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ABSTRACT. The rise of novel artificial intelligence methods necessitates a comparison of 

this wave of new approaches with classical machine learning for a typical drug discovery 

project. Inhibition of the potassium ion channel, whose alpha subunit is encoded by human 

Ether-à-go-go-Related Gene (hERG), leads to prolonged QT interval of the cardiac action 

potential and is a significant safety pharmacology target for the development of new 

medicines. Several computational approaches have been employed to develop prediction 

models for assessment of hERG liabilities of small molecules including recent work using 

deep learning methods. Here we perform a comprehensive comparison of prediction models 

based on classical (random forests and gradient boosting) and modern (deep neural networks 

and recurrent neural networks) artificial intelligence methods. The training set (~9000 

compounds) was compiled by integrating hERG bioactivity data from ChEMBL database 

with experimental data generated from an in-house, high-throughput thallium flux assay. We 

utilized different molecular descriptors including the latent descriptors, which are real-valued 

continuous vectors derived from chemical autoencoders trained on a large chemical space (> 

1.5 million compounds). The models were prospectively validated on ~840 in-house 

compounds screened in the same thallium flux assay. The deep neural networks performed 

significantly better than the classical methods with the latent descriptors. The recurrent neural 

networks that operate on SMILES provided highest model sensitivity. The best models were 

merged into a consensus model that offered superior performance compared to reference 

models from academic and commercial domains. Further, we shed light on the potential of 

artificial intelligence methods to exploit the chemistry big data and generate novel chemical 

representations useful in predictive modeling and tailoring new chemical space. 
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INTRODUCTION. The human ether-a-go-go-related gene (hERG) encodes for the pore-

forming alpha-subunit of voltage-gated potassium ion channels. The hERG channel regulates 

the efflux of potassium ions in cardiac myocytes and thereby plays a key role in coordination 

of heartbeat.1, 2 Literature indicates that blockade of hERG channel leads to prolonged QT 

interval of the action potential which can result in fatal cardiac arrhythmia (Torsade de 

pointes).3, 4 Several marketed drugs, including antiarrhythmic agents, were withdrawn after 

being reported to trigger cardiac arrhythmia that sometimes led to sudden death.5, 6 

Consequently, hERG channel emerged as an important off-target, marking early assessment 

of hERG liability an essential step in drug discovery.7-9 The gold-standard in vitro and in vivo 

assays that facilitate screening of hERG channel inhibition are expensive and provide low 

throughput.10-12 Meanwhile, in silico methods emerged as an alternative for early assessment 

of pharmacological and toxicological effects of chemical substances.13-15 

Multiple studies reported in silico models for predicting hERG channel inhibition 

over the past several years. Tropsha et al. provided an overview of quantitative structure-

activity relationship (QSAR) studies from the literature that were reported before 2014.16 

More recently, several other studies reported models based on simple methods like read 

across17 and machine learning (ML) methods18-21, including deep neural networks (DNNs).22-

25 Many models are based on proprietary or in-house datasets which restricts the use of this 

data to build newer models for academic drug discovery.21 It is suspected that hERG channel 

can bind a wide variety of chemotypes and a major limitation to developing robust prediction 

models using publicly-domain hERG activity data is the fairly limited chemical diversity of 

available training data.26 Although different combinations of ML algorithms and molecular 

descriptors have been tested, there is no combination of choice that performs well on unseen 

data. For instance, a consensus of Support Vector Machines, Random Forests, Gradient 

Boosting Model and Tree Bagging provided better performance in comparison to individual 



models that performed very similar to each other when used with different descriptors.16 

Recent studies suggest that neural networks based on learnable representations offer broadly 

a better performance than classical ML algorithms.27, 28 Latent descriptors that are derived 

directly from the neural network architecture are gaining popularity in molecular property 

prediction.29 Furthermore, descriptor-free QSAR models that are based on recurrent neural 

networks (RNNs) and molecular representations like SMILES were reported to demonstrate 

superior generalization capabilities on out-of-domain test data.30 

Despite this body of literature, no one has attempted to compare these methods 

against each other in a prospective validation study. In this study, we enriched the public 

domain hERG data with a dataset comprising bioactive compounds screened in a 

homogeneous high-throughput assay of hERG channel inhibition to provide the community 

with a large reference dataset of high integrity. The primary goals of the study are to develop 

prediction models representing both classical and novel AI developments, validate the best 

models on prospectively screened compounds, as well as on recently approved FDA drugs 

with hERG liability data. 

 

MATERIALS AND METHODS. 

