
Network-based analysis of fatal comorbidities of

COVID-19 and potential therapeutics
Broto Chakrabarty1, Dibyajyoti Das1, Gopalakrishnan Bulusu* and Arijit Roy*

TCS Innovation Labs – Hyderabad (Life Sciences Division), 
Tata Consultancy Services Limited, Hyderabad, India

1BC and DD contributed equally to this work
*Corresponding authors

E-mail: roy.arijit3@tcs.com, g.bulusu@tcs.com 

Abstract

Coronavirus  disease  2019  (COVID-19)  is  a  highly  contagious  disease  caused  by  severe  acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). The case fatality rate is significantly higher in

older patients  and those with diabetes,  cancer or cardiovascular disorders.  The human proteins,

angiotensin-converting enzyme 2 (ACE2) and basigin (BSG), are involved in high-confidence host-

pathogen interactions with proteins from SARS-CoV-2. We applied the random walk with restart

method on the human interactome to construct a significant sub-network around these two proteins.

The  protein-protein  interaction  sub-network  captures  the  effects  of  viral  invasion  on  fatal

comorbidities through critical pathways. The ‘insulin resistance’, ‘AGE-RAGE signaling pathway

in  diabetic  complications’  and  ‘adipocytokine  signaling  pathway’  were  found  in  all  fatal

comorbidities. The association of these critical pathways with aging and its related diseases explains

the  molecular  basis  of  COVID-19  fatality.  We  further  investigated  the  critical  proteins  and

corresponding pathways, and identified drugs that have effects on these proteins/pathways based on

gene expression studies. We particularly focused on drugs that significantly downregulate ACE2

along with other critical proteins identified by the network-based approach. Among them, COL-3

(also  known  as  incyclinide)  had  earlier  shown  activity  against  acute  lung  injury  and  acute

respiratory distress,  while entinostat  and mocetinostat  have been investigated for non-small-cell

lung cancer. We propose that these drugs can be repurposed for COVID-19. 
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1 Introduction

The outbreak of novel coronavirus disease, called COVID-19, started in Wuhan province of China

in December 2019 and rapidly spread to other parts of the world (Huang et al., 2020). The World

Health Organization declared it as a pandemic as it infected over a million people across more than

100 countries, causing thousands of deaths (Bedford et al., 2020). Coronaviruses have caused two

major pandemics in the past - severe acute respiratory syndrome (SARS), which originated from

China in 2003, and Middle East respiratory syndrome (MERS), which originated from Saudi Arabia

in  2012  (Drosten  et  al.,  2003;  Zaki  et  al.,  2012).  Several  research  groups  are  working on the

development of drugs and vaccines against these viruses. There are several ongoing clinical trials of

drugs  such  as  chloroquine  and  ritonavir (Dong  et  al.,  2020).  However,  currently  there  are  no

therapeutics which have been considered safe and effective for the treatment of COVID-19 (Cao et

al., 2020).  

The viral entry into human cells is carried out by the spike (S) protein of SARS-CoV-2. Two human

proteins have been identified as host receptors for the viral invasion into human cells - angiotensin-

converting enzyme 2 (ACE2) (Zhou et al., 2020a) and basigin (BSG/CD147) (Wang et al., 2020b).

Apart from that, a recent paper identified a number of human proteins involved in host-pathogen

protein-protein  interactions  with  the  virus  (Gordon  et  al.,  2020).  Another  recent  publication

identified a number of host-pathogen interactions for SARS-CoV-2 by assembling  CoV-associated

host proteins from four known human coronaviruses (SARS-CoV, MERS-CoV, HCoV-229E, and

HcoV-NL63) (Zhou et al., 2020b). 

It has been observed that COVID-19 has more severe effects on older people than younger people

(Yang et al., 2020b). Apart from causing pneumonia, COVID-19 may also cause damage to other

organs such as the heart, liver, and kidneys, as well as to organ systems such as the circulatory and

the  immune  system.  Patients  eventually  die  of  multiple  organ  failure,  shock,  acute  respiratory

distress syndrome, heart failure and renal failure. Diseases like diabetes, cardiovascular disorders

and cancer are risk factors for severe patients compared to non-severe patients (Yang et al., 2020a).

Network-based  approach  has  been  effectively  used  to  understand  the  disease  mechanism  and

comorbidities  of  SARS  and  HIV infections  (Moni  and  Liò,  2014).  In  this  work,  we  first  re-

constructed a  host protein-protein interaction (PPI) network based on known information about

initial  host  contacts  of  the  virus  and  their  neighborhood.  Analysis  of  this  PPI  network  and

subsequent pathway analysis explained the molecular basis of fatal comorbidities of COVID-19

with other  diseases like (diabetes,  cardiovascular  diseases  and cancer).  We identified important



proteins and pathways associated with these diseases and proposed drugs that can be repurposed for

COVID-19 using gene expression data of drug molecules and heterogeneous network information. 

2 Methods

2.1 Data

The study is based on an integrated analysis of PPI, disease associations and drug associations. The

PPI data was obtained from a recent study (Cheng et al., 2019) which integrates experimentally

validated  interactions  from 15 bioinformatics  and  systems  biology databases.  The disease-gene

association  information  was  obtained  by  considering  high  confidence  experimentally  validated

associations reported in DisGeNet  (Piñero et al., 2017), OMIM (Amberger et al., 2015), ClinVar

(Landrum et al., 2016) and PheGenI (Ramos et al., 2014) databases. The disease hierarchy from

Disease Ontology database (Kibbe et al., 2015) was used as the reference for disease classification.

