
 1 

 

Enhancing a De Novo Enzyme Activity by Computationally-Focused, 

Ultra-Low-Throughput Sequence Screening  

 

Valeria A. Risso,1 Adrian Romero-Rivera,2 Luis I. Gutierrez-Rus,1 Mariano Ortega-Muñoz,3 

Francisco Santoyo-Gonzalez,3 Jose A. Gavira,4 Jose M. Sanchez-Ruiz,*,1 Shina C. L. Kamerlin*,2 

 

1. Departamento de Química Física, Facultad de Ciencias, University of Granada, 18071-

Granada, Spain 

2. Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, BMC 

Box 576, S-751 23 Uppsala, Sweden 

3. Departamento de Química Organica, Facultad de Ciencias, University of Granada, 18071-

Granada, Spain 

4. Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-

University of Granada, Avenida de las Palmeras 4, Granada 18100 Armilla, Spain 

 

Corresponding author email addresses: sanchezr@ugr.es and lynn.kamerlin@kemi.uu.se 

 

 
  



 2 

Abstract 

Directed evolution has revolutionized protein engineering. Still, enzyme optimization by random 

library screening remains sluggish, in large part due to futile probing of mutations that are 

catalytically neutral and/or impair stability and folding. FuncLib is a novel approach which uses 

phylogenetic analysis and Rosetta design to rank enzyme variants with multiple mutations, on the 

basis of predicted stability. Here, we use it to target the active site region of a minimalist-designed, 

de novo Kemp eliminase. The similarity between the Michaelis complex and transition state for 

the enzymatic reaction makes this system particularly challenging to optimize. Yet, experimental 

screening of a small number of active-site variants at the top of the predicted stability ranking leads 

to catalytic efficiencies and turnover numbers (~2·104 M-1s-1 and ~102 s-1) for this anthropogenic 

reaction that compare favorably to those of modern natural enzymes. This result illustrates the 

promise of FuncLib as a powerful tool with which to speed up directed evolution, even on scaffolds 

that were not originally evolved for those functions, by guiding screening to regions of the 

sequence space that encode stable and catalytically diverse enzymes. Empirical valence bond 

calculations reproduce the experimental activation energies for the optimized eliminases to within 

~2 kcal·mol-1 and indicate that the enhanced activity is linked to better geometric preorganization 

of the active site. This raises the possibility of further enhancing the stability-guidance of FuncLib 

by computational predictions of catalytic activity, as a generalized approach for computational 

enzyme design.  

 

Keywords: enzyme design • Kemp elimination • empirical valence bond • FuncLib • Precambrian 

enzymes  
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Introduction 
 

Enzymes are green catalysts with unmatched catalytic proficiencies,1 and with widespread 

applications in biotechnology as extracellular catalysts for a host of (bio)chemical processes, from 

organic synthesis to developing new pharmaceuticals, biofuels, or bioremediation agents, to name 

but a few examples (see e.g. ref. 2, 3 for an overview). To be able to efficiently control the 

physicochemical properties of enzymes in a tailored fashion is therefore a problem with major 

economic implications, leading to extensive research effort in this direction.4 However, natural 

enzymes have had millions of years to evolve to their modern catalytic efficiencies, and therefore 

mimicking this process whether in vitro or in silico is a non-trivial undertaking, in particular due 

to the immensity of the sequence space that needs exploring, and the very high frequency of 

catalytically detrimental mutations.5, 6 Directed evolution revolutionized experimental protein 

engineering efforts, by vastly expanding the sequence space accessible to protein engineers by 

several orders of magnitude, with low overhead.7-9 Despite its many advantages, as a caveat, 

directed evolution is time-consuming, typically requiring many rounds of medium or high-

throughput screening to achieve suitable levels of enzyme catalysis from a starting, low seed 

level.10 Nevertheless, it has facilitated the development of a wide diversity of biotechnological 

applications of proteins. 

Recent years have seen an explosion of interest also in computational enzyme design,11-14 

propelled in large part by early successes in de novo enzyme design through grafting 

computationally designed active site models onto natural protein scaffolds (e.g. refs. 15-17, among 

others). We note, however, that while impressive, this approach typically generates enzymes with 

only modest catalytic activities, which again require many rounds of directed evolution before 

reaching catalytic efficiencies10, 18 that are comparable to naturally occurring enzymes.19 
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In light of the above, the use of computation to focus and speed up directed evolution is of 

considerable interest. Indeed, there have been substantial advances in this field, with many new 

screening approaches being put forward, based on sequence, structural or even dynamical 

information gained from simulations (see e.g. refs. 20-30). In addition, machine learning shows great 

promise as a screening tool in enzyme design studies.31-34 Still, the best engineered enzymes, with 

catalytic efficiencies comparable to natural enzymes, are more often the results of intensive 

directed evolution efforts starting from low-activity rational designs.10, 18  

The sluggishness of the common directed evolution procedures has to do, at least in part, with 

the fact that most variants in a random library with a substantial mutational load will include 

mutations that are deleterious in terms of fundamental protein biophysical properties, such as 

stability and folding. FuncLib28 is a novel automated method for designing multipoint mutations 

at enzyme active sites by combining phylogenetic analysis and Rosetta design calculations. 

FuncLib does not per se predict mutations that enhance catalysis, but rather suggests variants with 

multiple mutations that generate stabilizing interacting networks at the active site, thus focusing 

the search to safe regions of the sequence space. Furthermore, FuncLib can be used to target 

regions that are expected to be relevant for catalysis, thus avoiding the inefficiency associated with 

probing catalytically neutral mutations. Here, we apply the FuncLib approach to the enhancement 

of the activity of a de novo enzyme activity previously generated by minimalist rational design.35 

Specifically, we recently demonstrated that a simple hydrophobic-to-ionizable residue substitution 

(Figure 1) is sufficient to generate a de novo active site capable of highly proficient Kemp 

eliminase activity for the cleavage of 5-nitrobenzisoxazole in Precambrian β-lactamases obtained 

by ancestral inference,35 with the best of our designs (kcat/KM~5·103 M-1 s-1 and kcat ~ 10 s-1 at 

alkaline pH) showing catalytic proficiencies only two orders of magnitude lower than the best 
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designed Kemp eliminase obtained through iterative design followed by 17 rounds of directed 

evolution.36  

 

 

Figure 1. (A) Kemp elimination of 5-nitrobenzioxazole showing a proposed transition state structure. For comparison, 

shown here are also the structures of (B) tryptophan, (C) a transition-state analog and (D) indole. (E) 3D-structure of 

the background GNCA4-WT de novo enzyme (PDB ID: 5FQK35, referred to throughout as GNCA4-WT), showing 

both the position of the bound transition analogue, as well as the key residues we targeted using FuncLib (shown as 

spheres). 

 

There are a number of reasons Kemp elimination is particularly attractive as a model system 

for de novo enzyme design studies. (1) It provides a simple activated model for proton abstraction 

by carbon, (2) as a non-natural reaction it means that no natural enzyme has evolved to catalyze 

this reaction reducing the risk of contamination from natural enzymes, and (3) for historical 

reasons, Kemp elimination has often been used as a benchmark for enzyme (and other catalyst) 

design studies,15, 35-45 providing extensive examples of designed constructs against which to 

compare our engineered β-lactamases. Certainly, Kemp elimination is a facile reaction that 

requires a simple catalytic machinery (essentially, a catalytic base to abstract the proton). 