Public Domain hERG Bioactivity Data. ChEMBL has been a major repository in the public 

domain for compound activity data extracted from scientific literature.31 The most recently 

updated ChEMBL database (version 25, accessed 28 October, 2019) provides more than 

20000 activity records for hERG channel (UniProt accession: Q12809). The activity records 

were preprocessed, as previously described in literature, to generate a high-confidence 

bioactivity dataset.16, 21, 32 Briefly, only the potency and affinity values reported as IC50, EC50 

or Ki endpoints were retained, chemical structures were normalized and multiple 



measurements from different assays were analyzed and treated. The post-processed dataset 

comprised of 6233 compounds. 

 

Thallium Flux Assay Data. A high-throughput ion channel screen was developed and 

validated at National Center for Advancing Translational Sciences - NCATS (formerly 

known as the NIH Chemical Genomics Center) as a modified version of the FluxORTM 

thallium flux assay that detects inhibition of the hERG channel by measuring flow of a 

surrogate ion, thallium.33 The study compared the activities of 10 common hERG inhibitors 

measured in thallium flux and patch-clamp experiments and concluded that the homogeneous 

high-throughput assay can be used as a cost-effective alternative to patch-clamp technique.33 

More recently, NCATS reported a collection of 4,323 compounds screened in thallium flux 

assay used for generating support vector classification models of hERG channel inhibition.20 

In the present study, we aimed to merge this dataset with the high-confidence activity data 

obtained from ChEMBL database for development and critical assessment of modern 

machine learning approaches. First, we analyzed the correlation between flux assay data and 

ChEMBL data that originated from multiple assay types (e.g. electrophysiology, ion flux, 

radioligand binding, fluorescence, etc.). A subset of 86 approved drugs with activity data 

from both sources was identified for this purpose. However, since ChEMBL data spans 

multiple assay types, the correlation analysis was performed twice, first with patch-clamp 

data alone (Figure 1a) and next with data obtained after merging activities from different 

assay types (Figure 1b). We noticed that the outcomes from different assay types correlated 

well with the patch-clamp data, suggesting that the data could be used together. Furthermore, 

given the concordance between ChEMBL data and flux assay data, we decided to merge the 

two datasets to generate a combined dataset after removal of duplicates. 

 



 

Figure 1. Correlation between hERG activity data from: (a) flux assay and ChEMBL database; 

(b) patch-clamp assays and other assays in ChEMBL database. 

 

Modeling Datasets. The dataset generated by merging ChEMBL and flux assay data was used 

for training the classification models. Additionally, a collection of 840 compounds was 

selected from an in-house library to generate a test dataset for prospective validation of the 

classification models. These compounds were measured in the same thallium flux assay to 

generate IC50 data. We did not use a single activity threshold to discriminate blockers from 

non-blockers in ChEMBL whole-cell patch clamp data. Previous studies using a binary 

threshold (1𝜇M and 10 𝜇M) provided superior performance as compared to using a single 

threshold (1𝜇M or 10 𝜇M).21 For the thallium-flux assay, a threshold of 30𝜇M was used 

considering the average fold difference in the activity for compounds with data available 

from both sources. Finally, whole-cell patch clamp hERG data was manually extracted for 

177 FDA approved drugs (2012 to 2018) from their pharmacological and safety reviews.34 

Many previously published studies do not include such data into their training or validation 

sets. We believe that validation on this data offers a more realistic evaluation setting for our 

models. Since it is hard to determine the hERG liability of a drug based on the IC50 value 



alone,35 without the knowledge of the peak serum concentration unbound to plasma proteins, 

we use both activity thresholds (1𝜇M and 10 𝜇M) to classify the drugs as blockers and non-

blockers. Table 1 summarizes the datasets used for modeling and validation. 

 

Table 1. An overview of the datasets used in this study. 

Dataset Sources (Assay Type) Activity Type Cpds Blockers 
Non-

blockers 

Training 

Set 

ChEMBL (Multiple); 

NCATS (Flux Assay) 
IC50, Ki, EC50 8154 2164 5990 

Prospective 

Validation 

Set 

NCATS (Flux Assay) IC50 839 53 786 

FDA- 

Approved 

Drugs 

FDA Pharmacological 

and Safety Reviews 

(Patch Clamp) 

IC50 177 
15 (1𝜇M) 

46 (10𝜇M) 

162 (1𝜇M) 

131 (10𝜇M) 

 

 

Molecular Descriptors. Molecular fingerprints and physicochemical properties are widely 

used for the development of QSAR models.36, 37 Five different sets of molecular descriptors 

were calculated and used in combination with different methods in this study. Morgan 

fingerprints (1024 bits) and RDKit descriptors were calculated using the RDKit toolkit.38 

Recent progress in deep learning facilitates the development of the different molecular 

representations such as latent vectors that are used as descriptors for modeling molecular 

properties.29, 39, 40 In this study we utilized several different approaches to generate fixed-

length latent vector representations for our modeling sets. The detailed methodology involved 

in generation of latent vectors is described in the next section. RNNs that learn on sequential 

data such as SMILES as input have been employed for molecular property prediction.30, 41, 42 

Three variations of SMILES including the commonly known canonical SMILES, randomized 

SMILES43 and DeepSMILES44 were employed as input for RNN models in this study. While 



the RDKit toolkit was used to generate canonical SMILES, we relied on their original 

implementations for randomized SMILES and DeepSMILES. 