The drug-target association information for approved and investigational drugs was obtained from

the DrugBank (Wishart et al., 2018). 

2.2 Construction of COVID-19 related sub-network

The host PPI network associated with COVID-19 infection, called COVID-19 host PPI network,

was  constructed by considering the PPIs around the SARS-CoV-2 spike protein receptors in the

human interactome. The two reported receptors, ACE2 (Zhou et al., 2020a) and BSG (Wang et al.,

2020b),  were  considered  as  seed  nodes  for  the  execution  of  random walk  with  restart  (RWR)

algorithm on the human interactome.  RWR is a ranking algorithm, which engages  a walker  to

inspect the global network to determine the closeness between two proteins in the PPI network

(Chen and Xu, 2015; Li  et  al.,  2017; Das et  al.,  2019).  The walker starts  its  journey from the

reported receptors (seed nodes) and travels randomly to all other proteins in the PPI network, but is

forced to return to the seed proteins with a restart probability, r, of 0.7. The closeness of the proteins

to the reported receptors is computed as a probability vector, Pi, which represents the probability of

each protein in the PPI network at each step i as

Pi+1 = (1 – r)AT Pi + rP0 (1)

where,  P0 is  the  initial  probability  vector  and  AT is  the  transpose  of  the  column-normalized

adjacency matrix of the network. Pi+1, the final outcome of the RWR calculations, is considered to

be  converged when  (Pi+1)  – Pi <  1*10-5,  indicating  that  the  probability  vector  was stable.  The

significant proteins from RWR analysis were filtered based on RWR score cutoff of 0.005.



The RWR algorithm is highly dependent on the network topology and may pick up several proteins

unrelated to the seed proteins (Li et al., 2017). To screen these false positives, a permutation test

was performed where RWR was employed 1000 times, each time using randomly generated seed

proteins from the PPI network (Chen and Xu, 2015; Li et al., 2017; Das et al., 2019). A p-value for

each protein predicted by RWR was calculated, which captures the significance of the predicted

proteins. The p-value was computed as 

p-value(prot) = Θ/1000                                                               (2)

Here,  Θ  represented  the  number  of  RWRs on randomly  generated  seed  proteins  in  which  the

probability of the RWR-predicted protein, prot, is higher than that of the seed nodes. Proteins with

p-value lower than 0.05 were considered statistically significant for further analysis (Li et al., 2017).

The sub-network of human interactome obtained from the RWR analysis captures the significant

neighborhood of the viral receptors, which can be analyzed to understand the mechanism of viral

invasion.

2.3 Enrichment analysis

The gene ontology (GO) enrichment  and pathway analysis  were carried out using the gene set

enrichment analysis  web server,  Enrichr (Kuleshov et  al.,  2016).  The significant GO terms and

KEGG pathways (Kanehisa et al., 2016) were identified by using adjusted p-value cut-off of 0.05.

The GO terms of biological processes were summarized and the relationship between them was

analyzed using the REVIGO webserver (Supek et al., 2011).

2.4 Identification of drug molecules using gene expression data

Drug Gene Budger  (Wang et al., 2019) was used to explore drugs and small molecules in L1000

data (Subramanian et al., 2017), which significantly regulate ACE2 expression (both upregulate and

downregulate) along with other critical proteins of the COVID-19 host network. Small molecules

that lead to differential gene expression of important proteins, captured by log2 fold change (LFC)

higher than 1.5 for upregulation and less than -1.5 for downregulation, were considered for further

analyses. Drugs which are responsible for significant over expression of ACE2 can increase the risk

of COVID-19. On the other hand, drugs which significantly downregulate the ACE2 expression

were further explored for their potential therapeutic application against COVID-19. Mechanism of

action, clinical trial stages and structural details of drugs were analysed using DrugBank (Wishart et

al.,  2018), PubChem (Kim et al.,  2019), L1000FWD (Wang et al.,  2018) and ClinicalTrials.gov

(https://clinicaltrials.gov/). Drugs which were approved by FDA or undergoing clinical trials were

considered for further analysis.

https://clinicaltrials.gov/


All scripts were written in Python and Perl, while network analysis was performed in Cytoscape

(Shannon et al., 2003).

3 Results and discussion

We have analyzed the biological processes, pathways and disease comorbidities of COVID-19 by

considering the protein-protein interactions around the point of viral entry into the host cell through

its  receptors,  ACE2 and BSG. The PPI neighborhood of  ACE2 and BSG obtained from RWR

(COVID-19 host PPI network) comprises of 59 proteins and 121 edges, as shown in Figure 1. 

The progression of the viral infection affects human health through various biological processes

carried out by the proteins in the neighborhood of the receptors in the human interactome. We

identified  the significant  GO terms  for  biological  processes  associated with  the proteins  in  the

COVID-19 host PPI. The statistically significant biological processes and the relationship between

them through the COVID-19 host PPI are shown in Figure S1. The processes are colored (Figure

S1) based on the dispensability score obtained from REVIGO, where higher scores are represented

by darker shades of gray (Supek et al., 2011). The COVID-19 host PPI comprises of proteins that

regulate critical metabolic processes of the human body.  These include the processes involved in

immune response, glucose metabolism, vasoconstriction, protein degradation and post-translational

modifications.  Although  the  molecular  basis  of  the  effect  of  COVID-19  on  these  biological

processes can be validated experimentally through protein assays and gene expression data analysis,

the  network-based  approach  provides  a  systems  level  understanding  of  the  effect  on  the

interconnected biological processes.

