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ABSTRACT:  Predicting the outcome of chemical reactions using machine learning models has emerged 
as a promising research area in chemical science. However, the use of such models to prospectively test 
new reactions by interpreting chemical reactivity is limited. We have developed a new fast and one-pot 
multicomponent reaction of N-sulfonylimines with heterogenous reactivity. Fast reaction times (<5 min) 
for both acyclic and cyclic sulfonylimine encouraged us to investigate plausible reaction mechanisms 
using quantum mechanics to identify intermediates and transition states. The heterogeneous reactivity 
of N-sulfonylimine lead us to develop a human-interpretable machine learning model using positive and 
negative reaction profiles. We introduce chemical reactivity flowcharts to help chemists interpret the 
decisions made by the machine learning model for understanding heterogeneous reactivity of N-
sulfonylimines. The model learns chemical patterns to accurately predict the reactivity of N-sulfonylimine 
with different carboxylic acids and can be used to suggest new reactions to elucidate the substrate scope 
of the reaction. We believe our human-interpretable machine learning approach is a general strategy 
that is useful to understand chemical reactivity of components for any multicomponent reaction to 
enhance synthesis of drug-like libraries.  

1. INTRODUCTION     

     Computer-assisted organic chemistry has a huge potential for predicting chemical reaction conditions 
and for automating synthetic chemistry.1,2,3 In recent years, machine learning (ML) based approaches 
have been successfully applied to screen libraries of druglike molecules,4,5 for quantitative structure-
activity relationships (QSAR),6 for retrosynthetic planning7, and for reaction condition prediction. 
Reactivity prediction is a hard problem that often require specific experimental datasets to train ML 
models.8,9 Traditionally, creating such experimental databases requires a large number of manual 
experiments to check the feasibility of available starting materials to react together. However, with 
careful training of ML models using both positive and negative reaction data, it is possible to train on 
smaller datasets to test specific synthetic objectives. The results from ML models are helpful in building 
a chemical library that is otherwise tedious to explore by screening each reaction to check substrate 
feasibility under certain reaction conditions. To date, there is limited literature precedence for 
prospective prediction of desired chemical reactions and interpreting its reactivity using machine 
learning methods.10,11 We provide a first report, to the best of our knowledge, of a fast and one-pot 
multicomponent reaction to explore heterogenous reactivity of N-sulfonylimines by training a human-
interpretable machine learning model that identifies chemical patterns of reactivity to predict and test 
new reactions prospectively. 

We selected N-sulfonylimines as our model substrate because N-sulfonylimines are one of the important 
synthons in organic chemistry that are being used for a variety of chemical transformations. N-
sulfonylimine is a good source of an electrophilic carbon for  radical12 and nucleophilic addition13 



 

reactions. There are several reports available for N-sulfonylimines reactions where a carbon-nitrogen 
double bond is exploited.14 Notably, the use sulfamidate15, a cyclic N-sulfonylimine, has been used to 
prepare interesting heterocyclic scaffolds. Sulfamidate is transformed into a fused heterocycle using a 
Michael addition16, cycloaddition17–22, arylation23–25, alkenylation26–28, or alkynylation26 strategy by 
leveraging electrophilicity of cyclic N-sulfonylimines (Scheme 1).  

 
Scheme 1: Strategy to explore N-sulfonylimine reactivity towards multicomponent reaction 

    However, among reported synthetic strategies, construction of direct C-C bond between the imine 
carbon and the (het)aromatic partner is underrepresented in the literature. Specifically, a synthetic 
strategy for the direct C-C bond linkage between sulfamidate and oxadiazole has not been explored till 
date. The oxadiazole scaffold finds a unique presence in many biologically active compounds,29,30 
pharmaceutical agents, and is a privileged scaffold in material science.31 Among different types of five-
membered heterocycles, 1,3,4-oxadiazole plays an important role in organic synthesis and medicinal 
chemistry representing broad spectrum bioactivity as anticancer, antimicrobial, antiviral, and antifungal 
pharmacological agents32,33 (Figure 1). For example, the recently discovered CA-170 contains a 1,3,4-
oxadiazole moiety and is a promising immune checkpoint inhibitor in the tumor microenvironment as a 
dual antagonist of Programmable death ligand-1 and V-domain Ig suppressor of T-cell activation. 
Although the structure of CA-170 is not disclosed, a speculated structure is shown in Figure 1.34 
Conventional approaches to synthesize 1,3,4-oxadiazole is a multistep procedure that includes 
transformation of carboxylic acid into acyl chloride. Then a nucleophilic substitution reaction with 
hydrazide to produce an amide bond followed by cyclization step to get a 1,3,4-oxadiazole.35  