However, and as a relevant point in the context of this work, it is difficult to generate high levels 

of Kemp eliminase activity because the transition state is so similar to the reactant state, both in 
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terms of structure and in terms of charge distribution.46 Therefore, it is highly challenging to use 

improved transition state stabilization as a means to achieve substantial gains in catalysis.  

Use of FuncLib allows us to consider the effect of mutations at 11 positions simultaneously, 

thus avoiding problems caused by epistasis which can lead to unpredictable (non-additive) effects 

on enzyme activity.47-49 Remarkably, we find that screening of just 20 FuncLib predicted variants 

leads to substantial enhancement of our previous best Kemp eliminase. That is, experimental 

validation of the twenty best scoring FuncLib predictions through biochemical and structural 

analysis allows us to identify 4 variants with significantly enhanced catalytic efficiency and 

improved turnover number, the best of which reach catalysis levels (kcat/KM of ~2·104 M-1 s-1 and 

kcat of ~102 s-1) for the cleavage of 5-nitrobenzisoxazole that compare favorably with that of 

naturally occurring enzymes.19 In addition, we demonstrate that the empirical valence bond 

(EVB)50 can reproduce the experimental free energy barriers for the optimized eliminases to within 

~2 kcal·mol-1, raising the possibility of further enhancing the stability-guidance of FuncLib on the 

basis of EVB-based computational predictions of catalytic activity. Overall, we demonstrate a 

simple computational protocol with tremendous potential for biocatalysis.      

 
Materials and Methods 
 
Initial Screening Using FuncLib 
 

Initial design was performed using the FuncLib webserver (http://funclib.weizmann.ac.il/), as 

described in ref. 28. As our starting point, we selected all amino acids in close contact with the 

substrate for randomization by FuncLib, comprising of 11 starting positions (V48, D50, I250, 

R256, L260, V261, L285, V286, V287, W290 and H291, see Table S1). The calculations were 

performed on Chain A of the crystal structure of the GNCA4-W229D/F290W variant (PDB ID: 
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5FQK,35 henceforth referred to as GNCA4-WT), with the transition state analog, 6-

nitrobenzotriazole, retained in the calculation, and the His tag removed. The multiple sequence 

alignment was performed using the default parameters, and the top twenty ranked designs based 

on their stability score were retained for further experimental and computational analysis. 

Empirical Valence Bond Simulations 
 

The empirical valence bond (EVB) approach50 has been extensively used to successfully study 

enzyme catalysis in general,51, 52 and Kemp elimination in particular.46, 53-55 In this context, we 

recently used the EVB approach to study the evolution of multiple active site configurations55 in 

the de novo designed Kemp eliminase, KE07.15 In the present work, we follow the protocol 

presented in ref. 55. Our EVB simulations were performed using a simple two-state EVB model, 

describing the reactant and product states for the Kemp elimination reaction, with the side chain 

of D229 and the substrate included in the EVB region. All other residues were treated fully 

classically using the OPLS-AA force field.56, 57 All simulations were performed using the Q 

simulation package, version 5.10,58 and a description of valence bond states and all EVB 

parameters used in the simulations are provided in the Supporting Information of ref. 55.  

EVB simulations were performed of the Kemp elimination reaction catalyzed by the GNCA4-

WT β-lactamase, a series of additional single active site mutations of this variant used for 

calibration of the EVB simulations (G62S, A146G, A173V, L265Q, R256K, R256A), as well as 

the top-twenty ranked mutations predicted by the FuncLib web-server, based on both the structural 

predictions from FuncLib, and, where available, also crystal structures for comparison (for the 

three variants characterized in this work). Simulations of the GNCA4-WT variant were performed 

using the PDB ID: 5FQK,35 and the best hits from the FuncLib webserver were simulated based 

on the PDB structures provided by FuncLib28 with the substrate. The structures of all other variants 
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were generated using SCWRL4.59 In all cases, the substrate 5-nitrobenzisoxazole was manually 

placed in the active site in the position of the transition state analogue 5(6)-nitrobenzotriazole 

present in the crystal structure. Missing residues at the C- and N-termini of the protein were 

ignored for simplicity, and the first residue of the His-tag present in the initial crystal structure was 

retained for consistency (this was also the case for the FuncLib calculations).  

The entire system was then solvated in a 23.5Å spherical droplet of TIP3P water molecules,60 

centered on the CG atom of D229, and subject to surface-constrained all-atom solvent (SCAAS) 

boundary conditions.61 The system was modeled using a multi-layer approach standard to such 

simulations in which all atoms within the inner 85% of the water droplet are allowed to move 

freely, the atoms in the external 15% of the droplet are restrained to their crystallographic positions 

using a 10 kcal·mol-1·Å-2 harmonic positional restrained, and all atoms outside the droplet are fixed 

at their crystallographic positions using a 200 kcal·mol-1·Å-2 harmonic position restraint. Only 

those ionizable residues that fall within the mobile region (inner 85%) of the simulation sphere 

were ionized during the simulations, all other ionizable residues outside the mobile region were 

kept in their charge neutral states to avoid instabilities introduced by having charges located 

outside the explicit simulation sphere. Proton states of ionizable residues within the explicit 

simulation sphere, as well as histidine protonation patterns (both of which were validated by 

PROPKA 3. 162 and visual inspection), can be found in Table S2.  

All systems were subjected to an initial 3 ps minimization at 1 K using a 0.1 fs stepsize, in 

order to remove bad contacts in the system after solvation. During this simulation time, a 200 kcal· 

mol-1·Å-2 harmonic restraint was placed on all protein and substrate atoms in the simulation to 

restrain them to their crystallographic positions. The step size was then increased to 1 fs for the 

remained of the simulations (both equilibration and subsequent EVB simulations), and the 
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temperature was gradually increased from 1 to 300 K while simultaneously dropping the harmonic 

restraints from 200 to 0.5 kcal·mol-1·Å-2 on only the atoms in the EVB region (not taking into 

account the additional restraints on atoms outside the inner 85% of the water droplet). Once the 

system had reached 300 K, the system was subjected to a further 20 ns of equilibration. Each 

equilibration was performed ten times, with ten different sets of initial velocities, leading to 200 

ns of equilibration time per system, and 5.4 μs of equilibration time over all systems considered in 

this work. The corresponding backbone root mean square deviations are shown in Figures S1 to 

S3.  

For each system, the endpoints of the ten equilibration runs were then used as starting structures 

for subsequent EVB simulations, with three additional equilibration runs of 500 ps in length being 

performed from each of these starting points, using new random velocities, in order to generate 30 

discrete starting points for EVB simulations of each system. The EVB free energy 

perturbation/umbrella sampling (EVB-FEP/US) calculations were performed in 51 individual 

mapping frames of 100 ps simulation length each, leading to a total of 5.1 ns simulation time per 

individual EVB trajectory, 153 ns simulation time per system, and 4.590 μs of equilibration time 

over all systems considered in this work. The EVB parameters were calibrated using the 

uncatalyzed background reaction in aqueous solution as a baseline, as described in ref. 55. The 

same calibration as in our previous work55 was used in the present study, and no new calibration 

was performed here with all EVB parameters used in this work presented in the Supplementary 

Information of ref. 55.  

All simulations were performed using the Berendsen thermostat63 with the leapfrog integrator, 

and with the solute and solvent coupled to individual heat baths. The bonds to hydrogen atoms 

were constrained using the SHAKE algorithm.64 Cut-offs of 10 and 99Å were used for the 
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calculation of non-bonded interactions involving the protein and water molecules and the EVB 

region respectively (effectively no cut-off for the latter), and electrostatic interactions for all atoms 

falling beyond this cut-off were approximated using the local reaction field approach.65 The non-

bonded pairlist was updated every 30 fs. All simulation analysis was performed using the QCalc 

module of Q,58 and all structural analysis was performed using VMD version 1.9.3.66 For full 

simulation details, see ref. 55. 

