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ABSTRACT. The rise of novel artificial intelligence methods necessitates a comparison of
this wave of new approaches with classical machine learning for a typical drug discovery
project. Inhibition of the potassium ion channel, whose alpha subunit is encoded by human
Ether-a-go-go-Related Gene (hERG), leads to prolonged QT interval of the cardiac action
potential and is a significant safety pharmacology target for the development of new
medicines. Several computational approaches have been employed to develop prediction
models for assessment of hERG liabilities of small molecules including recent work using
deep learning methods. Here we perform a comprehensive comparison of prediction models
based on classical (random forests and gradient boosting) and modern (deep neural networks
and recurrent neural networks) artificial intelligence methods. The training set (~9000
compounds) was compiled by integrating hERG bioactivity data from ChEMBL database
with experimental data generated from an in-house, high-throughput thallium flux assay. We
utilized different molecular descriptors including the latent descriptors, which are real-valued
continuous vectors derived from chemical autoencoders trained on a large chemical space (>
1.5 million compounds). The models were prospectively validated on ~840 in-house
compounds screened in the same thallium flux assay. The deep neural networks performed
significantly better than the classical methods with the latent descriptors. The recurrent neural
networks that operate on SMILES provided highest model sensitivity. The best models were
merged into a consensus model that offered superior performance compared to reference
models from academic and commercial domains. Further, we shed light on the potential of
artificial intelligence methods to exploit the chemistry big data and generate novel chemical

representations useful in predictive modeling and tailoring new chemical space.
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INTRODUCTION. The human ether-a-go-go-related gene (hRERG) encodes for the pore-
forming alpha-subunit of voltage-gated potassium ion channels. The hERG channel regulates
the efflux of potassium ions in cardiac myocytes and thereby plays a key role in coordination
of heartbeat.! 2 Literature indicates that blockade of hERG channel leads to prolonged QT
interval of the action potential which can result in fatal cardiac arrhythmia (7orsade de
pointes).>* Several marketed drugs, including antiarrhythmic agents, were withdrawn after
being reported to trigger cardiac arrhythmia that sometimes led to sudden death.>°
Consequently, hERG channel emerged as an important off-target, marking early assessment
of hERG liability an essential step in drug discovery.” The gold-standard in vitro and in vivo
assays that facilitate screening of hERG channel inhibition are expensive and provide low
throughput.'%1? Meanwhile, in silico methods emerged as an alternative for early assessment
of pharmacological and toxicological effects of chemical substances.!*!

Multiple studies reported in silico models for predicting hERG channel inhibition
over the past several years. Tropsha et al. provided an overview of quantitative structure-
activity relationship (QSAR) studies from the literature that were reported before 2014.'
More recently, several other studies reported models based on simple methods like read

121, including deep neural networks (DNNs).”

across!” and machine learning (ML) methods
25 Many models are based on proprietary or in-house datasets which restricts the use of this
data to build newer models for academic drug discovery.?! It is suspected that hRERG channel
can bind a wide variety of chemotypes and a major limitation to developing robust prediction
models using publicly-domain hERG activity data is the fairly limited chemical diversity of
available training data.?® Although different combinations of ML algorithms and molecular
descriptors have been tested, there is no combination of choice that performs well on unseen

data. For instance, a consensus of Support Vector Machines, Random Forests, Gradient

Boosting Model and Tree Bagging provided better performance in comparison to individual



models that performed very similar to each other when used with different descriptors.'®
Recent studies suggest that neural networks based on learnable representations offer broadly
a better performance than classical ML algorithms.?”?® Latent descriptors that are derived
directly from the neural network architecture are gaining popularity in molecular property
prediction.?’ Furthermore, descriptor-free QSAR models that are based on recurrent neural
networks (RNNs) and molecular representations like SMILES were reported to demonstrate
superior generalization capabilities on out-of-domain test data.>

Despite this body of literature, no one has attempted to compare these methods
against each other in a prospective validation study. In this study, we enriched the public
domain hERG data with a dataset comprising bioactive compounds screened in a
homogeneous high-throughput assay of hERG channel inhibition to provide the community
with a large reference dataset of high integrity. The primary goals of the study are to develop
prediction models representing both classical and novel Al developments, validate the best
models on prospectively screened compounds, as well as on recently approved FDA drugs

with hERG liability data.