 

Autoencoder and Adversarial Autoencoder Models. RNNs that encode SMILES and decode 

them back to SMILES constitute the most recent generation of methods for ligand-based de 

novo design.45 In order to generate new structures, an RNN learns to predict the probability of 

the next character in a SMILES string, given the previous characters.45 An autoencoder (AE) 

constitutes a special architecture that generates a compressed representation of the provided 

input that could be used to reconstruct the chemical structures. The code layer (i.e., the 

compressed representation) produced by an autoencoder is a fixed-length vector of 

descriptors increasingly referred to as ‘latent descriptors’ that have been used for molecular 

property prediction.40, 46 Variations of the original autoencoder architecture have been 

proposed that translate between different string representations of molecules (e.g., canonical 

SMILES, InChI, etc.). One such variation focused on the ability of AEs to generate new 

samples which resulted in variational autoencoders (VAEs).39 Adversarial autoencoders 

(AAEs) are modifications of VAEs in which an AE is combined with a generative adversarial 

network (GAN). GANs facilitate generation of novel structures given a prior distribution of 

the training set examples without the explicit need to define and manipulate a probability 

distribution. While AEs have been previously reported to be used for modeling molecular 

properties, this is the first study to use AAEs to generate latent descriptors for QSAR. Both 

AE and AAE models were built using data from ChEMBL database (version 25). 

 

The latest release of ChEMBL (version 25) contains a total of 1,870,462 molecules. 

The reason behind choosing ChEMBL is that most small molecules from the database have 

been synthesized and tested against biological targets which indicates that there are good 



chances to learn representations of synthesizable bioactive molecules. This set was first 

preprocessed using the criteria suggested by Brown et al.47 after which we ended up with 

1,641,316 molecules. Briefly, salts were removed, charges were neutralized, length of 

SMILES was restricted to 100 characters and lastly, omitted molecules with metals and other 

unusual atoms. After partitioning, the training and test sets contained 1,313,054 molecules 

and 328,262 molecules, respectively. The training set was used to build AE and AAE models 

that were validated on the test set for reconstruction ability. Training of models were 

performed in batches of 256 compounds for a total of five epochs with the length of latent 

descriptor predefined as 512. Model summaries and the reconstruction performances of the 

AE and AAE architectures are provided in the supporting information (S1 and S2). The 

smiles2latent models from the AE and AAE architectures were used to generated latent 

descriptors Latent1 and Latent2, respectively. 

 

QSAR Models. Two different modeling pipelines were developed. The first pipeline consisted 

of the classical ML methods, based on four descriptors (RDKit, MorganFP, Latent1 and 

Latent2), that serve as baseline models. Scikit-learn,48 an open-source ML library was used to 

train and validate the models. The second pipeline consisted of two types of neural networks: 

feed-forward neural networks based on the four descriptors and RNNs based on SMILES. 

The models were built using Keras49 deep learning library with TensorFlow50 as background. 

We implemented two types of data splits: random split and scaffold split, both adapted from 

the DeepChem51 library. The training set was partitioned into internal training (80%) and test 

(20%) sets. Parameter optimization was performed on these partitions in a five-fold cross-

validation format. For this purpose, the split was performed five times each for both split 

types. Finally, models based on the best parameters were built using the unpartitioned 



training set and evaluated on the prospective validation set and FDA approved drugs. All 

learning methods are briefly explained below. 

Random Forests 

Random forest (RF)52 is an ensemble of decision trees that are fitted on various subsamples 

of the data and uses averaging to restrict overfitting and improve prediction accuracy. The 

‘RandomForestClassifier’ method from Scikit-learn was used to build the model. The number 

of estimators was set to 300 and random state was set to an integer. The rest of the parameters 

were set to default values. 

Gradient Boosting 

eXtreme Gradient Boosting (XGBoost) is an ML method that allows both regression and 

classification. It is based on the Gradient Boosting Decision Tree technique and has been 

widely applied in the field of data mining.53 Due to its recently gained popularity over RF in 

cheminformatics, we used XGBoost as the second baseline method. Similar to RF, XGBoost 

models were used with a total of 300 estimators and random state set to an integer. The 

remaining parameters were set to default values. 