Protein Expression,  Purification  and Library Screening 
 

The different b-lactamase variants studied in this work were purified using procedures 

previously described in detail in refs. 35, 67. Briefly, genes for the His-tagged proteins were cloned 

into a pET24 vector with kanamycin resistance were cloned into E. coli BL21(DE3) cells, and the 

proteins were purified by NTA affinity chromatography. Stock solutions for activity 

determinations and physicochemical characterization were prepared by exhaustive dialysis against 

the desired buffer.  

Mutagenized libraries for screening studies were generated by error-prone PCR using the 

GeneMorph II Random Mutagenesis kit (Agilent) and transformed into E. coli Bl21 (DE3) and 

individual colonies picked and grown in 96-well plates. The Kemp eliminase activity of ~600 

variants were assayed with 5-nitrobenzisoxazole (0.25 mM) in 96-well plates. This primary 

screening served to select variants that were subsequently prepared and tested on pure form. In 

most cases, this secondary screening implied the determination of profiles of activity versus 

substrate concentration. 

Stability Determination 
 

Thermal denaturation of the different b-lactamase variants studied in this work was studied 

using differential scanning calorimetry at a scan rate of 200 K/hour in HEPES 10 mM, 100 mM 
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NaCl, pH 7 following protocols that have been previously described in detail.67 A single transition 

was observed in thermograms of heat capacity versus temperature. Denaturation temperature 

values correspond to the maximum of the calorimetric transition. 
 

Activity Determination 
 

Determination of Kemp elimination activity were carried out at 25 ºC HEPES 10 mM or 10 

mM sodium phosphate (in all cases with 100 mM NaCl), depending on the pH range, as has been 

previously described in ref. 35. Experiments were routinely carried out in the presence of 

acetonitrile to increase the solubility of the substrate and expand its experimental concentration 

range, thus facilitating the detection of curvature in Michaelis plots and, therefore, the reliable 

determination of turnover numbers. 5% acetonitrile was used in most cases, although experiments 

with higher and lower acetonitrile contents were also performed (see the Results and Discussion 

for details). It is to be noted that, even in those cases in which no acetonitrile is added on purpose, 

a small amount of the cosolvent is present because the stock solution of the substrate is prepared 

in acetonitrile. The approximate substrate ranges used depend on acetonitrile concentration, 

reflecting the substrate solubility (Table S3). 

Product formation in activity determinations was followed by measuring the absorbance at 380 

nm and an extinction coefficient of 15800 M-1 cm-1 was used to calculate rates. All measurements 

were corrected by a blank performed under the same conditions. This is particularly critical at 

basic pH values, where the catalysis by the hydroxyl anions may lead to substantial blank values. 

Still, we made sure that the level of enzyme catalysis was significantly above the blanks, even at 

the more alkaline pHs studied. 

Catalytic parameters were determined from the fit of the Michaelis-Menten equation to the 

experimental rate vs. substrate concentration profiles. As mentioned above, solubility limits the 
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experimentally available substrate concentration range, making it essentially impossible to 

experimentally reach saturation. This is, in fact, a common occurrence in studies of Kemp 

eliminases, and should not prevent the determination of reasonable estimate of the turnover 

number, kcat, provided that a significant curvature is observed in the experimental Michaelis plots. 

For instance, the kcat value of the best Kemp eliminase reported to date36 (~700 ± 60 s-1) was 

determined from the analysis of a Michaelis plot in which saturation was not achieved and only a 

moderate curvature was observed, as is apparent in Figure 2C of ref. 36, and similar curvatures are 

seen in most Michaelis plots reported here. Still, in order to ensure that the catalytic rate 

enhancements reported here are not artefactual, we have performed an extensive amount of 

experimental work under different conditions, including at different pH and acetonitrile 

concentrations, to allow for increased ranges of substrate concentration. The catalytic 

enhancements reported here are consistent over this variety of conditions. 

Crystallization, Data collection and Structure Determination  
 

In order to obtain single crystal structures of the three variants of the GNCA4 β-lactamases of 

interest to this work, we followed a similar protocol already described elsewhere.35 The three 

proteins were subject to crystallization assays by the capillary counterdiffusion techniques68 and 

by vapor-diffusion (VD) using the hanging drop set-up. We prepared a small screening around the 

known successful conditions previously used to crystallized GNCA4 and GNCA4-WT variants.35 

Ιn brief, for counterdiffusion experiments, each protein was concentrated to 23-25 mg·ml-1, loaded 

in capillaries of 0.3 mm inner diameter and confronted to 5 M sodium formate in the pH range of 

4.0 to 9.0. For VD 1 µL of protein solution was mixed with the reservoir, in a 1:1 ratio, and 

equilibrated against 500 µL of each precipitant cocktail (4 M sodium formate in the pH range of 

4.0 to 9.0). The best-looking crystals of GNCA4-2 & GNCA4-12 were obtained at pH 4.0 using 
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the counterdiffusion technique, while in the case of GNCA4-19, they grew at pH 7.0 in hanging 

drop. 

Crystals were extracted from the capillary or fished directly from the drop, subject to cryo-

protection by the equilibration with 15 % (v/v) glycerol prepared in the mother liquid, with or 

without 1 mM of the transition-state analogue (5)6-nitrobenzotriazole (ST), flash-cooled in liquid 

nitrogen and stored until data collection. Crystals were diffracted at the XALOC beamline of the 

Spanish synchrotron light radiation source (ALBA, Barcelona). Data were indexed and integrated 

with XDS69 and scaled with SCALA70 of the CCP4 program suite.71 Molecular replacement was 

performed in Phaser,72 using the coordinates of GNCA4-WT (PDB ID: 5FQK35) as the search 

model. Refinement was initiated with the phenix.refine73 module of the PHENIX suite,74 followed 

by manual building and water inspection in Coot.75 The final refinement of ligand coordinates, B-

factors and occupancies was achieved following several cycles of refinement including Titration-

Libration-Screw (TLS) parameterization. The final model coordinates were verified with 

Molprobity.76 The resulting coordinates and the experimental structure factors have been deposited 

in the Protein Data Bank77 (PDB IDs: 6TY6, 6TXD and 6TWW, for GNCA4-2, GNCA-12 and 

GNCA-19, respectively), and the corresponding crystallographic data statistics are provided in 

Table S4. 

 
Results and Discussion 
 

Attempting to Increase De Novo Enzyme Activity Through Random Library Screening 
 

We previously used a minimalist approach (based on 1-2 mutations) to generate a completely 

new active site for Kemp elimination in ancestral β-lactamase scaffolds. We first attempted to 

enhance the activity level of our best de novo Kemp eliminase through using standard library 
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screening procedures. A library of variants with random mutations and average mutational load of 

3-5 mutations was prepared and 522 clones were tested, as we have described in the Materials 

and Methods. The corresponding plot of activity relative to background vs. clone ranking is shown 

in Figure S4.  
 

Table 1. Catalytic efficiencies and denaturation temperatures at pH 7 for the background GNCA4-

WT variant, and the top 10 clones of the random library screening shown in Figure S4.a  

Clone kcat / KM (M-1 s-1) TM (ºC) 

GNCA4-WT 3047±282 80 
3C11 608±68 77 
4B4 1770±126 81 
8F11 5980±117 80 
6D5 2476±420 81 

7C1 600±56 72 

8E12 2222±167 70 
6A12 1036±159 79 
7D1 1880±155 67 

2H4 2280±146 ND 

5H8 2066±67 64 

a The values in this table reflect secondary screening performed after purification of the corresponding proteins. 