MATERIALS AND METHODS.

Public Domain hERG Bioactivity Data. ChREMBL has been a major repository in the public
domain for compound activity data extracted from scientific literature.?! The most recently
updated ChEMBL database (version 25, accessed 28 October, 2019) provides more than
20000 activity records for hERG channel (UniProt accession: Q12809). The activity records
were preprocessed, as previously described in literature, to generate a high-confidence
bioactivity dataset.!®2!:32 Briefly, only the potency and affinity values reported as ICso, ECso

or Kj endpoints were retained, chemical structures were normalized and multiple



measurements from different assays were analyzed and treated. The post-processed dataset

comprised of 6233 compounds.

Thallium Flux Assay Data. A high-throughput ion channel screen was developed and
validated at National Center for Advancing Translational Sciences - NCATS (formerly
known as the NIH Chemical Genomics Center) as a modified version of the FluxOR™
thallium flux assay that detects inhibition of the hERG channel by measuring flow of a
surrogate ion, thallium.** The study compared the activities of 10 common hERG inhibitors
measured in thallium flux and patch-clamp experiments and concluded that the homogeneous
high-throughput assay can be used as a cost-effective alternative to patch-clamp technique.*?
More recently, NCATS reported a collection of 4,323 compounds screened in thallium flux
assay used for generating support vector classification models of hERG channel inhibition.?°
In the present study, we aimed to merge this dataset with the high-confidence activity data
obtained from ChEMBL database for development and critical assessment of modern
machine learning approaches. First, we analyzed the correlation between flux assay data and
ChEMBL data that originated from multiple assay types (e.g. electrophysiology, ion flux,
radioligand binding, fluorescence, etc.). A subset of 86 approved drugs with activity data
from both sources was identified for this purpose. However, since ChEMBL data spans
multiple assay types, the correlation analysis was performed twice, first with patch-clamp
data alone (Figure 1a) and next with data obtained after merging activities from different
assay types (Figure 1b). We noticed that the outcomes from different assay types correlated
well with the patch-clamp data, suggesting that the data could be used together. Furthermore,
given the concordance between ChEMBL data and flux assay data, we decided to merge the

two datasets to generate a combined dataset after removal of duplicates.



Pearson's r = 0.86, Compounds = 86 Pearson's r = 0.88, Compounds = 53

(a) : (b)
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Figure 1. Correlation between hERG activity data from: (a) flux assay and ChEMBL database;

(b) patch-clamp assays and other assays in ChEMBL database.

Modeling Datasets. The dataset generated by merging ChEMBL and flux assay data was used
for training the classification models. Additionally, a collection of 840 compounds was
selected from an in-house library to generate a test dataset for prospective validation of the
classification models. These compounds were measured in the same thallium flux assay to
generate [Cso data. We did not use a single activity threshold to discriminate blockers from
non-blockers in ChEMBL whole-cell patch clamp data. Previous studies using a binary
threshold (1uM and 10 uM) provided superior performance as compared to using a single
threshold (1uM or 10 uM).?! For the thallium-flux assay, a threshold of 30uM was used
considering the average fold difference in the activity for compounds with data available
from both sources. Finally, whole-cell patch clamp hERG data was manually extracted for
177 FDA approved drugs (2012 to 2018) from their pharmacological and safety reviews.**
Many previously published studies do not include such data into their training or validation
sets. We believe that validation on this data offers a more realistic evaluation setting for our

models. Since it is hard to determine the hERG liability of a drug based on the ICso value



alone,*’ without the knowledge of the peak serum concentration unbound to plasma proteins,

we use both activity thresholds (1uM and 10 uM) to classify the drugs as blockers and non-

blockers. Table 1 summarizes the datasets used for modeling and validation.

Table 1. An overview of the datasets used in this study.