Figure 1: COVID-19 host protein-protein interaction network. The receptors of SARS-CoV2, ACE2 and BSG,
and the edges connecting them to their immediate neighbors are highlighted. 



3.1 Disease Comorbidity

The impact of COVID-19 has been observed to be severe in patients with cancer, cardiovascular

disease, diabetes and gastrointestinal disorders (Fang et al., 2020; Huang et al., 2020; Wang et al.,

2020a, 2020d). The fatalities in these critical care patients have been mostly due to the original

comorbidity leading to multiple organ failure (Liang et al., 2020; Wang et al., 2020d). Till date,

there are no proven therapeutics for the treatment of patients suffering from COVID-19 (Cao et al.,

2020). These complex conditions alter many biological processes and pathways in the human body.

Here, we investigate the effect of COVID-19 through the human protein-protein interactions and

analyze the important pathways affected in the severe comorbidities due to the infection. Figure 2

shows the disease association of the PPI network for respiratory diseases, cardiovascular diseases,

cancers, glucose metabolism disorders, kidney diseases and gastrointestinal diseases; the diseases

are colored based on the disease group. The genes associated with the disease groups are shown in

Table  1  and  the  detailed  association  with  each  disease  within  the  disease  group  is  given  in

supplementary table  S1.  The high comorbidity  of  COVID-19 with several  diseases of different

disease  groups  can  be  attributed  to  the  critical  genes  that  are  associated  with  multiple  disease

groups.  These  include  Angiotensinogen  (AGT),  Nuclear  factor  kappa  B  subunit  1  (NFKB1),

Caveolin 1 (CAV1), Leptin (LEP), Ghrelin (GHRL) and Von Hippel-Lindau (VHL). 

AGT  is  associated  with  the  most  number  of  diseases,  which  belong  to  the  categories  of

cardiovascular, respiratory, glucose metabolism, kidney and gastrointestinal diseases. It is the only

precursor of all angiotensin peptides and regulates blood pressure and homeostasis of water and

sodium through the renin–angiotensin system (RAS) (Lu et al., 2016). The RAS pathway is known

to  be associated  with  cardiovascular  diseases,  respiratory  diseases,  glucose  metabolism,  kidney

disease and gastrointestinal diseases (Marshall, 2003; Remuzzi et al., 2005; Joseph et al., 2018; Wu

et al., 2018). NFKB1 is a transcription factor of proinflammatory molecules and is an important

regulator of innate and adaptive immunity, cell proliferation, stress responses and apoptosis. It is

therefore  associated  with pathogenic  infections,  diabetes,  kidney and liver  diseases,  and cancer

(Patel and Santani, 2009; Cartwright et al., 2016, 1). CAV1 is a membrane protein associated with

endocytosis, extracellular matrix organization, cholesterol distribution, cell migration and signaling

(Nwosu et al., 2016). It is associated with diabetes, cancer and cardiovascular diseases. LEP and

GHRL regulate  the  energy  homeostasis  in  the  body  by  storage  of  fat  and  appetite  regulation

respectively (Margetic et al., 2002; Sato et al., 2012). These are associated with glucose metabolism

disorders, gastrointestinal disorders and some forms of cancer. VHL is a tumor suppressor gene

associated with many forms of cancer (Kim and Kaelin, 2004). 



Figure 2: PPI associated with the COVID-19 infection and diseases associated with them. The proteins are represented by circles and diseases by squares. The diseases are
colored based on the type of disease - respiratory disease (blue), cardiovascular disease (red), cancer (purple), glucose metabolic disorder (cyan), kidney disorder (orange)
and gastrointestinal disorder (brown). The edges between proteins (from PPI) are represented by dashed lines and gene-disease association by solid lines.



Table 1: The disease groups affected by the COVID-19 host PPI network.

Disease group Associated genes in COVID-19 host PPI

Respiratory system disease CDK2, NPY, MMP1, AGT, TBXA2R

Glucose metabolism disease LEP, AGT, PRKCB, SLC2A4, CAV1, NFKB1

Cancer VHL, PPP2R1B, MMP1, CPE, MEP1A, SLC16A1, LEP, NFKB1, FLNA, 
PPIA, CAV1, CUL3, CDK2, PRKCB, PREP, GHRL

Cardiovascular system disease ACE2, AGT, CALM1, CALM2, CAV1, GHRL, PCK1, LEP, MMP1, 
SORT1, TBXA2R, NFKB1, NPY

Kidney disease AGT, NFKB1, LEP

Gastrointestinal system disease AGT, NFKB1, MMP1, GHRL, LEP, FLNA

For all  the disease groups with fatal  comorbidity,  we identified the pathways enriched by their

associated genes in the COVID-19 host PPI network. The significant pathways identified are shown

in Figure 3 and the detailed list of pathways is provided in supplementary table S2. There are three

critical pathways that are affected in all severe disease groups – ‘insulin resistance’, ‘AGE-RAGE

signaling  pathway  in  diabetic  complications’  and  ‘adipocytokine  signaling  pathway’.  The

progression of COVID-19 infection leading to severe conditions and fatality can be explained based

on these critical pathways.