Denaturation temperatures (TM) were derived from differential scanning calorimetry, and the catalytic parameters were 

obtained from fitting the Michaelis-Menten equation to the experimental rate vs. substrate concentration profiles. Note 

that only one of the variants (clone 8F11) shows mildly enhanced catalytic activity in this secondary screening. The 

kcat/KM for the GNCA4-WT was originally presented in ref. 35. The kcat/KM and TM of the most efficient clone (8F11) 

is highlighted in bold. All kinetic measurements were performed at 25 °C. 

 
Of these clones, about 300 showed greatly diminished activity levels, suggesting that the 

encoded proteins may have failed to fold properly. We randomly chose 4 of these clones for protein 

preparation and, as expected, we found essentially no soluble protein. We also prepared the 

proteins for the top 10 clones shown in Figure S4. In the primary screening, these clones showed 
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activity levels about twice or higher that of the background variant. However, of these clones, only 

one was confirmed as a real positive in secondary screening carried out with the purified protein 

(Table 1). The corresponding variant included 6 mutations, with catalytic parameters that were 

only about two-fold higher than those of the background enzyme.  

 

 

Table 2. A comparison of calculated and experimental activation free energies for the Kemp 

elimination of 5-nitrobenzisoxazole by the GNCA4-WT β-lactamase and a series of active site 

mutants.a 

Variant kcat  Km kcat/Km ∆G‡
exp ∆G‡

calc 

GNCA4-WT 
(no His-tag) 

2.6 ± 0.44 1.5 ± 0.4 1705 ± 139 16.7 16.2 ± 0.1 

G62S 3.64 ± 0.83 1.25 ± 0.45 2911 ± 401 16.7 16.3 ± 0.2 
A146G 5.44 ± 0.77 2.34 ± 0.44 2328 ± 112 16.5 16.5 ± 0.2 
A173V 3.78 ± 0.19 1.53 ± 0.12 2464 ± 62 16.7 16.9 ± 0.3 
L265Q 4.4 ± 1.01 1.8 ± 0.58 2447 ± 242 16.6 16.7 ± 0.2 
R256K 6.13 ± 1.76 3.2 ± 1.1 1542 ± 369 16.4 16.9 ± 0.2 
R256A 4.80 ± 1.40 4.7 ± 1.6 875 ± 15 16.5 16.6 ± 0.3 

a The GNCA4-WT β-lactamase, which is used as the baseline for our study, is referred to in this table as “wild-type” 

(“GNCA4-WT”). Note that this data for the “wild type” was measured without a His-tag in ref. 35, which accounts for 

the small difference with the data given in Table 1 (taken also from ref. 35). Kinetic measurements were performed as 

described in the Methodology section, and kcat, KM, and kcat/KM values are provided in s-1, mM, and M-1 s-1, 

respectively. ∆G‡exp and ∆G‡calc denote the experimental and calculated activation free energies for these enzymes, in 

kcal·mol-1. ∆G‡exp was derived from kcat using transition state theory, and ∆G‡calc is shown as averages and standard 

error of the mean over thirty individual EVB trajectories per system. All the values in this table were measured at pH 

7 with no acetonitrile (other than the small amount coming from the substrate stock solution). All kinetic 

measurements were performed at 25 °C. 
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In order to determinate whether this rather moderate enhancement was due to cancelation 

between enhancing and deleterious effects of the different mutations, we determined the effect of 

the single mutations on Kemp eliminase activity. However, no strong cancellation was found 

(Table 2). Overall, these results highlight the low efficiency and limited enhancements that are 

typical of non-focused library screening. There is little doubt, of course, that a directed evolution 

experiment would eventually lead to substantial enhancements in activity, but this will likely 

require many rounds of library preparation and screening, and also the focus of this study is the 

extent to which computational approaches can be used to enhance enzyme activity in lieu of 

(otherwise more costly) directed evolution experiments. 

Generation and Preliminary Assessment of Funclib Predictions 
 

As described in ref. 28, the purpose of FuncLib is to be used to design a small set of stable, 

efficient, and functionally diverse multipoint active-site mutants that are suitable for low-

throughput experimental testing. Our starting point for the FuncLib design was the crystal structure 

of the most active Kemp eliminase, GNCA4-WT, characterized in our previous work35 (kcat/KM of 

3047 ± 283 M-1 s-1 at pH 7 for the protein with a His-tag)  (PDB ID: 5FQK35). This structure was 

provided as a starting point to the FuncLib server, which is available at 

http://FuncLib.weizmann.ac.il. We selected 11 active site positions to diversify, comprising 

residues in close proximity to the substrate (Figure 1). The resulting sequence space is shown in 

Table S1. The diversification was performed using the default FuncLib parameters, and the 

transition state analog 5(6)-nitrobenzotriazole present in the crystal structure was retained as a 

proxy for the substrate 5-nitrobenzisoxazole. This yielded 3000 variants, ordered by the Rosetta 

scoring energy78 (see the Table S5 and the Supplementary Data). 
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One obvious feature in the FuncLib results is the frequent prediction among the highly scored 

variants of a phenylalanine residue at position 260 (vs. the Leu residue present in the background 

“WT” protein, denoted here as GNCA4-WT). This is interesting, because, although close to the de 

novo active site, position 260 belongs to a β-strand and its side chain is actually opposite the active 

site. Therefore, as a first step to explore the FuncLib predictions we assessed the effect of a single 

L260F mutation on Kemp elimination catalysis. We observe that this L260F mutation by itself is 

able to enhance both the catalytic efficiency and turnover number by about 2-fold. While this is 

only a moderate increase in activity, it is already comparable to those for the single improved 

variant obtained from the screening of a non-focused, random mutation library (Table 1). 

Detailed Experimental Assessment of the FuncLib Predictions 
 

For a more detailed assessment, we prepared and determined both the stability and the Kemp 

eliminase activity of the 20 twenty top FuncLib predictions. The amino acid substitutions included 

in these variants are shown in Table S6. 

As mentioned before, FuncLib combines phylogenetic analysis and Rosetta calculations to 

suggest multiple mutations that generate stabilizing interacting networks at the active site. Indeed, 

the denaturation temperatures of the top 20 variants, as determined by differential scanning 

calorimetry demonstrate that all enzymes are stable, and two variants even appear to be somewhat 

more stable than the background. (Table 3). This confirms that, despite the substantial number of 

mutations introduced, the Funclib predictions avoid substantial protein destabilization. This should 

be compared with the top ten variants derived from the random library screening (Table 1) which, 

in some cases, display substantially diminished denaturation temperatures. 
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Table 3. Catalytic parameters for the background and FuncLib variants of the GNCA4/W229F-

F290W β-lactamase at pH 7 in the presence of 5% acetonitrile and denaturation temperatures at 

pH 7 for the same proteins.a  

Variant kcat (s-1) KM (mM) kcat / KM (M-1 s-1) TM (ºC) 