.. Non-
Dataset Sources (Assay Type) Activity Type Cpds Blockers blockers
Training ChEMBL (Multiple); .
Set NCATS (Flux Assay) ICso, Ki, ECso 8154 2164 5990
Prospective
Validation = NCATS (Flux Assay) ICso 839 53 786
Set
FDA- FDA Pharmacolloglcal 15 (1uM) 162 (14M)
Approved  and Safety Reviews ICso 177 46 (10uM) 131 (10uM)
Drugs (Patch Clamp) H H

Molecular Descriptors. Molecular fingerprints and physicochemical properties are widely

used for the development of QSAR models.3® 3’ Five different sets of molecular descriptors

were calculated and used in combination with different methods in this study. Morgan

fingerprints (1024 bits) and RDKit descriptors were calculated using the RDKit toolkit.

Recent progress in deep learning facilitates the development of the different molecular

representations such as latent vectors that are used as descriptors for modeling molecular

properties.?® %40 In this study we utilized several different approaches to generate fixed-

length latent vector representations for our modeling sets. The detailed methodology involved

in generation of latent vectors is described in the next section. RNNs that learn on sequential

data such as SMILES as input have been employed for molecular property prediction.3% 4% 42

Three variations of SMILES including the commonly known canonical SMILES, randomized

SMILES™* and DeepSMILES* were employed as input for RNN models in this study. While



the RDKit toolkit was used to generate canonical SMILES, we relied on their original

implementations for randomized SMILES and DeepSMILES.

Autoencoder and Adversarial Autoencoder Models. RNNs that encode SMILES and decode
them back to SMILES constitute the most recent generation of methods for ligand-based de
novo design.* In order to generate new structures, an RNN learns to predict the probability of
the next character in a SMILES string, given the previous characters.*® An autoencoder (AE)
constitutes a special architecture that generates a compressed representation of the provided
input that could be used to reconstruct the chemical structures. The code layer (i.e., the
compressed representation) produced by an autoencoder is a fixed-length vector of
descriptors increasingly referred to as ‘latent descriptors’ that have been used for molecular
property prediction.*® ¢ Variations of the original autoencoder architecture have been
proposed that translate between different string representations of molecules (e.g., canonical
SMILES, InChl, etc.). One such variation focused on the ability of AEs to generate new
samples which resulted in variational autoencoders (VAESs).%® Adversarial autoencoders
(AAEs) are maodifications of VAESs in which an AE is combined with a generative adversarial
network (GAN). GANSs facilitate generation of novel structures given a prior distribution of
the training set examples without the explicit need to define and manipulate a probability
distribution. While AEs have been previously reported to be used for modeling molecular
properties, this is the first study to use AAESs to generate latent descriptors for QSAR. Both

AE and AAE models were built using data from ChEMBL database (version 25).

The latest release of ChEMBL (version 25) contains a total of 1,870,462 molecules.
The reason behind choosing ChEMBL is that most small molecules from the database have

been synthesized and tested against biological targets which indicates that there are good



chances to learn representations of synthesizable bioactive molecules. This set was first
preprocessed using the criteria suggested by Brown et al.*’ after which we ended up with
1,641,316 molecules. Briefly, salts were removed, charges were neutralized, length of
SMILES was restricted to 100 characters and lastly, omitted molecules with metals and other
unusual atoms. After partitioning, the training and test sets contained 1,313,054 molecules
and 328,262 molecules, respectively. The training set was used to build AE and AAE models
that were validated on the test set for reconstruction ability. Training of models were
performed in batches of 256 compounds for a total of five epochs with the length of latent
descriptor predefined as 512. Model summaries and the reconstruction performances of the
AE and AAE architectures are provided in the supporting information (S1 and S2). The
smiles2latent models from the AE and AAE architectures were used to generated latent

descriptors Latentl and Latent2, respectively.