Multicomponent reactions (MCRs) have attracted medicinal chemists to prepare chemical 
libraries of biologically important molecules and drugs36 using two or more building blocks, often in 
reduced synthetic steps or one-pot experimental settings.37,38,39,40 These building blocks are either 
commercially available or easily synthesizable in the lab. Importantly, MCRs are extremely useful in 
diversity-oriented drug discovery to prepare diverse chemical libraries in a short time scale compare to 
traditional synthesis using sequential reactions. But, MCR is highly dependent on the nature of the 
solvents, catalysts, concentrations and equivalent of reagents being used.36 Once a set of parameters 
have been defined, a specific MCR can be used in combinatorial chemistry as well as synthesis by 
automation. However, it does not warrant the formation of desire products due to the variable reactivity 



 

of starting materials. The understanding of chemical reactivity of starting materials for a particular MCR 
would be useful to identify which starting materials to use. This important information of chemical 
reactivity can used to make a machine learning model which can suggest a type of starting materials to 
be used to get desire product successfully which would also reduce the waste of valuable reagents, time 
and efforts. Keeping this in mind, we selected a model MCR using N-sulfonylimine and carboxylic acid 
containing starting materials by taking inspiration from the previously reported MCR albeit using 
different reactants. Ramazani et al.41 reported a four-component reaction yielding 1,3,4-oxadiazole 
scaffold using aromatic aldehyde, benzoic acid, N-isocyano triphenylphosphorane (PINC), and secondary 
amine as reaction partners. The formation of 1,3,4-oxadiazole involves an essential reactant, PINC which 
is the nucleophilic partner that reacts with the imine. This species is generated in situ from the amine 
and aldehyde and reacts with a carboxylic acid followed by cyclization to yield 1,3,4-oxadiazole. A similar 
strategy was extended by Yudin et al.42,43 to perform an intramolecular reaction for the synthesis of 
oxadiazole containing cyclic peptide or macrocycle where two end terminals are stapled to form 
oxadiazole ring. This strategy also relies upon in situ imine formation from an aldehyde, a secondary 
amine, and additional amine group. It is noteworthy that in situ formations of imines are not always 
favorable as it is highly dependent upon its starting materials – an aldehyde and an amine, potentially 
limiting the use of these approaches. To address this issue, we provide the first report to use N-
sulfonylimine as a substrate for a fast and single-step approach to synthesize sulfamidate embedded 
1,3,4-oxadiazole using a MCR.  

 
Figure 1. Showing compounds with presence of 1,3,4-oxadiazole in medicinal chemistry. 

 We started our investigation with the idea that several types of cyclic N-sulfonylimines (aldimines 
or ketimines), acyclic N-sulfonylimines, and aromatic imines can be synthesized. To determine the 
reactivity pattern of various imines with carboxylic acids, we used Fukui reaction parameters calculated 
using Density Functional Theory (DFT)44 and identified the most suitable imines using the electrophilicity 
of the carbon atom (Figure S1). Both cyclic and acyclic N-sulfonylimines are highly susceptible toward 
nucleophilic attack of carboxylic acids. Therefore, we started using the model substrate cyclic N-
sulfonylimine (sulfamidate) 1a, which can be easily synthesized from substituted salicylaldehydes. We 
initially selected benzoic acid as the reaction partner because of its moderate nucleophilic tendency 
(Figure S1) and the selection of optimized conditions for future use with a chemically diverse range of 
carboxylic acids. Further, the synthesis of other derivatives with the optimized condition would serve as 
a training dataset to develop a machine learning model.  



 

2. RESULTS AND DISCUSSION 

2.1. Reaction Development and Optimization 

     Having a synthetic and computational strategy in mind, we performed an optimization study using 
sulfamidate (1a) and benzoic acid (2a) to form the desired product 3a. Reaction conditions from the 
literature for similar MCRs resulted in a messy TLC and trace product formation as identified using HPLC-
MS (entry 1 in Table 1). The replacement of a mixture of solvents with only dichloroethane (DCE) and 
room temperature conditions gave trace amounts of product as detected by HPLC-MS (entry 2). Next, 
replacing dichloroethane with dichloromethane (DCM) afforded a detectable quantity of desired product 
3a (entry 3). While doing a time-point study with a 30 minutes interval, we observed that the desired 
product was formed within 30 minutes (entry 4). However, TLC analysis shows multiple products, so we 
decreased the reaction temperature. At 0°C the desired product formed within 5 minutes (entry 5) as 
determined by a 5 minute time-point study. In all the above attempts, benzoic acid was added slowly. At 
-10°C, an additional experiment where DCM is added at the end increased the yield significantly (entry 
6 vs 7) - suggesting that sulfamidate has high reactivity. 