Insulin resistance: Insulin resistance is a characteristic feature of the most prevalent metabolic

disorder, type 2 diabetes, and is associated with cardiovascular diseases and cancer (Yaribeygi et al.,

2019).  Hyperinsulinemia can lead to hypertension by the activation of the sympathetic nervous

system,  renal  sodium  retention,  altered  transmembrane  cation  transport  and  growth-promoting

effects  of  vascular  smooth  muscle  cells  (McFarlane  et  al.,  2001).  Hypertension  along  with

dyslipidemia caused by insulin resistance can lead to cardiovascular conditions, especially coronary

artery disease (Ginsberg, 2000). The increase in level of insulin can also stimulate the synthesis of

sex  steroids  that  can  promote  cellular  proliferation  and  inhibit  apoptosis,  leading  to  cancer

(Arcidiacono et al., 2012; Orgel and Mittelman, 2013). Insulin resistance can also be associated

with  cancer  through  the  overproduction  of  reactive  oxygen  species  that  can  damage  DNA,

contributing to mutagenesis and carcinogenesis. 



Figure 3: Heterogeneous network comprising of the pathways (green triangles) responsible for fatal comorbidities related to COVID-19, genes (red circles) and drugs (as
capsules) which affect them. All drugs shown here are also connected with ACE2 as they downregulate ACE2 gene expression but the edges between ACE2 and the drugs
are not shown here for simplicity.



AGE-RAGE  signaling  pathway  in  diabetic  complications: Advanced  glycation  end  products

(AGEs)  are  the  products  of  non-enzymatic  glycation  and  oxidation  of  proteins  and lipids  that

accumulate in diabetes (Singh et  al.,  2001; Ramasamy et  al.,  2011).  Increased levels of AGEs,

especially carboxymethyllysine (CML), have been observed to be associated with atherosclerosis,

coronary  artery  disease  and heart  failure  (Hegab et  al.,  2012).  The indirect  vascular  effects  of

elevated  AGEs  such  as  coronary  dysfunction,  atherosclerosis  and  thrombosis,  and  their  direct

effects on myocardium, lead to heart failure. The increased levels of these highly reactive AGEs

induce persistent inflammation and oxidative stress, which lead to cancer  (Turner, 2015; Schröter

and Höhn, 2018). 

Adipocytokine signaling pathway: Adipocytokines are secreted by the adipose tissues, which signal

key  metabolic  organs  such  as  liver,  muscle  and  pancreas,  to  maintain  metabolic  homeostasis

through the adipocytokine signaling pathway (Cao, 2014). Leptin is the major adipocytokine which

controls  appetite  and  is  associated  with  obesity.  However,  it  also  stimulates  oxidative  stress,

inflammation, thrombosis, arterial stiffness, angiogenesis and atherogenesis. It is associated with

diabetes, cardiovascular conditions, chronic kidney diseases and cancer (Dutta et al., 2012; Katsiki

et al., 2018). 

It can be observed that all the three pathways common to the fatal comorbidities are also related to

aging (Fink et  al.,  1983; Ryan, 2000; Gulcelik et  al.,  2013; Chaudhuri et  al.,  2018).  This is  in

congruence with the age-wise distribution of case fatality rate of COVID-19 observed in China and

Italy (Novel Coronavirus Pneumonia Emergency Response Epidemiology Team, 2020; Onder et al.,

2020). The case-fatality rate for patients older than 80 years is as high as 20% whereas it reduces to

less than 1% for patients younger than 60 years of age. Aging leads to altered levels of insulin,

AGEs  and  leptin  in  the  body,  which  are  further  affected  in  COVID-19 patients  through  these

pathways. 

Apart  from these common critical  pathways discussed above, there are some specific pathways

associated with the fatal comorbidities. 

Glucose metabolism disorder: The genes involved in COVID-19 host PPI are associated with

glucose  metabolism diseases  (Figure  2  and  Table  1).  They  regulate  ‘B  cell  receptor  signaling

pathway’, ‘NF-kappa B signaling pathway’, ‘aldosterone synthesis and secretion’, ‘HIF-1 signaling

pathway’ and ‘sphingolipid signaling pathway’. 

Cardiovascular diseases: The genes that can lead to cardiovascular diseases (Figure 2 and Table 1)

are  involved in  pathways  that  are  responsible  for  ‘renin  secretion’,  ‘renin-angiotensin  system’,



‘fluid  shear  stress  and  atherosclerosis’,  ‘aldosterone  synthesis  and  secretion’,  ‘neurotrophin

signaling pathway’ and ‘cAMP signaling pathway’.

Gastrointestinal  diseases:  The  pathways  of  gastrointestinal  diseases  are  ‘relaxin  signaling

pathway’, ‘IL-17 signaling pathway’, ‘non-alcoholic fatty liver disease (NAFLD)’ and ‘neuroactive

ligand-receptor interaction’. The genes that can lead to gastrointestinal diseases are shown in Table

1 and Figure 2.

Cancer:  The  cancer  pathways  associated  with  the  COVID-19  host  PPIs  are  ‘HIF-1  signaling

pathway’,  ‘sphingolipid  signaling  pathway’,  ‘B  cell  receptor  signaling  pathway’,  ‘NF-kappa  B

signaling pathway’ and ‘focal adhesion’.