QSAR Models. Two different modeling pipelines were developed. The first pipeline consisted
of the classical ML methods, based on four descriptors (RDKit, MorganFP, Latentl and
Latent2), that serve as baseline models. Scikit-learn,*® an open-source ML library was used to
train and validate the models. The second pipeline consisted of two types of neural networks:
feed-forward neural networks based on the four descriptors and RNNs based on SMILES.
The models were built using Keras*® deep learning library with TensorFlow®® as background.
We implemented two types of data splits: random split and scaffold split, both adapted from
the DeepChem®! library. The training set was partitioned into internal training (80%) and test
(20%) sets. Parameter optimization was performed on these partitions in a five-fold cross-
validation format. For this purpose, the split was performed five times each for both split

types. Finally, models based on the best parameters were built using the unpartitioned



training set and evaluated on the prospective validation set and FDA approved drugs. All

learning methods are briefly explained below.

Random Forests

Random forest (RF)*? is an ensemble of decision trees that are fitted on various subsamples
of the data and uses averaging to restrict overfitting and improve prediction accuracy. The
‘RandomForestClassifier’ method from Scikit-learn was used to build the model. The number
of estimators was set to 300 and random state was set to an integer. The rest of the parameters

were set to default values.

Gradient Boosting

eXtreme Gradient Boosting (XGBoost) is an ML method that allows both regression and
classification. It is based on the Gradient Boosting Decision Tree technique and has been
widely applied in the field of data mining.>® Due to its recently gained popularity over RF in
cheminformatics, we used XGBoost as the second baseline method. Similar to RF, XGBoost
models were used with a total of 300 estimators and random state set to an integer. The

remaining parameters were set to default values.

Feedforward Neural Networks

Avrtificial neural networks (ANNSs) have been applied for a wide range of QSAR tasks.>*®’
Increase in the use of RF and Support Vector Machines for classification and regression in
cheminformatics led to a decline in the use of ANNSs. Eventually, the ANNs have evolved
into DNNs. Unlike ANNs, a DNN consists of multiple fully connected layers with two or
more hidden (or intermediate) layers between the input and output layers. In a feedforward
neural network (referred simply as DNN in the rest of the study), the information passed

through the input layer flows in forward direction through the hidden layers to the output



layer.>® A number of parameters are available for tuning a DNN such as the number of hidden
layers, number of epochs, activation function, optimizer and its learning rate. Hyperparameter
optimization is essential to improve the performance of DNN and avoid overfitting on

training data. This is detailed in the Model Optimization section of the results.

RNNs based on SMILES

Long Short-Term Memory (LSTM) networks are RNNs that can be used to model sequence
data such as natural language.*! Previous studies reported the use of LSTMs to learn directly
from SMILES which led the community towards descriptor-free QSAR models.*® The LSTM
networks built in this study were fed with canonical SMILES that are first encoded into one-
hot vectors and then passed to the computing cell which performs as many computations as
the length of the input SMILES in a loop. At each step, one character of SMILES is taken as
input and the computed activation value is passed to the next step which takes the next
character as input. In this way, the information from previous characters is persisted while the
next characters are being processed. Finally, the network produces a prediction probability
between 0 and 1. These values can be used to obtain the binary classification labels.
Furthermore, we investigated attention-based modeling in which the neural network
architecture is extended to search for parts of the input sequences that are relevant to the
target variable.® ¢ In case of LSTM networks, the attention mechanism gives importance to
certain parts of the sequence (i.e., SMILES) rather than considering the whole sequence as
important. For this purpose, we implemented Multiplicative Attention from Keras Self-

Attention library®® with regularization and without any attention bias.

Performance Assessment. The performance of the models was mainly accessed using the area

under the curve (AUC) from the receiver operating characteristic (ROC) curves. A ROC



curve plots the true positive rate against the false positive rate and thus provides an estimate
of the performance of a binary classifier. In addition to AUC, the following metrics were

estimated:

Sensitivity and Specificity
The sensitivity (or the true positive rate) of a model is the proportion of hERG blockers
correctly predicted as blockers. Specificity (or the true negative rate) is the proportion of non-

blockers correctly predicted as non-blockers.