Table 1. Optimization of the synthesis of 1,3,4-oxadiazolea 

 
Entry  Solvent(s) T (oC) t (min) Yield (%)e 

1b DCE:MeCN 50 120 Trace 

2 DCE 25 120 Trace 

3 DCM 25 120 <5 

4 DCM 25 30 to 120 <5 

5 DCM Ice-bath 5 to 30 25 

6c DCM -10 5 40 

7d DCM -10  5 67 
a Reactions are at 0.1 mmol scale; b Reaction condition followed as per literature42; c benzoic acid added 
at the end; d all solid components were taken together and solvent added at the end; e isolated yield; T 
= Temperature and t = time 

Next, we applied the optimized reaction condition to the acyclic imine selected using DFT calculations 
(Figure S1) as it was the second most reactive imine. Interestingly, the reaction afforded the desired 
product with good yield (Scheme 2), but with longer reaction time (10 mins) for the complete conversion 
as compared to sulfamidate (<5 min). This led us to investigate the mechanism and the energy profile of 
various plausible intermediates formed in this reaction. 

 
Scheme 2. Synthesis of 1,3,4-oxadiazole using acyclic imine with benzoic acid with optimized reaction 
conditions.   



 

 
Figure 2. Calculated transition states, intermediates and energy profiles for acyclic N-sulfonylimines. 
A. 3D and 2D structure of each transition states for the acyclic reaction with their respective geometries 
and interaction (show in red in 2D). B. DFT optimized reaction mechanism with energies shown with 
respect to the reactants. All calculations were performed using a polarized continuum model for DCM 
solvation at -10°C. The largest energy barrier of 16.3 kcal/mol is between the acyclic sulfonylimine/PINC 
interaction complex and the first transition state (TS-1). The reaction is predicted to be highly exergonic 
with ΔG= –50.7 kcal/mol. PINC = N-isocyano triphenylphosphorane, Ph3P=O is triphenylphosphine oxide, 
TS = Transition State. Color code: grey, carbon; red, oxygen; blue, nitrogen; orange, phosphorous; yellow, 
sulphur; white, hydrogen. Full coordinates and animations can be found at 
https://chopralab.github.io/n_sulfonylimine_reactions.   



 

 
Figure 3. Calculated transition states, intermediates and energy profiles for cyclic N-sulfonylimines. A. 
3D and 2D structure of each transition states for the acyclic reaction with their respective geometries 
and interaction (show in red in 2D). These geometries are similar to ones obtained for the acyclic 
reaction. B. DFT optimized reaction mechanism with energies shown with respect to the reactants. All 
calculations were performed using a polarized continuum model for DCM solvation at -10°C. The rate 
limiting step has a barrier energy of 12.6 kcal/mol between the cyclic sulfonylimine/PINC interaction 
complex and the first transition state (TS-1). The reaction is predicted to be highly exergonic with ΔG= –
49.4 kcal/mol. PINC = N-isocyano triphenylphosphorane, Ph3P=O is triphenylphosphine oxide, TS = 
Transition State. Color code: grey, carbon; red, oxygen; blue, nitrogen; orange, phosphorous; yellow, 
sulphur; white, hydrogen. Full coordinates and animations can be found at 
https://chopralab.github.io/n_sulfonylimine_reactions. 



 

2.2. DFT calculations for reaction mechanism  

To gain mechanistic insights of the chemical reactions, we conducted DFT calculations using a polarized 
continuum model for DCM solvation at –10 °C to identify transition states and intermediates for acyclic 
and cyclic N-sulfonylimines (Figures 2, 3). The nucleophilic attack by negatively charged carbon atom of 
PINC on the electrophilic center of N-sulfonylimine yields Intermediate-1. The subsequent Intermediate-
2 is formed by a nucleophilic attack of benzoic acid. Next, intramolecular cyclization at the carbonyl 
carbon and subsequent removal of triphenylphosphine oxide yields the desired 1,3,4-oxadiazole 
containing the product. Both imines have the same rate-limiting step where the PINC reagent attacks the 
carbonyl carbon and both steps have small activation energies (12.6 kcal/mol and 16.3 kcal/mol for the 
cyclic and acyclic imines respectively), suggesting both reactions will occur quickly (see Supporting text 
for reaction mechanism section for a detailed description). 

 

Scheme 3. Substrate scope for representative cyclic N-sulfonyl-imine with various carboxylic acids used 
as training data. 



