1TZao7JDzxcJr_hMqYHLRcV2N0UHoH2c1/view?usp=sharing 

Videos of chemical processes annotated by the net can be viewed here: 

https://www.youtube.com/playlist?list=PLRiTwBVzSM3B6MirlFl6fW0YQR4TtQmtJ 
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W911NF-18-2-0036 from the Molecular Informatics program. A.A.-G. Thanks Anders G. Frøseth for his             
generous support. 
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Supporting information 

Training Mask-RCNN 

For the Mask R-CNN network​29 backbone, we used a ResNet 50,​40 FPN model pretrained on the COCO                 
dataset.​31 The RPN, box head, mask head, and subclass predictor are all trained from scratch using the                 
Vector-LabPics dataset. We use two slightly different separations of superclasses to train two different              
models. The first model only separates instances into vessels and materials super-classes based on their               
subclass label. The other model has a more fine-grain separation, where instances are classified into three                
super-classes, vessel, liquid and solid. Additionally, only instances under material superclass are            
considered for subclass classification. For both cases, SGD optimizer is used with an initial learning rate                
of 0.0025, a momentum of 0.9 and a weight decay of 0.0001. Additionally, the learning rate is stepped                  
down by a factor of 10 for every 10 epochs. Both models were trained using a single Nvidia P100 for 200                     
epochs. 

Unified GES net architecture 

The unified GES net (Figure 7c) is built on a ResNet encoder​40 that receives the image, a pointer point                   
and an ROI mask.​38 Both the pointer point and ROI mask are represented as binary masks (Figure 7c) and                   
processed using a single convolutional layer before being merged with the feature map of the first layer of                  
the encoder, using element-wise multiplication and addition, respectively (Figure 7c). The final            
convolutional layer of the Resnet is connected to three different heads: the segmentation head consists of                
a standard PSP head followed by three upsampling layers, while the classification head is similar to the                 
ResNet standard classification head and involves two fully connected layers. The evaluation head is              
similar to the classification head but with a single output channel corresponding to the predicted segment                
IOU. 

 

 



 

Training the GES net 

The training was done by picking random instance masks from the dataset. For each instance segment, a                 
single random point was selected inside the mask and used as an input to the net. The ROI for the material                     
prediction net (Figure 7a) was chosen as the region of the vessel containing the material. The ROI for the                   
vessel GES net (Figure 7b) was chosen as the sum of the regions of all the vessels in the image. For both                      
nets, the ROI was chosen as covering the entire image in 60% of the train iterations. The segment region                   
was predicted as a binary mask, and the loss was the standard cross-entropy with the GT segment. The                  
evaluator head output predicts the segment score as a single number, and the loss is the square of the                   
difference between the predicted IOU and the real IOU. The classification head predicts the probability               
for each class as a binary softmax prediction. The loss is the standard cross-entropy, averaged for all the                  
classes with equal weight. The nets backbone is a pointer net pretrained on the COCO panoptic                
dataset.​30,38 Due to the small size of the dataset, significant augmentation was used, including deforming,               
noise adding, cropping and color modifications. Each of the nets was trained on a single Titan XP GPU                  
for about 200 epochs. 

 

 

 

 

 

 

 

 