Feedforward Neural Networks 

Artificial neural networks (ANNs) have been applied for a wide range of QSAR tasks.54-57 

Increase in the use of RF and Support Vector Machines for classification and regression in 

cheminformatics led to a decline in the use of ANNs. Eventually, the ANNs have evolved 

into DNNs. Unlike ANNs, a DNN consists of multiple fully connected layers with two or 

more hidden (or intermediate) layers between the input and output layers. In a feedforward 

neural network (referred simply as DNN in the rest of the study), the information passed 

through the input layer flows in forward direction through the hidden layers to the output 



layer.58 A number of parameters are available for tuning a DNN such as the number of hidden 

layers, number of epochs, activation function, optimizer and its learning rate. Hyperparameter 

optimization is essential to improve the performance of DNN and avoid overfitting on 

training data. This is detailed in the Model Optimization section of the results. 

RNNs based on SMILES 

Long Short-Term Memory (LSTM) networks are RNNs that can be used to model sequence 

data such as natural language.41 Previous studies reported the use of LSTMs to learn directly 

from SMILES which led the community towards descriptor-free QSAR models.30 The LSTM 

networks built in this study were fed with canonical SMILES that are first encoded into one-

hot vectors and then passed to the computing cell which performs as many computations as 

the length of the input SMILES in a loop. At each step, one character of SMILES is taken as 

input and the computed activation value is passed to the next step which takes the next 

character as input. In this way, the information from previous characters is persisted while the 

next characters are being processed. Finally, the network produces a prediction probability 

between 0 and 1. These values can be used to obtain the binary classification labels. 

Furthermore, we investigated attention-based modeling in which the neural network 

architecture is extended to search for parts of the input sequences that are relevant to the 

target variable.59, 60 In case of LSTM networks, the attention mechanism gives importance to 

certain parts of the sequence (i.e., SMILES) rather than considering the whole sequence as 

important. For this purpose, we implemented Multiplicative Attention from Keras Self-

Attention library61 with regularization and without any attention bias. 

 

Performance Assessment. The performance of the models was mainly accessed using the area 

under the curve (AUC) from the receiver operating characteristic (ROC) curves. A ROC 



curve plots the true positive rate against the false positive rate and thus provides an estimate 

of the performance of a binary classifier. In addition to AUC, the following metrics were 

estimated: 

 

Sensitivity and Specificity 

The sensitivity (or the true positive rate) of a model is the proportion of hERG blockers 

correctly predicted as blockers. Specificity (or the true negative rate) is the proportion of non-

blockers correctly predicted as non-blockers. 

 

Sensitivity (Sens) = TP/(TP + FN) 

Specificity (Spec) = TN/(TN + FP) 

 

Here, TP = number of true positives; FN = number of false negatives; TN = number of true 

negatives; and FP = number of false positives. 

 

Balanced Accuracy 

The balanced accuracy (BACC) of a model is an average of the proportions correctly 

predicted for each class (i.e., Sensitivity and Specificity). 

 

Balanced accuracy (BACC) = (Sensitivity + Specificity)/2 

 

Reference Models. We compared our results with state-of-the-art models from Pred-hERG 

and StarDrop.62, 63 Pred-hERG provides consensus predictions based on different machine 

learning models and molecular fingerprints.16 Their models outperformed several existing 

models and were made publicly accessible while constantly being updated with hERG 



bioactivity data from ChEMBL database.63, 64 StarDrop’s hERG model is available from the 

ADME QSAR module of the software. Gold standard patch-clamp IC50 data was used to 

build a regression model based on a non-linear Gaussian Processes technique. These two 

models represent two different domains (academic and commercial) and we believed that it 

would be appropriate to use them for a comprehensive comparison. 

 

Availability of Models and Datasets. All datasets and model implementations are available in 

our GitHub repository (https://github.com/ncats/herg-ml). The preprocessed ChEMBL data 

and scripts for building AE and AAE models are also provided. In addition to the training 

data, structures and hERG activity annotations for the prospective validation set compounds 

and FDA approved drugs subset are made publicly available. 