3.2 Potential drugs for COVID-19

The spike protein of SARS-CoV-2 mainly binds to the target  cells  through ACE2  (Fang et  al.,

2020). The ACE2 is expressed in epithelial cells of the lungs, intestine, kidneys, and blood vessels

(Wan et al., 2020). Studies based on SARS-CoV infected mice model suggest that over-expression

of human ACE2 enhanced disease severity (Yang et al., 2007; Monteil et al., 2020; Sommerstein et

al., 2020).  Drug Gene Budger (DGB) (Wang et al., 2019) was used to explore existing drugs and

small molecules  that regulate ACE2 expression from L1000 data (Subramanian et al., 2017). The

analysis  of  expression  data  helps  in  understanding  the  importance  of  proteins  and  pathways

identified  in  this  study and  their  relationship  with  SARS-CoV-2 receptors.  The objective  is  to

identify drugs that can increase the chances of COVID-19 infection in patients with comorbidites

and explore the existing drugs which can be repurposed for COVID-19.

Drugs that increases the possibility of COVID-19: Drugs that are responsible for overexpression

of ACE2 can increase the probability of COVID-19 infection. Age and gender are other important

determinants of ACE2 expression as it is observed that the expression is significantly higher in

older people and males (Fernández-Atucha et al., 2017; Walters et al., 2017). The ACE2 expression

is substantially increased in patients with type 1 and type 2 diabetes, who are treated with ACE

inhibitors like moexipril (Drug Bank id: DB00691) (Chrysant and Nguyen, 2007) or angiotensin II

type-I receptor blockers (ARBs). Hypertension is also treated with ACE inhibitors and ARBs, which

results  in  an  upregulation  of  ACE2.  ACE2  can  also  be  increased  by  thiazolidinediones  and

ibuprofen  (Fang  et  al.,  2020).  Based  on  gene-expression  data  from  L1000,  we  identified  few

additional drugs which are responsible for significant over expression of ACE2. We hypothesise

that  these  drugs  can  increase  the  chance  of  COVID-19.  The  ACE2 expression  is  significantly

upregulated  by  Danusertib  (LFC 1.8),  which  is  studied  for  hormone refractory  prostate  cancer

(Meulenbeld et al., 2013). Trichostatin A is an anti-cancer drug, which also possesses antifungal and



antibiotic properties. It inhibits the activation of the PI3K/Akt and ERK1/2 pathways (Ma et al.,

2015) and significantly upregulates ACE2 expression (LFC 2).

Drugs that downregulate ACE2 expression: The drugs which significantly downregulate ACE2

activity,  can be considered as probable therapeutics against COVID-19.  Drugs that significantly

downregulate  ACE2 gene expression and at  the same time inhibit  other important  proteins and

pathways  of  the  host  sub-network  (shown  in  figure  3)  were  identified  from  L1000  dataset

(Subramanian et al., 2017). Some recent articles indicate that hydroxychloroquine and chloroquine

inhibit terminal glycosylation of ACE2 (Vincent et al., 2005; Wang et al., 2020c). As a result, ACE2

becomes less efficient in interacting with the SARS-CoV-2 spike protein, thus inhibiting viral entry.

It will be interesting to identify other drugs that affect ACE2.

The full list of drugs that downregulate ACE2 and at least one important protein of the COVID-19

host PPI network is shown in Table 2.  Here, some of them are discussed in detail. COL-3 (also

known as incyclinide or CMT-3) has been extensively studied as a potential new therapeutic agent

for allergic conditions, inflammatory conditions (i.e., arthritis, acute respiratory distress syndrome,

septic  shock  syndrome,  acne  and  rosacea),  neoplastic  diseases  (i.e.,  colon  carcinoma,  prostate

cancer) and infectious (fungal) diseases. COL-3 has been used in trials for HIV infection and brain

and  central  nervous  system tumors  (Viera  et  al.,  2007).  Most  importantly,  COL-3  has  shown

promising results against acute lung injury and acute respiratory distress in animal models (Bosma

et al., 2010). It significantly downregulates ACE2 (LFC -1.8) and other important proteins in the

COVID-19 host PPI network, including AGT, CAV1, FLNA, MMP1, NPY and PRKCB (see Figure

3).

Interestingly, the list of drugs include investigational anti-cancer drugs entinostat, mocetinostat and

alvespimycin. Entinostat and mocetinostat are benzamide-containing histone deacetylase (HDAC)

inhibitors that downregulate ACE2 expression (LFC -1.8 and -1.7 respectively as shown in Table 2).

Entinostat (Connolly et al., 2017) is under investigation for the treatment of non-small-cell lung

cancer  and epigenetic  therapy.  It  is  also found to downregulate  other  important  proteins in  the

COVID-19  host  PPI  network,  including  AGT,  FLNA,  NFKB,  NPY and  PCK1.  Mocetinostat

(Gerson et al., 2018) is currently in phase 2 clinical trials for the treatment of various lymphoid and

myeloid malignancies (Sheikh et al., 2016). Alvespimycin is a derivative of geldanamycin, which is

known to  reduce  acute  respiratory  distress  syndrome (Lancet  et  al.,  2010;  Wang et  al.,  2017).