Sensitivity (Sens) = TP/(TP + FN)

Specificity (Spec) = TN/(TN + FP)

Here, TP = number of true positives; FN = number of false negatives; TN = number of true

negatives; and FP = number of false positives.

Balanced Accuracy
The balanced accuracy (BACC) of a model is an average of the proportions correctly

predicted for each class (i.e., Sensitivity and Specificity).

Balanced accuracy (BACC) = (Sensitivity + Specificity)/2

Reference Models. We compared our results with state-of-the-art models from Pred-hERG
and StarDrop.®? ®3 Pred-nERG provides consensus predictions based on different machine
learning models and molecular fingerprints.'® Their models outperformed several existing

models and were made publicly accessible while constantly being updated with hERG



bioactivity data from ChEMBL database.®® ® StarDrop’s hERG model is available from the
ADME QSAR module of the software. Gold standard patch-clamp ICso data was used to
build a regression model based on a non-linear Gaussian Processes technique. These two
models represent two different domains (academic and commercial) and we believed that it

would be appropriate to use them for a comprehensive comparison.

Availability of Models and Datasets. All datasets and model implementations are available in
our GitHub repository (https://github.com/ncats/herg-ml). The preprocessed ChEMBL data
and scripts for building AE and AAE models are also provided. In addition to the training
data, structures and hERG activity annotations for the prospective validation set compounds

and FDA approved drugs subset are made publicly available.

RESULTS AND DISCUSSION

Model Optimization. The baseline methods Random Forests and XGBoost are robust and do
not require extensive parameter optimization.®> The quality of deep learning models is more
dependent on the number of descriptors, hyperparameters and computational capabilities (e.g.,
use of GPU). We first report parameter optimization performed using one of the five-fold cross-
validation training sets. For the DNN, a series of 260 models were built using different
combinations of optimizer learning rate, activation function, number of epochs and batch size
for each descriptor type. The same dense layer architecture was maintained for the first round
of grid search and once the best parameters were obtained, we tried to find an optimal dense
layer structure for each descriptor. The DNNSs in this study typically consisted of three to five
layers with decreasing number of neurons as it moves forward that resulted in a pyramidal
network structure, previously reported as an optimal setting for DNNs.%% 67 The number of units

in the input layer was defined based on the shape of the incoming descriptors and was reduced



in the hidden layers and finally, the output layer consists of only one unit which uses a sigmoid
activation function to return the output. Different combinations of the number of hidden layers
and the number of neurons per hidden layer were examined and the best performing
architecture was retained for both five-fold cross-validation and final validation. In the case of
LSTM, along with the parameters considered for DNN, we also investigated the number of
LSTM units. The grid search results for DNN are provided in the supporting information (S3).
While the best performing parameters varied with the descriptors for DNN, relu activation
function always provided superior accuracy. The LSTM models provided best performance
with Adam optimizer (learning rate = 0.01), tanh activation function, 64 LSTM units, 64
neurons in the first dense layer, 10 epochs and batch size of 128. These settings were retained
for the LSTM model with attention mechanism in which different attention widths (2, 4, 6, 8,

16) were evaluated. In general, smaller attention widths provided superior performance.

Table 2. Overview of the hyperparameter settings used following a grid search optimization.

Method Descriptors (Length) Hyperparameters

activation = [relu, selu]

epochs = [10, 20, 30]

batch_size = [32, 64, 128]

learn_rate =[0.0001, 0.0005, 0.00001, 0.00005]
dense_layers=31t05

RDKit (119)
MorganFP (1024)
Latentl (512)
Latent2 (512)

DNN

activation = [relu, tanh]

epochs =[5, 10, 15]

batch_size = [64, 128]

learn_rate =[0.01, 0.001, 0.0001]
dense_layers =2

Istm_dim =[64, 128]

LSTM Canonical SMILES (100)