 

RESULTS AND DISCUSSION 

  

Model Optimization. The baseline methods Random Forests and XGBoost are robust and do 

not require extensive parameter optimization.65 The quality of deep learning models is more 

dependent on the number of descriptors, hyperparameters and computational capabilities (e.g., 

use of GPU). We first report parameter optimization performed using one of the five-fold cross-

validation training sets. For the DNN, a series of 260 models were built using different 

combinations of optimizer learning rate, activation function, number of epochs and batch size 

for each descriptor type. The same dense layer architecture was maintained for the first round 

of grid search and once the best parameters were obtained, we tried to find an optimal dense 

layer structure for each descriptor. The DNNs in this study typically consisted of three to five 

layers with decreasing number of neurons as it moves forward that resulted in a pyramidal 

network structure, previously reported as an optimal setting for DNNs.66, 67 The number of units 

in the input layer was defined based on the shape of the incoming descriptors and was reduced 



in the hidden layers and finally, the output layer consists of only one unit which uses a sigmoid 

activation function to return the output. Different combinations of the number of hidden layers 

and the number of neurons per hidden layer were examined and the best performing 

architecture was retained for both five-fold cross-validation and final validation. In the case of 

LSTM, along with the parameters considered for DNN, we also investigated the number of 

LSTM units. The grid search results for DNN are provided in the supporting information (S3). 

While the best performing parameters varied with the descriptors for DNN, relu activation 

function always provided superior accuracy. The LSTM models provided best performance 

with Adam optimizer (learning rate = 0.01), tanh activation function, 64 LSTM units, 64 

neurons in the first dense layer, 10 epochs and batch size of 128. These settings were retained 

for the LSTM model with attention mechanism in which different attention widths (2, 4, 6, 8, 

16) were evaluated. In general, smaller attention widths provided superior performance. 

 

Table 2. Overview of the hyperparameter settings used following a grid search optimization. 

Method Descriptors (Length) Hyperparameters 

DNN 

RDKit (119) 

MorganFP (1024) 

Latent1 (512) 

Latent2 (512) 

activation = [relu, selu] 

epochs = [10, 20, 30] 

batch_size = [32, 64, 128] 

learn_rate = [0.0001, 0.0005, 0.00001, 0.00005] 

dense_layers = 3 to 5 

LSTM Canonical SMILES (100) 

activation = [relu, tanh] 

epochs = [5, 10, 15] 

batch_size = [64, 128] 

learn_rate = [0.01, 0.001, 0.0001] 

dense_layers = 2 

lstm_dim = [64, 128] 

 

 



Classical AI versus Modern AI Methods. Based on five-fold cross-validation performed on the 

training set, we expected that the modern methods would provide relatively better performance 

in comparison to the classical methods. The baseline models based on RF and XGBoost 

provided highest AUC (Figure 2) and BACC (Table 3) with RDKit descriptors. However, these 

two methods provided the worst performance (Sensitivity < 0.6) when used together with the 

latent descriptors. In contrast, the DNN models provided better performance (BACC > 0.8) 

with latent descriptors. Though the DNN models demonstrated fairly similar performance with 

different descriptor types, MorganFP provided a better tradeoff between Sensitivity and 

Specificity. The LSTM models based on SMILES performed on par with the DNN and baseline 

models with BACC as high as 0.81. RF and DNN were the best performers in cross-validation. 

Overall, for different methods and descriptors, ‘random split’ provided superior performance 

in comparison to scaffold split. Results for cross-validation using scaffold split are provided in 

supporting information (S4). 

 

 

Figure 2. Model performance on training data generated using the random splitting scheme. 

For each method-descriptor combination, the standard deviation of the average of performance 

for different folds (N=5) is presented as an error bar. 



 

The prospective validation set containing 839 compounds was used to evaluate the 

models. A nearest-neighbor analysis with the training set revealed that a majority (>80%) of 

these compounds are below a Tanimoto similarity threshold of 0.6 (supporting information, 

S5). The optimal settings from cross-validation were retained for DNN and LSTM models. A 

performance trend similar to cross-validation was observed (Table 4), except that the XGBoost 

model based on RDKit descriptors provided the best performance. The DNN model performed 

well with all descriptor types while RF performed the best using RDKit descriptors. The LSTM 

model based on attention mechanism provided better AUC and BACC in comparison to the 

model without attention. Overall, recent developments such as DNN and LSTM provide robust 

predictions using different descriptors and simple sequence-based descriptor such as SMILES. 

In particular, the latent descriptors derived from encoder-decoder architectures performed very 

well on validation set and emphasize their applicability in prediction of molecular properties 

and biological activity. However, classical ML methods such as XGBoost and RF are still in 

the league of best performing models, in agreement with previous studies.16, 21 

 

Table 3. Other cross-validation performance metrics. For each model, the average of different 

folds (N=5) and corresponding standard deviation are listed. 