 

2.3. Investigating reactivity of cylic and acyclic N-sulfonylimines  

Using the optimized conditions, we started investigating various sulfamidates and carboxylic acid 
derivatives. The reaction of the diethylamine containing sulfamidate (1b) with benzoic acid afforded 
desired product 3b in 46% yield. The reaction of sulfamidate 1b with p-toluic acid (2b) also formed 
product 3c but in low yield (17%). Further, reaction of methoxy substituted sulfamidate 1c with benzoic 
acid (2a) formed expected product 3c in moderate yield (52%). However, naphthyl sulfamidate (1d) did 
not react effectively giving 1,3,4-oxadiazole 3e in poor yield. Notably, bromo derivatives of sulfamidate 
1e with benzoic acid (2a) did not afford the desired product (3f). Nonetheless, when sulfamidate 1c was 
reacted with pyridine carboxylic acid 2c, it formed the expected product with inseparable isomer in poor 
yield. Further, 4-hydroxybenzoic acid (2d) did not react with sulfamidate 1c to form desire product 3h. 
Next, we also sought to study the reactivity of other carboxylic acids with sulfamidates. So, apart from 
the products shown in Scheme 3, we also attempted other reactions to study reactivity of sulfamidate 
with other carboxylic acids (see supporting information, Scheme S1). For example, difluoro arylacetic 
acid, pyrimidine-2-carboxylic acid, terephthalic acid etc. - did not react well with sulfamidates. This 
observation intrigued us to study the reactivity of acyclic N-sulfonylimines with carboxylic acids after 
successful model reaction shown in Scheme 2.   

As shown in Scheme 4, acyclic N-sulfonylimine substrates were reacted with benzoic acids. Unlike 
halogenated sulfamidates, the reaction of halogenated acyclic N-sulfonylimine 4b reacted well with 
benzoic acid (2a) and 4-bromo-2-methyl benzoic acid (2b), giving desired products 5b and 5c in 53% and 
37% yields, respectively. Further, the synthesis of 5d and 5e were achieved successfully using trimethoxy 
substituted N-sulfonylimine (4c), and 4-hydroxy 3-nitro substituted N-sulfonylimine (4e), and they were 
well tolerated to afford desired products 5d and 5e (70% and 64% yields, respectively). 

 
Scheme 4. Substrate scope for acyclic N-sulfonylimine with carboxylic acids used as training data. 

2.4. Decision tree based chemical reactivity flowcharts 

Considering heterogeneous reactivity of cyclic and acyclic sulfonylimines, motivated us to develop a 
machine learning model using the successful and unsuccessful reactions. We trained decision tree45 
models using the Extended Connectivity Fingerprints46 of carboxylic acid and imine (Figure 4). We used 
bootstrapping of several decision tree models to ensure robustness of our model for predicting 
prospective experimental outcomes (see Supporting text for bootstrapping of the decision tree models 
for details). A Cohen Kappa statistic of 0.706 was obtained, suggesting strong inter-model reliability on 
limited training data (20 reactions).47,48 All decisions made by the ML model were highly confident except 
for the final decision (green box in Figure 4). This decision is only supported by a single reaction and that 



 

reaction is identified by either p-toluic acid or an amine substitution. Therefore, the model is unable to 
distinguish between specific features that resulted in a successful reaction. To elucidate chemistry at this 
step, we tested the reaction between 1c (imine without an amine substitution) and 2b (p-toluic acid) and

 
Figure 4. Chemical reactivity flowchart. Decision tree based chemical model for the substrate scope of 
the reaction between the imine and acid. A-C. Showing a pictorial explanation of how the model assigns 
rules for predicting reactivity. D. Showing the final bootstrapped model trained on all data with details 
for each rule shown in colored boxes. E-H. Examples of each of these rules using the training data. Box 
colors represents features shown in D and yellow line of the flowchart shows the outcome of the reaction 
based on chemical features. 

 
Scheme 5. Reactions performed to test the ML model 

noted that the reaction occurred. Conversely, the reaction between 1b (imine with an amine 
substitution) and 2d (4-hydroxy benzoic acid) did not occur. These results show that the final decision 



 

should check for p-toluic acid and not an amine substitution. Finally, we tested 2d with the acyclic imine 
4a to see if this rule applied to acyclic amines and noted that the reaction does occur. These reactions 
are shown in Scheme 5 and show how our ML strategy can be used to better understand and expand the 
substrate scope of an MCR. 

CONCLUSIONS 

In summary, we have developed a fast MCR of acyclic or cyclic N-sulfonylimines that was used as a 
representative reaction type to develop ML models for predicting reaction outcomes in a blind 
prospective manner. The fast and peculiar reactivity mechanism of N-sulfonylimines was explained using 
DFT calculation to understand the critical role of transition states and intermediates. Bootstrapped 
decision tree-based ML models resulted in a chemical reactivity flowchart that explained the choices 
made by the model to predict reaction outcomes. The human interpretable ML approach can be 
extended to explore any MCR or any chemical reaction used to synthesize a library of compounds in a 
quick and efficient manner. This work provides a framework for developing fast MCRs, understanding 
the underlying reaction mechanism and identifying chemical features for predicting the reactivity of 
components that results in successful reactions to save valuable time for chemists to not chase dead-
end leads. 
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