Classical Al versus Modern Al Methods. Based on five-fold cross-validation performed on the
training set, we expected that the modern methods would provide relatively better performance
in comparison to the classical methods. The baseline models based on RF and XGBoost
provided highest AUC (Figure 2) and BACC (Table 3) with RDKit descriptors. However, these
two methods provided the worst performance (Sensitivity < 0.6) when used together with the
latent descriptors. In contrast, the DNN models provided better performance (BACC > 0.8)
with latent descriptors. Though the DNN models demonstrated fairly similar performance with
different descriptor types, MorganFP provided a better tradeoff between Sensitivity and
Specificity. The LSTM models based on SMILES performed on par with the DNN and baseline
models with BACC as high as 0.81. RF and DNN were the best performers in cross-validation.
Overall, for different methods and descriptors, ‘random split’ provided superior performance
in comparison to scaffold split. Results for cross-validation using scaffold split are provided in

supporting information (S4).

Cross-validation Performance

RF XGBOOST DNN LSTM
095 o2 I
0.90 I I - ] I ]
g | | Lo
©
O 085 -
3
<
0.80 A
0.75 A
0.70 . . . . . : : ;
&R & o &R & & &R & o @ S
9 & & & O S & & O 5 & &
< ox& F N < oéb@ N N < Ox&(\ \?@ N N fo\?‘
¥ @ ¥ 8%
A
S

Molecular Descriptor
Figure 2. Model performance on training data generated using the random splitting scheme.
For each method-descriptor combination, the standard deviation of the average of performance

for different folds (NV=5) is presented as an error bar.



The prospective validation set containing 839 compounds was used to evaluate the
models. A nearest-neighbor analysis with the training set revealed that a majority (>80%) of
these compounds are below a Tanimoto similarity threshold of 0.6 (supporting information,
S5). The optimal settings from cross-validation were retained for DNN and LSTM models. A
performance trend similar to cross-validation was observed (Table 4), except that the XGBoost
model based on RDKit descriptors provided the best performance. The DNN model performed
well with all descriptor types while RF performed the best using RDKit descriptors. The LSTM
model based on attention mechanism provided better AUC and BACC in comparison to the
model without attention. Overall, recent developments such as DNN and LSTM provide robust
predictions using different descriptors and simple sequence-based descriptor such as SMILES.
In particular, the latent descriptors derived from encoder-decoder architectures performed very
well on validation set and emphasize their applicability in prediction of molecular properties
and biological activity. However, classical ML methods such as XGBoost and RF are still in

the league of best performing models, in agreement with previous studies.! 2!

Table 3. Other cross-validation performance metrics. For each model, the average of different

folds (N=5) and corresponding standard deviation are listed.

Method Descriptor BACC Sensitivity Specificity
RDKit 0.84 +/- 0.02 0.73 +/- 0.04 0.95 +/- 0.01
MorganFP 0.83 +/- 0.02 0.68 +/- 0.03 0.97 +/- 0.01

RE Latent1 0.73 +/- 0.01 0.48 +/- 0.03 0.98 +/- 0.01
Latent2 0.74 +/- 0.01 0.50 +/- 0.02 0.98 +/- 0.01
RDKit 0.82 +/- 0.01 0.72 +/- 0.02 0.93 +/- 0.01
MorganFP 0.79 +/- 0.02 0.62 +/- 0.03 0.96 +/- 0.01

XGBoost
Latent1 0.75 +/- 0.01 0.56 +/- 0.02 0.94 +/- 0.01
Latent2 0.76 +/- 0.01 0.58 +/- 0.01 0.94 +/- 0.01