GNCA4-WT 5.1±0.8 3.7±0.8 1360±101 78.0 
GNCA4-1 0.22±0.03 2.2±0.6 102±12 79.1 

GNCA4-2 28.9±15 8.12±5 3519±401 78.4 
GNCA4-3 4.5±1.6 3.3±1.7 1348±238 79.1 
GNCA4-4 0.12±0.14 14±18 8.7±1.2 78.0 
GNCA4-5 2.8±0.2 2.3±0.3 1214±11 77.5 
GNCA4-6 23±18 24±20 944±54 78.8 
GNCA4-7 0.54±0.06 2.8±0.5 190±12 77.7 
GNCA4-8 8.2±1.2 2.8±0.7 2856±247 77.6 
GNCA4-9 0.17±0.12 5.3±5 31.7±7.3 76.8 
GNCA4-10 0.7±0.23 4.8±2 190±22 79.6 
GNCA4-11 2.7±0.35 1.8±0.4 1403±153 76.4 
GNCA4-12 28±12 6.8±3.7 4127±460 76.0 
GNCA4-13 0.4±0.07 2.9±0.7 132±12 75.1 
GNCA4-14 1.06±0.07 1.9±0.2 560±32.5 79.6 

GNCA4-15 3.1±1.8 9.1±6.3 339±38 77.1 
GNCA4-16 1.8±0.07 3.4±1.9 532±96 81.2 
GNCA4-17 0.06±0.01 4.4±1.5 15±1.4 77.1 
GNCA4-18 4.3±0.4 8.2±0.8 524±9.3 80.9 
GNCA4-19 7.1±1.5 2.9±0.9 2366±271 77.9 
GNCA4-20 0.3±0.02 1.2±0.1 232±16 83.9 

a Catalytic parameters were determined at pH 7 in the presence of 5% acetonitrile and the His-tag, from fits of the 

Michaelis-Menten equation to the experimental profiles of rate vs. substrate concentration. The use of 5% acetonitrile 

extends the experimentally available substrate concentration range, but has a slightly detrimental effect on activity 

(see Figure 4). This explains the difference between the value given in this table for the “wild type” protein and that 

given in Table 1. Michaelis plots for variants GNCA4-4 and GNCA4-6 were almost linear, even with the extended 

substrate concentration range allowed by the addition of 5% acetonitrile. This explains the large uncertainty associated 

to the determination of kcat and Km for these variants, specifically. Note that the number following “GNCA” in the 

variant column corresponds to the ranking of the FuncLib Prediction, based on the Rosetta score, as provided in the 

Supplementary Data and in Table S5. The GNCA4-WT baseline variant is referred to here as the “wild-type” 
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(GNCA4-WT). Denaturation parameters were determined at pH 7 by differential scanning calorimetry. For a list of 

mutations for each variant, see the Supplementary Data. All kinetic measurements were performed at 25 °C. 

 

To assess the catalysis levels of the top 20 predicted FuncLib variants, we measured the kinetic 

activity of several of the predicted sequences at different substrate concentrations and at pH 7 and 

pH 8.4 (Figure 2). The catalytic parameters for Kemp elimination catalyzed by the top 20 

predicted variants span about two orders of magnitude. This wide range should not be surprising, 

because FuncLib is not intrinsically intended for predicting catalytically favorable mutations, but 

rather only to sharply focus the search to regions of the sequence space that encode stable proteins.  

Still, 4 out of the 20 variants tested display substantially enhanced Kemp eliminase activity with 

respect to the background variant, both at pH 7 and pH 8.4.  

 

 

Figure 2. Plots of Kemp eliminase activity vs. substrate concentration at (left) pH 7 and (right) pH 8.4. Activities 

were measured here for the background protein (GNCA4-WT) and for the 4 variants that display substantially 

enhanced catalysis at both pH values. Michaelis plots for all the top 20 variants from the FuncLib prediction can be 

found in Figure S5. The lines are the best fits of the Michaelis-Menten equation. 
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Figure 3. Profiles of (left) catalytic efficiency and (right) turnover number for the 4 best FuncLib variants. In all 

cases, the profiles are compared with that of the background GNCA4-WT (red data points). All data were obtained in 

the presence of 5% acetonitrile to increase the substrate concentration range, and to allow for a more accurate 

determination of the catalytic parameters (kcat in particular). Acetonitrile, however, has a slightly detrimental effect on 

activity (Figure 4) and, therefore, the values given here for the “wild type” protein are somewhat lower than those 

previously reported in ref. 35. Agreement is observed, however, upon extrapolation to 0% acetonitrile (Figure 4). 

 

The accurate determination of catalytic parameters (in particular the turnover number, kcat) 

from the fitting of the Michaelis-Menten equation to the experimental profiles shown in Figure 2 

is impaired in many cases by the available substrate concentration range, which is in turn limited 

by substrate solubility. Therefore, we additionally determined rate vs. substrate concentration 

profiles in the presence of 5% acetonitrile, which increases substrate solubility by about 3-fold. 
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This allows for an extended substrate concentration range, but at the slight expense of catalytic 

efficiency. Such studies in the presence of 5% acetonitrile were performed at pH 7 for all the 20 

top variants of the FuncLib ranking (Table 3) and, as a function of pH for the 4 best variants. The 

corresponding profiles of catalytic efficiency and turnover vs. pH are compared with those for our 

background protein, GNCA4-WT in Figures 3 and 4. These data confirm an enhancement of 

catalysis over background of up to about one order of magnitude, in particular in the kcat value. 

 

Figure 4. Catalytic parameters for the activity of the background GNCA4-WT protein (red, labelled here as GNCA-

WT) and the GNCA4-12 variant from the FuncLib prediction, measured at  pH 8 and at different acetonitrile (ACN) 

concentrations. The values were derived from the fitting of the Michaelis-Menten equation to profiles of rate vs. 

substrate concentration. Values of the catalytic parameters in the absence of acetonitrile are obtained through a short 

extrapolation, as shown. The values extrapolated for the “wild type” protein (red data point) are in good agreement 

with those reported in ref. 35 at basic pH.  

 

It is to be noted, nevertheless that while the addition of 5% acetonitrile has the crucial 

advantage of increasing the solubility of the substrate for the Kemp elimination reaction, thus 

expanding the experimental concentration range and allowing for more accurate determination of 
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catalytic parameters, the presence of such a small amount of acetonitrile has a small detrimental 

effect on catalysis (a decrease of about 2-fold), likely in part through a general solvent effect. 

Therefore, in order to provide an assessment of the achieved levels of catalytic activity that are not 

perturbed by cosolvent effects, we performed experiments for the GNCA4-12 variant at pH 8 and 

several different concentrations of acetonitrile, and we extrapolated the kinetic parameters to zero 

solvent concentration, as shown in Figure 4.  

Increasing acetonitrile concentrations somewhat depresses the catalytic activity. Two factors 

may contribute to this. First, since acetonitrile increases substrate solubility, it is also stabilizing 

the free (non-bound) substrate and thus potentially increasing some of the relevant kinetic free 

energy barriers. In addition, the interaction of acetonitrile molecules with the protein may directly 

modify such barriers, through small alterations in the structure or dynamics. The conjunction of 

these two factors could perhaps be behind the somewhat complex dependency seen for the catalytic 

efficiency of the GNCA-12 variant (left panel, Figure 4). In any case, these speculative 

interpretations do not affect the main point of Figure 4, namely that the extrapolations to zero 

acetonitrile concentration are rather short (even for kcat) and, therefore, there is little doubt about 

the reliability of the extrapolated values. The short extrapolation leads to a catalytic efficiency and 

a turnover number of about 2·104 M-1·s-1 and 102 s-1. These values are well within the ranges of 

catalytic parameters for modern natural enzymes and, in particular, the value 102 s-1 for kcat is about 

one order of magnitude higher than the median value of the kcat distribution for modern enzymes.19  

Finally, we have used X-ray crystallography to determine the 3D-structures of the catalytically 

optimized GNCA4-2, GNCA4-12 and GNCA4-19 variants, the first of which has a transition state 

analog bound at the de novo active site. These particular structures were chosen as they are all 

highly active variants, in terms of the measured rates within the available substrate concentration 
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range (Figure 2), with improved catalytic parameters over GNCA4-WT (Table 3 and Figure 3). 