Method Descriptor BACC Sensitivity Specificity 

RF 

RDKit 0.84 +/- 0.02 0.73 +/- 0.04 0.95 +/- 0.01 

MorganFP 0.83 +/- 0.02 0.68 +/- 0.03 0.97 +/- 0.01 

Latent1 0.73 +/- 0.01 0.48 +/- 0.03 0.98 +/- 0.01 

Latent2 0.74 +/- 0.01 0.50 +/- 0.02 0.98 +/- 0.01 

XGBoost 

RDKit 0.82 +/- 0.01 0.72 +/- 0.02 0.93 +/- 0.01 

MorganFP 0.79 +/- 0.02 0.62 +/- 0.03 0.96 +/- 0.01 

Latent1 0.75 +/- 0.01 0.56 +/- 0.02 0.94 +/- 0.01 

Latent2 0.76 +/- 0.01 0.58 +/- 0.01 0.94 +/- 0.01 



DNN 

RDKit 0.81 +/- 0.09 0.86 +/- 0.04 0.76 +/- 0.03 

MorganFP 0.84 +/- 0.02 0.75 +/- 0.04 0.93 +/- 0.01 

Latent1 0.82 +/- 0.01 0.73 +/- 0.04 0.91 +/- 0.03 

Latent2 0.82 +/- 0.01 0.72 +/- 0.04 0.91 +/- 0.02 

LSTM 
SMILES 0.80 +/- 0.01 0.85 +/- 0.03 0.75 +/- 0.02 

SMILES-ATN 0.81 +/- 0.01 0.78 +/- 0.04 0.83 +/- 0.02 

 

Similar to cross-validation, XGBoost and DNN obtained better Sensitivity over the RF 

models when using the latent descriptors. Furthermore, two different latent descriptors 

provided similar results. In few cases, descriptors based on AAE model (Latent2) provided 

slightly better results. Recently, Goḿez-Bombarelli, et al. proposed a variational autoencoder 

(VAE), which is an autoencoder with generative ability to propose new compounds with 

desired properties.39 The original implementation of this VAE model, built on a subset of ZINC 

database,68 was used to generate latent descriptors of length 192 bits for both training and 

validation set compounds. DNNs were used to evaluate the utility of these descriptors for 

prediction of hERG channel blockade. Hyperparameter optimization was performed similar to 

other descriptors. This model did not perform as well as the DNN models based on our latent 

descriptors (Table 5). This could be due to the fact that the latent space of the VAE model was 

originally shaped for predicting specific molecular properties such as the water-octanol 

partition coefficient. We also noticed that the reconstruction rate of the encoder-decoder model 

can influence the QSAR model performance. An inverse correlation was observed between the 

reconstruction rate of the encoder-decoder models and the improvement in performance of 

QSAR models using the latent descriptors. Considering this into account, we trained our AE 

and AAE models in a small number of epochs to limit the reconstruction rate and obtain optimal 

performance using the latent descriptors. However, a detailed investigation to arrive at the best 



reconstruction rate could not be performed due to the huge computational costs involved 

development of these models. 

 

Table 4. Performance of the models on prospective validation set. 

Method Descriptor AUC-ROC BACC Sensitivity Specificity 

RF 

RDKit 0.84 0.77 0.66 0.88 

MorganFP 0.81 0.68 0.40 0.97 

Latent1 0.76 0.64 0.32 0.97 

Latent2 0.75 0.63 0.30 0.97 

XGBoost 

RDKit 0.84 0.80 0.77 0.83 

MorganFP 0.83 0.65 0.38 0.92 

Latent1 0.78 0.69 0.49 0.88 

Latent2 0.76 0.62 0.38 0.87 

DNN 

RDKit 0.82 0.74 0.75 0.72 

MorganFP 0.83 0.76 0.66 0.85 

Latent1 0.78 0.73 0.74 0.72 

Latent2 0.80 0.74 0.72 0.75 

LSTM 
SMILES 0.76 0.72 0.77 0.67 

SMILES-ATN 0.79 0.75 0.75 0.74 

 

 

Table 5. Performance of DNN models based on different latent descriptors. 