RDKit 0.81 +/- 0.09 0.86 +/- 0.04 0.76 +/- 0.03

MorganFP 0.84 +/- 0.02 0.75 +/- 0.04 0.93 +/- 0.01
DNN

Latentl 0.82 +/- 0.01 0.73 +/- 0.04 0.91 +/- 0.03

Latent2 0.82 +/- 0.01 0.72 +/- 0.04 0.91 +/- 0.02

SMILES 0.80 +/- 0.01 0.85 +/-0.03 0.75 +/- 0.02
LSTM

SMILES-ATN 0.81 +/-0.01 0.78 +/- 0.04 0.83 +/- 0.02

Similar to cross-validation, XGBoost and DNN obtained better Sensitivity over the RF
models when using the latent descriptors. Furthermore, two different latent descriptors
provided similar results. In few cases, descriptors based on AAE model (Latent2) provided
slightly better results. Recently, Gorhez-Bombarelli, et al. proposed a variational autoencoder
(VAE), which is an autoencoder with generative ability to propose new compounds with
desired properties.*® The original implementation of this VAE model, built on a subset of ZINC
database,’® was used to generate latent descriptors of length 192 bits for both training and
validation set compounds. DNNs were used to evaluate the utility of these descriptors for
prediction of hRERG channel blockade. Hyperparameter optimization was performed similar to
other descriptors. This model did not perform as well as the DNN models based on our latent
descriptors (Table 5). This could be due to the fact that the latent space of the VAE model was
originally shaped for predicting specific molecular properties such as the water-octanol
partition coefficient. We also noticed that the reconstruction rate of the encoder-decoder model
can influence the QSAR model performance. An inverse correlation was observed between the
reconstruction rate of the encoder-decoder models and the improvement in performance of
QSAR models using the latent descriptors. Considering this into account, we trained our AE
and AAE models in a small number of epochs to limit the reconstruction rate and obtain optimal

performance using the latent descriptors. However, a detailed investigation to arrive at the best



reconstruction rate could not be performed due to the huge computational costs involved

development of these models.

Table 4. Performance of the models on prospective validation set.

Method Descriptor AUC-ROC BACC Sensitivity Specificity
RDKit 0.84 0.77 0.66 0.88
MorganFP 0.81 0.68 0.40 0.97
RF
Latent1 0.76 0.64 0.32 0.97
Latent2 0.75 0.63 0.30 0.97
RDKit 0.84 0.80 0.77 0.83
MorganFP 0.83 0.65 0.38 0.92
XGBoost
Latent1 0.78 0.69 0.49 0.88
Latent2 0.76 0.62 0.38 0.87
RDKit 0.82 0.74 0.75 0.72
MorganFP 0.83 0.76 0.66 0.85
DNN
Latentl 0.78 0.73 0.74 0.72
Latent2 0.80 0.74 0.72 0.75
SMILES 0.76 0.72 0.77 0.67
LSTM
SMILES-ATN 0.79 0.75 0.75 0.74

Table 5. Performance of DNN models based on different latent descriptors.

Descriptor Length AUC-ROC BACC Sensitivity  Specificity
Latent2 (best model) 512 bits 0.80 0.74 0.72 0.75
Latent VAE 196 bits 0.75 0.69 0.64 0.74

O’Boyle & Dalke recently proposed an adaption of the original SMILES known as
DeepSMILES that could be used instead of the conventional SMILES representations in

building generative neural networks.** They tried to address the syntactical limitations of



SMILES that could be a reason behind the poor validity of the newly generated structures. In
another benchmark, canonical SMILES and DeepSMILES were compared to ‘Randomized
SMILES’ for the development of generative RNN models.** Randomized SMILES were earlier
proposed as a data augmentation technique to improve the performance of QSAR models.*’
Further, they were also shown to improve the relevance of latent descriptors for QSAR when
used in generation of autoencoder models.? In this study, we developed LSTM models using
these two SMILES adaptations and compared the performance with our best LSTM model
based on canonical SMILES. In the case of Randomized SMILES, different enumeration
factors (e = 2, 3, 4, 5) were considered i.e. in case of e = 5, five unique randomized SMILES
were generated for each molecule in the training set. In all cases, the LSTM model started to
provide higher Sensitivity although the overall performance declined. Similarly, DeepSMILES
did not perform as well as the canonical SMILES (see Table 6). In order to evaluate
DeepSMILES on a larger dataset, the AE model developed in this study was rebuilt using the
same ChEMBL data but this time using DeepSMILES. Again, the AE model based on
canonical SMILES resulted in a higher reconstruction performance and the latent descriptors

derived from the same model provided better QSAR performance.

Table 6. LSTM models based on different SMILES representation. For canonical SMILES,