Alvespimycin inhibits HSP90 and its regulation of cell signalling pathways. It downregulates ACE2

expression (LFC -2.11) and at the same time significantly downregulates CAV1, FLNA, MMP1,

NPY which are part of the COVID-19 host PPI network. In fact, geldanamycin itself downregulates

ACE2  (LFC  -1.2).  However,  Alvespimycin  has  been  terminated  in  phase  2  clinical  trials.



Staurosporine is a natural product isolated from Streptomyces staurosporeus  which downregulates

ACE2 expression (LFC -1.5) (Omura et al., 1977; Tamaoki et al., 1986). 

Etodolac (Humber,  1987) is  a non-steroidal anti-inflammatory moderate  painkiller  drug used in

rheumatoid arthritis and osteoarthritis. It significantly downregulates ACE2 expression (LFC -1.5).

The anti-inflammatory effects of etodolac result from inhibition of the cyclooxygenase enzymes

(COX),  specially  COX-2.  COX-2  is  part  of  the  NFKB pathway,  an  important  pathway  of  the

COVID-19  host  PPI  sub-network.  It  was  also  found  to  downregulate  FLNA of  the  host  sub-

network, which is also part of the NFKB pathway.

Table 2: Drugs from L1000 dataset which significantly downregulate ACE2 along with other critical proteins of
the  COVID-19 related human PPI sub-network (Figure 3). The log2 fold change (LFC) data is shown only for
ACE2.

S.
No. 

Drug name Host genes downregulated LFC for ACE2 Status of drug

1. COL-3 ACE2, AGT, CAV1, FLNA, MMP1, NPY, PRKCB -1.8 Phase 2 completed

2 Entinostat ACE2, AGT, FLNA, NFKB, NPY, PCK1 -1.8 Phase 3 recruiting

3 Mocetinostat ACE2, FLNA, NPY -1.7 Phase 2 completed

4 Staurosporine ACE2, FLNA, NPY -1.5 Phase 2 completed

5 Etodolac ACE2, FLNA -1.6 FDA approved

Conclusions

Diseases are usually regulated by a complex network of protein-protein interactions. We have used

the human PPI network to explain the molecular basis of comorbidities between COVID-19 and

other diseases. We started with two high confidence host contacts of SARS-CoV-2, viz., ACE2 and

BSG, and then reconstructed the local network around them using the RWR method. We could

identify the proteins and pathways that are implicated in cancer, cardiovascular disease, diabetes

and gastrointestinal disorders from this local network. We identified 5 drugs that can significantly

downregulate the primary receptor of SARS-Cov-2, ACE2, along with other important proteins of

the host PPI sub-network. Among them, COL-3 has previously shown activity  against acute lung

injury and acute respiratory distress, while entinostat and mocetinostat are in clinical trials for non-

small-cell lung cancer. We opine that these drugs can be investigated further for their therapeutic

value and repurposed against COVID-19.

The inferences presented in this  work are based on holistic approach to understand the critical

comorbidities  of  COVID-19  based  on  protein-protein  interactions.  The  molecular  basis  of

comorbidities and potential drugs proposed here are preliminary indications requiring experimental

validations.
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Supplementary Data

Figure S1: Biological processes enriched by the proteins associated with the COVID-19 infection. The processes
are colored based on the dispensability score obtained from REVIGO.

Table S1: The diseases associated with the COVID-19.