Descriptor Length AUC-ROC BACC Sensitivity Specificity 

Latent2 (best model) 512 bits 0.80 0.74 0.72 0.75 

Latent VAE 196 bits 0.75 0.69 0.64 0.74 

 

 

 O’Boyle & Dalke recently proposed an adaption of the original SMILES known as 

DeepSMILES that could be used instead of the conventional SMILES representations in 

building generative neural networks.44 They tried to address the syntactical limitations of 



SMILES that could be a reason behind the poor validity of the newly generated structures. In 

another benchmark, canonical SMILES and DeepSMILES were compared to ‘Randomized 

SMILES’ for the development of generative RNN models.43 Randomized SMILES were earlier 

proposed as a data augmentation technique to improve the performance of QSAR models.69 

Further, they were also shown to improve the relevance of latent descriptors for QSAR when 

used in generation of autoencoder models.29 In this study, we developed LSTM models using 

these two SMILES adaptations and compared the performance with our best LSTM model 

based on canonical SMILES. In the case of Randomized SMILES, different enumeration 

factors (e = 2, 3, 4, 5) were considered i.e. in case of e = 5, five unique randomized SMILES 

were generated for each molecule in the training set. In all cases, the LSTM model started to 

provide higher Sensitivity although the overall performance declined. Similarly, DeepSMILES 

did not perform as well as the canonical SMILES (see Table 6). In order to evaluate 

DeepSMILES on a larger dataset, the AE model developed in this study was rebuilt using the 

same ChEMBL data but this time using DeepSMILES. Again, the AE model based on 

canonical SMILES resulted in a higher reconstruction performance and the latent descriptors 

derived from the same model provided better QSAR performance. 

 

Table 6. LSTM models based on different SMILES representation. For canonical SMILES, 

the performance values reported are from LSTM model with attention mechanism. 

SMILES Type AUC-ROC BACC Sensitivity Specificity 

Canonical SMILES 0.79 0.75 0.75 0.74 

DeepSMILES 0.76 0.71 0.73 0.69 

Randomized SMILES 0.76 0.69 0.79 0.59 

 

Comparison with available hERG models. Reference models from Pred-hERG webserver and 

StarDrop software were used to obtained predictions for the validation set. The StarDrop 

model predicts a pIC50 value for each compound. An activity threshold of pIC50 = 6 was used 



to assign the final prediction labels. Predictions from Pred-hERG model are based on a 

consensus of four different machine learning methods (RF, Gradient Boosting, TreeBag and 

Support Vector Machines) that were individually built using different molecular descriptors 

(pharmacophoric fingerprints, featMorgan fingerprints, PubChem fingerprints and MACCS 

fingerprints). Similarly, we generated a consensus model based on four different methods, 

each in combination with the best performing molecular descriptor when tested individually 

(RF-RDKit; XGBoost-RDKit; DNN-MorganFP; LSTM-ATN-SMILES). Our consensus 

model outperformed both reference models in predicting the validation set (see Table 7). 

 

Table 7. Performance of our consensus model in comparison to the reference hERG models. 

hERG Model BACC Sensitivity Specificity 

StarDrop 6.4.0 0.69 0.58 0.79 

Pred-hERG 4.2 0.77 0.74 0.81 

Our Consensus 0.80 0.74 0.86 

  

Performance on recently approved drugs. The consensus model was used to predict the 

hERG liabilities of the FDA approved drugs. Since two activity thresholds are used, 

predictions were validated twice taking into account different thresholds and the results are 

presented in Table 8. With more stringent activity criteria, the consensus model achieved a 

BACC of 0.79. Similar to the validation set, a majority (>80%) of these drugs were found to 

be below a Tanimoto similarity threshold of 0.6 (supporting information, S5). Thus, we 

demonstrated the ability of our models to provide robust predictions on unseen chemical 

space. At the same time, it is clear that the activity threshold used to separate blockers from 

non-blockers can result in a completely different dataset and model performance. While 

10𝜇M is the generally accepted threshold, in the case of this dataset, we believe that 1𝜇M 

offers a realistic composition with more non-blockers than blockers. Furthermore, no clear 



trend was noticed in the evaluated time period (2012 to 2018) for the potential of newly 

approved drugs to inhibit hERG (see Figure 3), while the expectation was to observe a 

decrease in the inhibitory potential over the time. This should draw the attention of the 

community to the question - is hERG blockade still a concern for drug discovery? 

 

Table 8. Performance of the consensus model on FDA approved drugs. 

Activity Threshold AUC-ROC BACC Sensitivity Specificity 

1𝜇M 0.79 0.75 0.71 0.78 

10𝜇M 0.77 0.67 0.44 0.89 

 

 

Figure 3. Trend of hERG activities of 72 drugs approved by FDA between 2012 and 2018. 

 

Traditional descriptors versus Latent Descriptors. The choice of descriptors is a key factor 

for the development of a robust predictive model. Except SMILES, all descriptors used in this 

study are numerical descriptors: either binary (MorganFP) or real-valued (RDKit, Latent1 

and Latent2). The performance obtained using latent descriptors from AE and AAE models 

was comparable to that obtained using fingerprints and other descriptors only when employed 



with DNNs. The poor performance of RF and XGBoost models with latent descriptors could 

be attributed to the continuous distribution of the compounds in the low-dimensional space. 