The protein backbones of these new structures are essentially superimposable with that of the 

background GNCA4-WT variant (Figure 5A) and, therefore, the observed enhancement of 

catalysis is likely linked to small re-arrangements in the de novo active site (Figure 5B).  

 

 
 

Figure 5. (A) Superposition of the 3D crystal structures of the background GNCA4-WT (tan, PDB ID: 5FQK35) and 

the three FuncLib variants whose structure we have determined in this work, specifically the GNCA4-2 (light blue, 

PDB ID: 6TY6), GNCA4-12 (pink, PDB ID: 6TXD) and GNCA4-19 (green, PDB ID: 6TWW) variants. Highlighted 

here is also the position of the transition state analogue in the GNCA4-WT and GNCA4-2 variants. (B) A close-up of 

the de novo active site in these enzymes, superimposing the active sites of the background enzyme (tan) and the 

GNCA4-2 variant predicted from FuncLib (light blue, Table 3), with a transition state analogue bound in the active 

site. Note that we have changed the orientation of the active site compared to panel (A), to better highlight the changes 

in key active site side chains. 

 

Empirical Valence Bond Calculations on the FuncLib Predictions  

The enhancements in catalytic activity reported above have been obtained by following a 

procedure that did not explicitly take the structure or stabilization of the transition state into 

account. That is, we simply focused our screening to regions of the sequence space that are 

meaningful (positions near and at the active site) and also safe to mutate, in the sense that the 

predicted multiple-mutation variants are not stability-impaired and their folding is not 
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compromised. We were then interested in exploring the extent to which computational calculations 

on the catalytic step itself could be used to further focus and guide the screening. To this end, we 

have used the empirical valence bond (EVB) approach50 to probe the catalytic activity of the 

FuncLib predictions, as this approach has been extensively used to successfully study enzyme 

catalysis in general,52 and Kemp elimination in particular.46, 53-55 In particular, this allows us to 

build on our recent work,55 in which used the EVB approach to study the evolution of multiple 

active site configurations in the de novo designed Kemp eliminase, KE07.15 In the present work, 

we follow the protocol presented in ref. 55, as described in brief in the Materials and Methods. 

As our starting point, we benchmarked our empirical valence bond (EVB) model by 

performing simulations of our baseline enzyme, GNCA4-WT, as well as six active site mutants: 

G62S, A146G, A173V, R256A, R256K, L265Q, described in the section Attempting to Increase 

De Novo Enzyme Activity Through Random Library Screening. As can be seen from Table 2, 

the effect of these mutations on the catalytic activity is minimal, with a mere 3.3-fold difference 

in kcat/KM (M-1 s-1) between the most and least active variants, an effect which is mainly caused by 

differences in KM. The kcat values are very similar, resulting in activation free energies that are 

within 0.3 kcal·mol-1 of each other across the series. Following from this, our EVB simulations 

were able to reproduce the experimental activation free energy for both the GNCA β-lactamase 

W290D-F290W to within 0.5 kcal·mol-1 (Figure 6A and Table 2). The correlation coefficient 

between the calculated and experimental activation free energies is -0.46, calculated using linear 

regression analysis (Figure S6). This shows moderate correlation between the calculated and 

experimental values, taking into account that the differences in energies for each system are so 

small, and thus even very small thermodynamic differences can lead to weaker correlation with 

the experimental values.  
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Figure 6. (A) A comparison of calculated (∆G‡calc) and experimental (∆G‡exp) activation free energies for the Kemp 

elimination of 5-nitrobenzisoxazole by the GNCA4-WT β-lactamase, and a series of its active site mutants (see also 

Table 1). (B) The electrostatic contributions of individual residues to the calculated activation free energies (∆∆G‡elec) 

for the Kemp elimination of 5-nitrobenzisoxazole by the GNCA4-WT β-lactamase (treated as the baseline ‘wild-type’ 

enzyme in this work). All values were obtained by applying the linear response approximation (LRA)79, 80 to the 

calculated EVB trajectories, as in our previous works,81-83 and scaled assuming a dielectric constant of 4 for the highly 

hydrophobic environment of the de novo active site of this β-lactamase (Figure 1). 

 

Representative structures from our simulations of the GNCA4-WT β-lactamase are shown in 

Figure 7, with average donor-acceptor distances from our simulations highlighted. The 

corresponding donor-acceptor distances and donor-hydrogen-acceptor angles for all variants 

shown in Table 2 can be found in Table S7. Finally, the electrostatic contributions of individual 

residues to the calculated activation free energies can be found in Figure 6B. These contributions 

were calculated by applying the linear response approximation (LRA)79, 80 to our calculated EVB 

trajectories, as in our previous work (e.g. refs. 81-83). From this data, it can be seen that the 
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individual contributions of most residues to the calculated activation free energies is small (<2 

kcal·mol-1), in line with the fact that the transition state is very similar in structure and in charge 

distribution to the Michaelis complex. 

 

 

Figure 7. Representative structures of the GNCA4-WT β-lactamase at the Michaelis complex (MC), transition state 

(TS), and product complex (PC) for the Kemp elimination reaction catalyzed by this enzyme, extracted from EVB 

trajectories of this reaction. Structures were selected based on clustering analysis using the method of Daura et al.84 

as implemented in GROMACS 2016.4.85, 86 The clustering was performed at the MC, TS and PC independently, in 

order to obtain representative structures for each reacting state. Highlighted here are the donor-hydrogen, acceptor-

hydrogen and oxygen-nitrogen distances that are changing during the reaction, and the proton being transferred is 

shown as a sphere for clarity. Distances are shown as average distances over the entire simulation trajectory (for the 

corresponding distances for other variants see Tables S7 and S8).  

 

Having established that our EVB calculations can reliably reproduce the activation free 

energies of known enzyme variants, we then turned our attention to the top 20 ranked variants 

from diversification of 11 active site residues (Figure 1, Supplementary Data), obtained using 

FuncLib28 as described in the Materials and Methods. Note that the first variant in the 

Supplementary Data, with serial number '0101010101010101010101, corresponds to the wild-

type enzyme. For simplicity, these variants will be henceforth labelled 1 to 20, starting with the 

first mutated system, and following the FuncLib ranking.  
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Figure 8 and Table S5 show an overview of the calculated activation free energies for the top 

20 FuncLib variants. From this data, it can be seen that in the majority of variants, we obtain very 

little differences in activation free energy (similar to the prior results shown in Table 1), with at 

most 1 kcal·mol-1 improvement compared to GNCA4-WT. The only exception to this is a variant 

(GNCA4-4) with a high activation free energy of 20.3 kcal·mol-1. This is due to the introduction 

of an I250M substitution in this variant. Here, the longer side chain of methionine is located 

between the substrate and the catalytic D229 side chain, introducing steric hindrance in the active 

site that displaces the substrate from an optimal binding position and increases the D…A distance 

at the Michaelis complex substantially (see Table S8). All other calculated values based on 

FuncLib predicted structures lie in the range of 15.3 – 17.4 kcal·mol-1, compared to a calculation 

activation free energy of 16.2 kcal·mol-1 for the wild-type enzyme (Table S5).  