Disease group disease_Name Overlapping gene

Glucose
metabolism disease

hyperinsulinism LEP

hyperglycemia AGT, PRKCB, LEP

glucose intolerance LEP, AGT

diabetes mellitus
SLC2A4, LEP, CAV1, NFKB1, 
PRKCB

gestational diabetes LEP

type 2 diabetes mellitus
SLC2A4, LEP, CAV1, NFKB1, 
PRKCB

lipoatrophic diabetes mellitus CAV1

Crbohydrate
metabolic disorder

hyperinsulinemic hypoglycemia SLC16A1

primary hyperoxaluria NFKB1

Cancer papillary adenoma VHL

lung benign neoplasm PPP2R1B, VHL, MMP1, CPE

microcystic adenoma VHL

colonic benign neoplasm MEP1A, SLC16A1, LEP, NFKB1

pheochromocytoma VHL

follicular adenoma VHL

hemangioma VHL



benign breast phyllodes tumor FLNA

lung non-small cell carcinoma PPIA, MMP1

adrenal medulla cancer VHL

ovarian cancer CAV1

prostate cancer LEP, CAV1, CUL3

Hodgkin's granuloma CDK2

adult T-cell leukemia PRKCB

acute T cell leukemia PRKCB

colon cancer
MEP1A, PPP2R1B, SLC16A1, 
LEP, NFKB1

stomach cancer PPIA, CAV1, PREP, PRKCB

esophageal cancer GHRL

nephroblastoma VHL

nonpapillary renal cell carcinoma VHL

collecting duct carcinoma VHL

papillary renal cell carcinoma VHL

clear cell renal cell carcinoma VHL

chromophobe renal cell carcinoma VHL

sarcomatoid renal cell carcinoma VHL

breast malignant phyllodes tumor FLNA

breast carcinoma
FLNA, CAV1, MMP1, NFKB1, 
LEP, GHRL

cribriform carcinoma GHRL, NFKB1

melanoma CDK2, CUL3

squamous cell carcinoma PPIA, VHL

spindle cell carcinoma VHL

neuroendocrine carcinoma VHL

tubular adenocarcinoma GHRL, NFKB1

granular cell carcinoma GHRL, NFKB1

Disease of mental
health

syndromic X-linked intellectual disability UBE2A

autistic disorder LEP, PRKCB

dissociative amnesia PREP

amnestic disorder PREP

neurotic disorder GHRL, NPY

schizophrenia

CAV1, BSG, ARRB2, GHRL, 
PCK1, CALM1, PPIA, LEP, 
CUL3, NTSR1, NTS, PTGER3, 
NPY

mental depression
PRKCB, ARRB2, AGT, CALM2, 
NPY, LEP, GHRL, NTS

major depressive disorder GHRL, PRKCB, NPY

endogenous depression GHRL, PRKCB, NPY

melancholia GHRL, NPY



bipolar disorder ARRB2, AGT, PREP, CALM2

alcohol use disorder GHSR, NPY

phencyclidine abuse CALM2, CALM1

cocaine abuse GHRL, CALM1, NPY, CALM2

cannabis abuse CALM1, CALM2

opiate dependence LEP

heroin dependence LEP

hallucinogen dependence CALM1, CALM2

Cardiovascular
system disease

intrinsic cardiomyopathy ACE2, AGT, CALM1, CALM2, 

long QT syndrome CALM1, CALM2

endomyocardial fibrosis AGT, ACE2

extrinsic cardiomyopathy AGT

Brugada syndrome CALM2

atrial fibrillation CAV1

catecholaminergic polymorphic ventricular 
tachycardia CALM1

congestive heart failure CAV1, GHRL, AGT, PCK1

hypertension LEP, ACE2, CAV1, AGT

pre-eclampsia AGT

essential hypertension AGT

renal hypertension AGT

atherosclerosis AGT, MMP1

coronary artery disease AGT, SORT1

myocardial infarction AGT

abdominal aortic aneurysm AGT, ACE2

pulmonary embolism TBXA2R

brain ischemia NFKB1

carotid artery disease AGT

brain infarction NPY

cerebral infarction NPY

Respiratory system
disease

asthma CDK2, NPY

obstructive lung disease MMP1

chronic obstructive pulmonary disease MMP1 

interstitial lung disease AGT

pulmonary fibrosis AGT

pneumonia AGT

idiopathic interstitial pneumonia AGT

rhinitis TBXA2R, NPY

Skin disease

Stevens-Johnson syndrome CAV1, FBXO6, VCP, PTGER3

dermatitis PTGER3

epidermolysis bullosa MMP1



Muscular disease

congenital diaphragmatic hernia AGT

distal myopathy VCP

limb-girdle muscular dystrophy VCP

Connective tissue
disease

osteogenesis imperfecta GHSR, GHRHR

multiple epiphyseal dysplasia FLNA

Marfan syndrome FLNA

familial partial lipodystrophy CAV1

Kidney disease

kidney failure AGT, NFKB1

chronic kidney disease NFKB1

glomerulosclerosis AGT

IgA glomerulonephritis AGT

proteinuria AGT, LEP

nephrosis AGT

Immune system
disease

autoimmune hepatitis LEP

limited scleroderma CAV1

diffuse scleroderma CAV1

common variable immunodeficiency NFKB1

MHC class II deficiency RFXANK

Hematopoietic
system disease

blood platelet disease TBXA2R

anemia AGT

primary polycythemia VHL

Gastrointestinal
system disease

liver cirrhosis AGT, NFKB1

primary biliary cirrhosis NFKB1

cholestasis AGT

oral submucous fibrosis MMP1

ulcerative colitis GHRL

Crohn's colitis LEP

intestinal obstruction FLNA

gastric ulcer LEP, GHRL

Nervous system
disease

primary open angle glaucoma CAV1

diabetic retinopathy AGT

autosomal dominant cerebellar ataxia ATXN10

amyotrophic lateral sclerosis VCP

Alzheimer's disease SLC2A4, LEP, CALM1, NPY

hydrocephalus FLNA

visual epilepsy LEP, GHRL, AGT, NPY

focal epilepsy NPY

temporal lobe epilepsy NPY

Charcot-Marie-Tooth disease VCP

Other diseases
obesity LEP, GHRL, AGRP, PCK1, CPE

morbid obesity LEP



hypogonadism LEP

CREST syndrome CAV1

abdominal obesity-metabolic syndrome 1 LEP

polycystic ovary syndrome LEP, PTGER3

FG syndrome FLNA

fatty liver disease LEP

periventricular nodular heterotopia FLNA

Table S2: Pathways enriched in cancer, cardiovascular diseases and glucose metabolism disease.