Overall, MorganFP performed the best among all numerical descriptors. The PCA plots in 

Figure 4 indicates that the blockers could be better discriminated from the non-blockers by 

MorganFP. The continuous distribution of compounds in the latent space explains the poor 

ability of simple classifiers such as RF and XGBoost to distinguish blockers from non-

blockers. Previously, these representations have been shown to provide improvements over 

baseline models based on molecular fingerprints.29 It is also worth noting that these 

representations are not only useful in reconstruction of molecules but also in capturing 

properties of molecules that include biological activity. 

 

 



Figure 4. Two-dimensional PCA plots based on different descriptors for the training data: 

blockers (1) and non-blockers (0) are represented in red and green colors, respectively. 

 

The choice of chemical representation has a great influence on the properties of the latent 

space. Thus, we investigated whether using molecular fingerprints as input strings for the 

autoencoder model could improve the QSAR performance of the latent descriptors as the 

fingerprint length is fixed by default and the vocabulary is essentially simple. As anticipated, 

the latent descriptors derived from fingerprints provided a completely different distribution of 

the training data (supporting information, S6). Performance of the RF, XGBoost and DNN 

models trained on these descriptors was competitive although the latent descriptors that 

originated from canonical SMILES performed relatively better (supporting information, S7). 

 

 

Figure 5. Distribution of the sampled compounds based on their probabilities to be hERG 

blockers. The solid lines represent the shapes of distribution of the corresponding subsets. 

 



Generating compounds without hERG liabilities. The recently introduced sequence-to-

sequence based models that rely on the encoded representation (i.e. latent space) of molecules 

facilitates exploration of new chemical space. Apart from its novel applicability in QSAR 

modeling29 and virtual screening40, the encoded representation has been explored to generate 

focused chemical libraries with molecular properties of interest.39, 70-74 A number of key 

factors such as validity, novelty, diversity and synthetic feasibility of the sampled molecules 

have been addressed. Such models have been recently reported to identify promising drug 

candidates.75 In this context, the AAE architecture was used to sample new compounds using 

hERG blockers and non-blockers as separate starting points. Distribution of the prediction 

probabilities for the newly generated compounds (using the consensus model) revealed that 

most compounds generated around non-blockers were predicted as non-blockers by the 

consensus model (Figure 5). Similarly, a majority of new structures sampled from the 

blockers were predicted as blockers (Figure 5 and Figure 6). 

 

 

Figure 6. Exemplary compounds sampled from blockers and non-blockers in the training set. 

The activities of new compounds were predicted using the consensus model. 



 

Although synthesizability of the generated structures is a bottleneck for generative 

models, it was recently demonstrated that the fraction of synthesizable molecules is 

comparable to that of training set used to derive the new compounds.76 Since our training set 

compounds originate from ChEMBL database that reports bioactivities for already 

synthesized compounds and in-house high-throughput assay, it is our expectation that the 

newly generated compounds have similar rate of synthesizability. Furthermore, the generated 

chemical structures are fairly diverse and not completely similar to the original training set 

subsets used for sampling (Figure 7; supporting information, S8). These findings emphasize 

the potential of generative models in designing new chemical libraries with desired properties 

(or poor toxic liabilities), particularly in combination with predictive models. 

 

 

Figure 7. Distribution of newly sampled compounds based on Tanimoto similarity towards 

the nearest neighbor in the original blocker and non-blocker subsets. Solid lines represent the 

shapes of the distributions. 

 



CONCLUSIONS. Modeling hERG channel inhibition has been important ever since the 

recall of marketed drugs due to fatal cardiac arrhythmias. To date, several computational 

modeling approaches have been proposed for early assessment of hERG liability and several 

in silico models have been reported in the recent years. In this study, both classical and 

modern learning approaches were evaluated and compared for their ability to predict hERG 

liabilities of small molecules. Both feed-forward neural networks (DNN models) and 

recurrent neural networks (LSTM models) performed on par with classical machine learning 

methods. It was also demonstrated that novel representations derived from the latent space of 

chemical autoencoders offer an alternative to traditional descriptors in structure-activity and 

structure-property modeling. Particularly, the DNNs provided a significantly better 

performance using these novel descriptors. Further, the utility of generative models to derive 

a new chemical space with a property of interest has been demonstrated. In addition, we also 

provide a high-quality reference dataset obtained by combining public domain hERG activity 

data with experimental data generated in a high-throughput thallium flux assay as well as 

hERG activity data for small molecules approved between 2012 and 2018. The validation 

data from this study can be used to evaluate hERG models proposed in future studies. 
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