 

Figure 8. Calculated activation free energies of the Kemp elimination of 5-nitrobenzisoxazole by the GNCA4-WT β-

lactamase and the top 20 best scoring variants predicted by FuncLib28  (labelled 1 through 20). Shown here are the 

experimental activation free energies (∆G‡exp) derived from kcat based on data presented in Table 3, as well as the 

corresponding calculated activation free energies based on either structures predicted from FuncLib (∆G‡calc,FL) or, 

where available, directly from crystal structures (∆G‡calc,XTL). All energies are presented in kcal·mol-1, and the 

calculated activation free energies are averages and standard error of the mean over 30 individual EVB trajectories 

per system, as described in the Materials and Methods. The raw data for this figure can be found in Table S5. 
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Overall, there is (from a computational perspective) good agreement with the experimental 

values, with the calculated values falling to within 2 kcal·mol-1 of experiment, considering that 

unlike the calculations on the simpler single amino acid substitutions shown in Figure 6, in the 

case of the FuncLib variants, we are now making predictions for the effect of multiple 

simultaneous variants using computationally predicted structures. Our data is also in agreement 

with other computational studies of Kemp elimination, that report activation free energies within 

2 (or sometimes more) kcal·mol-1 from experiment.46, 87-92 We note that we have attempted to 

further refine our EVB calculations by exploring other approaches to generate the starting 

structures, such as predicting mutations using SCWRL59 or inserting point mutations manually 

using the Dunbrack rotamer library,93 as implemented in Chimera.94 We tried comparing all three 

approaches using the GNCA4-2, GNCA4-10 and GNCA4-17 variants as model systems, as these 

variants show some of the greatest deviations from the experimental values (Table S5). However, 

the resulting activation free energies were within 0.4 kcal·mol-1 of the values obtained using the 

FuncLib structures (Table S5), with the exception of GNCA4-2/SCWRL which yielded an 

activation free energy of 16.0 ± 0.3 kcal·mol-1 in better agreement with the experimental value of 

15.5 kcal·mol-1 (note however that in the case of GNCA4-2, there was a TSA bound in the active 

site to guide substrate placement). Therefore, we did not pursue these avenues further as we did 

not observe systematic improvement in our calculated activation free energies by using alternate 

approaches to generate the starting structures. 

In terms of correlation between calculated and experimental values (Figure S7), there is a 

weak correlation between calculated and experimental activation free energies (R2 = 0.27, 

calculated using linear regression analysis, note that we have removed the GNCA4-WT from this 

correlation as this is not a FuncLib predicted structure). This is, however, due to the fact that the 
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energy differences involved are (again from a computational perspective) so small that even small 

deviations from the experimental value will lead to weak correlation with experiment. In terms of 

the comparison between the Rosetta score obtained from FuncLib (Table S4) and the experimental 

activation free energy, we obtain essentially no correlation with experiment (R2 = 0.12, again 

omitting the GNCA4-WT for the same reason as above), which likely reflects the fact that the 

FuncLib ranking does not include any information about the substrate or transition state and is 

based exclusively on stability of the scaffold.28 Similarly, for the variants where we have crystal 

structures available (GNCA4-WT, GNCA4-2, GNCA4-12 and GNCA4-19), we obtain similar 

correlation between calculated and experimental activation free energies (R2 = 0.38), although this 

is a correlation over only 4 enzyme variants and the energy differences between calculated and 

experimental values is always within ~1 kcal·mol-1 indicating again that the weak correlation 

coefficients in this specific case are mainly due to the very small energy differences involved 

(which are within the resolution of EVB and other QM/MM methodologies) rather than a problem 

with the method.  

From a structural perspective, it can be seen from Table S8 that our EVB calculated transition 

states are very similar for the wild-type and all twenty simulated FuncLib variants, in terms of D-

A distance and D-H…A angle. In addition, the electrostatic contributions of different residues are 

also relatively similar (Figure S8, which is unsurprising in light of the fact that, as discussed 

elsewhere,46 the change in charge distribution between Michaelis complex and transition state is 

very small, making it hard to obtain any significant gains from electrostatic stabilization in this 

reaction. Where there are larger differences are in the structures of the reacting atoms at the 

Michaelis complex, where the D-A distance ranges from 2.64 – 4.25Å, and the D-H…A angle 

ranges from 129.8 – 167.1°, with significant correlation between the calculated activation free 
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energy and the D-H distance and D-H…A angle (Figure 9A and B). That is, R2 = 0.84, and -0.81 

for the correlation between the calculated activation free energy and the D-H…A angle when 

taking into account only the wild-type enzyme and the FuncLib variants, and 0.82 and -0.78 for 

distances and angles, respectively, when including also the single residue substitutions considered 

in Table 2.  

 

 

Figure 9. Correlations between the calculated and experimental activation free energies and the (A, C) donor-acceptor 

(D-A) distances (Å) and (B, D) donor-hydrogen-acceptor (D-H…A) angles (°) in our EVB simulations, calculated 

based on the data presented in Tables 2, 3, S5, S7 and S8, using linear regression analysis. Correlations  between the 

geometric parameters and (A, B) calculated activation free energies or (C, D) log kcat/KM  are shown here for all 

variants considered in this work, both single-point mutations and FuncLib predictions. (E) Schematic overview of the 

orientation of the reacting fragments in the wild-type enzyme. The annotated distance and angle are the average values 

from our EVB simulations of the wild-type enzyme (Table S8). 
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In the case of the experimental data, we still have moderate correlation between the calculated 

and experimental activation free energies, still, R2 = 0.56, and -0.57 for the correlation between 

the experimental activation free energies and to the calculated D-H distances and D-H…A angles. 

We note that GNCA4-4 appears to be an outlier on this plot, with a D-A distance of >4.0Å and a 

D-H…A angle of ~130°. However, removing this variant still gives good correlations of R2 = 0.68, 

and -0.64 for the correlation between the calculated activation free energies and to the calculated 

D-H distances and D-H…A angles, respectively. Finally, we also obtain good correlations between 

log kcat/KM and the calculated D-H distances and D-H…A angles, at R2 = -0.71, and 0.71 

respectively (Figure 9). 

We note also that unlike in the case of these geometric parameters (Figure 9), we do not 

observe significant correlations with other energetic features of the reaction such as the pKa of the 

catalytic base (predicted using PROPKA 3.162) or the reorganization energies. Therefore, it is 

likely that a significant component of the calculated changes in activity observed upon introduction 

of the amino acid substitutions predicted by FuncLib is better geometric preorganization of the 

active site for efficient proton abstraction from the substrate, as was also observed in the case of 

the crystal structure of the directed-evolution optimized Kemp eliminase HG3.17, compared to the 

computationally designed HG3.36 

Finally, one additional feature that can be reducing the quality of our predictions is the fact 

that the FuncLib variants involve the introduction of up to nine mutations into each structure (of 

the eleven positions that were selected for randomization, see the Supplementary Data), which 

is likely to compromise the quality of the FuncLib generated protein structures. To assess this, we 

also performed EVB simulations on the variants for which crystal structures were available: 

GNCA-2, GNCA-12 and GNCA-19. For these variants, the calculated values fall to within 1.3 
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kcal·mol-1 of the experimental values, and can deviate by up to 2.2 kcal·mol-1 from the values 

calculated from the FuncLib predicted structures. In the case of GNCA-2, which has the largest 

deviation between the calculated activation free energies using the crystal and FuncLib structures 

(∆∆G‡calc = 2.2 kcal·mol-1 with the crystal structure giving better agreement with experiment), we 

observed subtle structural differences the crystal and FuncLib structures (Figure S9). Specifically, 

we observe different rotamers of the R256 and L291 side chains, as well as also subtle 

displacements of both the side chain of the catalytic base D229 (which is further from the substrate 

in the FuncLib predicted structure). The shift in the position of the catalytic base D229 in particular 

likely plays a significant role in the higher calculated activation free energy for this variant when 

using the FuncLib predicted structure as a starting point.  