Cancer

Term Genes

HIF-1 signaling pathway PRKCB;VHL;NFKB1

Sphingolipid signaling pathway PPP2R1B;PRKCB;NFKB1

Long-term depression PPP2R1B;PRKCB

Adipocytokine signaling pathway LEP;NFKB1

B cell receptor signaling pathway PRKCB;NFKB1

Leishmaniasis PRKCB;NFKB1

Hepatitis C PPP2R1B;CDK2;NFKB1

Hepatitis B PRKCB;CDK2;NFKB1

Salmonella infection FLNA;NFKB1

Small cell lung cancer CDK2;NFKB1

NF-kappa B signaling pathway PRKCB;NFKB1

Amoebiasis PRKCB;NFKB1

Prostate cancer CDK2;NFKB1

AGE-RAGE signaling pathway in diabetic complications PRKCB;NFKB1

Focal adhesion PRKCB;CAV1;FLNA

Proteoglycans in cancer PRKCB;CAV1;FLNA

Chagas disease (American trypanosomiasis) PPP2R1B;NFKB1

Insulin resistance PRKCB;NFKB1

Pathways in cancer MMP1;PRKCB;CDK2;VHL;NFKB1

MAPK signaling pathway PRKCB;FLNA;NFKB1

Human papillomavirus infection PPP2R1B;CDK2;NFKB1

PI3K-Akt signaling pathway PPP2R1B;CDK2;NFKB1

Cardiovascular disease

Term Genes

Adipocytokine signaling pathway LEP;NPY;PCK1;NFKB1

Renin-angiotensin system ACE2;AGT

Phototransduction CALM1;CALM2

Renin secretion CALM1;CALM2;AGT



Neurotrophin signaling pathway SORT1;CALM1;CALM2;NFKB1

Pertussis CALM1;CALM2;NFKB1

Fluid shear stress and atherosclerosis CAV1;CALM1;CALM2;NFKB1

cAMP signaling pathway NPY;GHRL;CALM1;CALM2;NFKB1

Aldosterone synthesis and secretion CALM1;CALM2;AGT

Glucagon signaling pathway CALM1;PCK1;CALM2

C-type lectin receptor signaling pathway CALM1;CALM2;NFKB1

Insulin resistance PCK1;AGT;NFKB1

Vascular smooth muscle contraction CALM1;CALM2;AGT

Long-term potentiation CALM1;CALM2

Amphetamine addiction CALM1;CALM2

Insulin signaling pathway CALM1;PCK1;CALM2

Neuroactive ligand-receptor interaction TBXA2R;LEP;NPY;GHRL;AGT

Adrenergic signaling in cardiomyocytes CALM1;CALM2;AGT

PPAR signaling pathway MMP1;PCK1

Glioma CALM1;CALM2

Gastric acid secretion CALM1;CALM2

Cellular senescence CALM1;CALM2;NFKB1

Salivary secretion CALM1;CALM2

Tuberculosis CALM1;CALM2;NFKB1

Alcoholism NPY;CALM1;CALM2

IL-17 signaling pathway MMP1;NFKB1

GnRH signaling pathway CALM1;CALM2

Kaposi sarcoma-associated herpesvirus infection CALM1;CALM2;NFKB1

Calcium signaling pathway TBXA2R;CALM1;CALM2

Circadian entrainment CALM1;CALM2

Phosphatidylinositol signaling system CALM1;CALM2

Inflammatory mediator regulation of TRP channels CALM1;CALM2

AGE-RAGE signaling pathway in diabetic complications AGT;NFKB1

Melanogenesis CALM1;CALM2

Human immunodeficiency virus 1 infection CALM1;CALM2;NFKB1

Pathways in cancer MMP1;CALM1;CALM2;AGT;NFKB1

Human cytomegalovirus infection CALM1;CALM2;NFKB1

Ras signaling pathway CALM1;CALM2;NFKB1

AMPK signaling pathway LEP;PCK1

Oocyte meiosis CALM1;CALM2

Relaxin signaling pathway MMP1;NFKB1

Dopaminergic synapse CALM1;CALM2

Estrogen signaling pathway CALM1;CALM2

Apelin signaling pathway CALM1;CALM2

Non-alcoholic fatty liver disease (NAFLD) LEP;NFKB1



Oxytocin signaling pathway CALM1;CALM2

cGMP-PKG signaling pathway CALM1;CALM2

Alzheimer disease CALM1;CALM2

Rap1 signaling pathway CALM1;CALM2

Glucose metabolism disorder

Term Genes

Insulin resistance PRKCB;SLC2A4;AGT;NFKB1

Adipocytokine signaling pathway LEP;SLC2A4;NFKB1

AGE-RAGE signaling pathway in diabetic complications PRKCB;AGT;NFKB1

B cell receptor signaling pathway PRKCB;NFKB1

Leishmaniasis PRKCB;NFKB1

NF-kappa B signaling pathway PRKCB;NFKB1

Amoebiasis PRKCB;NFKB1

Aldosterone synthesis and secretion PRKCB;AGT

HIF-1 signaling pathway PRKCB;NFKB1

Sphingolipid signaling pathway PRKCB;NFKB1

AMPK signaling pathway LEP;SLC2A4

Vascular smooth muscle contraction PRKCB;AGT

Fluid shear stress and atherosclerosis CAV1;NFKB1

Non-alcoholic fatty liver disease (NAFLD) LEP;NFKB1

Hepatitis B PRKCB;NFKB1

Influenza A PRKCB;NFKB1

Chemokine signaling pathway PRKCB;NFKB1

Focal adhesion PRKCB;CAV1

Proteoglycans in cancer PRKCB;CAV1

Human immunodeficiency virus 1 infection PRKCB;NFKB1

Human cytomegalovirus infection PRKCB;NFKB1

Ras signaling pathway PRKCB;NFKB1

Pathways in cancer PRKCB;AGT;NFKB1

MAPK signaling pathway PRKCB;NFKB1

MicroRNAs in cancer PRKCB;NFKB1

Neuroactive ligand-receptor interaction LEP;AGT
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