Therefore, as can be seen from Table 2 and Figure S7, when only a few simultaneous 

substitutions are involved in generating the computationally predicted structure (as in our prior 

work55, 81-83, 95, 96), or where a crystal structure of a variant with multiple amino acid substitutions 

is available, the EVB approach can reproduce experimental data with high fidelity in a wide range 

of systems. In addition, considering the potentially large structural perturbations involved, 

agreement within 2 kcal·mol-1 of experiment is still respectable, in line with or better than the 

agreement with experiment obtained in other computational studies of Kemp elimination,46, 87-92 

and thus gives EVB great potential as a predictive tool for more complex reactions where the 

introduction of mutations have a larger energetic impact on the system, and thus better correlation 

with experiment would be expected as observed for example in refs. 81, 82, 95-97. Therefore, we 

believe the EVB simulations can already act as a first step filter over the Rosetta scores predicted 

by FuncLib, as the latter in this case provided no correlation with experimental activities, despite 

being able to effectively predict variants with improved activity. 
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Concluding Remarks 
 
 

Kemp elimination is a straightforward proton-abstraction reaction that can be performed by a 

simple molecular machinery consisting, at the bare minimum, of a catalytic base. Accordingly, de 

novo generation of enzyme active sites for Kemp elimination has proved amenable to rational 

design.15, 35, 36, 42, 44, 90, 98 On the other hand, enhancing an already existing Kemp eliminase activity 

is challenging because of the similarity of the substrate and the transition state for the reaction,46 

which makes it difficult to find mutations that preferentially stabilize the transition state. Indeed, 

the best Kemp eliminases reported to date are the results of many rounds of directed evolution 

starting with rational designs.36, 99  

The starting point of the engineering efforts reported here is a Kemp eliminase we previously 

obtained through minimalist design on a β-lactamase background.35 Our design took advantage of 

the conformational flexibility of an ancestral β-lactamase scaffold to produce both a suitable cavity 

and a catalytic base within it through a single mutation, while a second mutation enhanced relevant 

interactions at the de novo active site. This led to a kcat value of ~10 s-1, which is about the turnover 

number for an average modern enzyme.19 Such a comparatively high starting level of catalysis 

should further contribute to the (already difficult) task of enhancing Kemp eliminase activity and, 

indeed, as reported here, screening of 500 clones from a random library led to only one variant 

with a moderate catalysis improvement. It is remarkable against this backdrop, then, that screening 

of the 20 top variants from the FuncLib ranking produced 4 variants with improved catalysis (in 

terms of both kcat and kcat/KM), of which two showed order-of-magnitude enhancements, bringing 

kcat to the region of 102 s-1 (Figure 4). This value compares well with the best Kemp eliminases 

reported to date, derived from extensive directed evolution efforts on complex rationally-designed 

backgrounds. It is in fact somewhat higher than values reported in ref. 99, and it is in the same 
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range as the value (700 s-1) reported in ref. 36, in both cases as the outcome of many rounds of 

directed evolution. Finally, the catalytic efficiency of our best Kemp eliminase (kcat/KM of ~2·104 

M-1 s-1) is only about one order of magnitude below the values obtained from intensive directed 

evolution, namely 2.3·105 M-1s-1 by Hilvert and coworkers (HG3.17),36 and 5.7·105 M-1s -1 

reported by Tawfik and coworkers using a 5,7-dichloro Kemp substrate,99 as well as 1.2·105 M-1 

s-1 obtained by computational design using a minimalist approach using the HG3 eliminase as a 

starting scaffold while incorporating key mutations from the HG3 evolutionary trajectory towards 

HG3.17 into the design process towards the new Kemp eliminase, HG4.100 This is significant 

because our crystal structures show that, unlike other Kemp eliminases such as HG336 or KE07,55 

in the present case it was possible to obtain significant enhancements in catalytic activity without 

the need for major structural reorganization of the active site.   

The striking efficiency of our success with FuncLib-based optimization can be put down to 

several factors. First, FuncLib is intended to predict stable enzyme variants, a prediction which is 

in fact confirmed by our thermal denaturation experiments on our Kemp eliminases (Table 3). 

Therefore, screening effort is not wasted in probing unstable variants that may not fold properly. 

Secondly, FuncLib can be used to target regions that are expected to be relevant for catalysis (the 

active site region in this work) and, therefore, screening efforts is not wasted in testing variants 

with mutations that do not impact catalysis (“neutral” variants). In fact, most of the tested 20 

FuncLib predictions show Kemp elimination activities that differ substantially from that of the 

background used (Table 3 and Figures 2 to 4). Thirdly, the fact that FuncLib directly predicts 

multi-point variants bypasses issues related to epistatic interactions between mutations. 

Our results support, overall, that FuncLib predictions may provide an efficient computational 

methodology to speed up directed evolution by guiding screening to regions of the sequence space 
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that are safe and catalytically-relevant. We have further shown here that the experimental free 

energy barriers for the optimized eliminases can be reproduced to within ~2 kcal·mol-1 by the 

empirical valence bond calculations. This is impressive in light of the very small changes in 

activity involved (from a thermodynamic perspective, Table 3) and thus the associated challenges 

of optimizing Kemp eliminase activity using electrostatics alone.46, 54 We note that other 

computational studies of Kemp elimination also report activation free energies with deviations 

within this range or up to several kcal·mol-1 from experiment.46, 87-92 In addition, whereas we and 

others have been able to obtain high fidelity with experimental values across a wide range of 

enzymes and enzyme variants even in the case of far more complex systems than the current Kemp 

eliminase.95-97, 101-106 This makes EVB useful as a predictive tool for systems where the changes in 

energy involved as not as subtle as in the case of Kemp elimination. 

In addition, while the FuncLib algorithm focuses on optimizing stability and carries no 

information about the transition states involved, nevertheless, the best performing FuncLib 

variants do so due to improved geometric preorganization of the active site through optimizing of 

the D-H distance and D-H…A angle. This suggests that, in particular for more complex systems 

where mutations can introduce larger changes in activity, the FuncLib-based stability-guidance 

could be further refined and focused on the basis of the computational prediction of catalysis, at 

least in the initial stages of the directed evolution process, during which larger jumps in activity 

may be possible. This is significant, as FuncLib does not take any information about the substrate 

or transition state into account in the design process, and therefore while it targets the stability of 

the overall protein, it does not provide insight into how mutations will affect transition state 

stabilization.28 
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Taken together, the combination of experimental and computational work presented here both 

showcases the tremendous potential of FuncLib’s evolutionary-based stability-screening protocol 

as a valuable tool in computational enzyme design, as well as the potential of ancestral enzymes 

as starting scaffolds for artificial enzyme engineering. Here, our crystal structures illustrate that 

significant gains in activity can be achieved without the need for corresponding significant active 

site arrangement. Finally, it is important to note that FuncLib is based on sequence alignment, and 

thus it would be logical to assume that it would work best for enhancing the reactivity of an enzyme 

towards its native substrate(s). There remains, however, the question of whether it would also 

enable the design of function scaffolds that were not designed for those functions. By targeting a 

non-natural reaction in a de novo active site, we demonstrate that FuncLib is a broadly useful tool, 

that can also be used to design biological catalysts for anthropogenic substrates. 
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