Activation and Functionalization of C–C σ-Bonds of Alkylidene Cyclopropanes at Main Group Centers

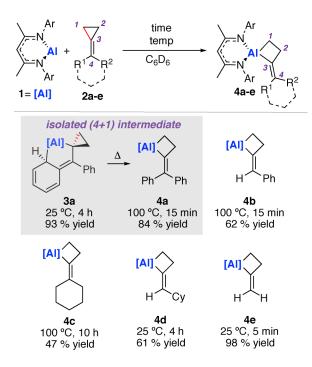
Richard Y. Kong and Mark R. Crimmin*

Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City, London, W12 0BZ, UK. Supporting Information Placeholder

ABSTRACT: Aluminum(I) and magnesium(I) compounds are reported for the C–C σ -bond activation of strained alkylidene cyclopropanes. These reactions result in the formal addition of the C–C σ -bond to main group center either at a single site (Al) or across a metal–metal bond (Mg–Mg). Mechanistic studies suggest that rather than occurring by a concerted oxidative addition, these reactions involve stepwise processes in which substrate binding to the main group metal acts as a precursor to α - or β -alkyl migration steps that break the C–C σ -bond. This mechanistic understanding is used to develop the magnesium-catalyzed hydrosilylation of the C–C σ -bonds of alkylidene cyclopropanes.

Reactions that break the strong C–C σ -bonds of hydrocarbons are essential for processing crude oil. The petrochemical industry relies on catalysis to crack long-chain hydrocarbons into shorter and more valuable building blocks. This transformation is challenging: C–C σ -bonds of hydrocarbons are strong, sterically congested, and surrounded by C–H bonds which are often the first site to react. Common pathways for C–C σ -bond activation with transition metal complexes include oxidative addition¹ and β -alkyl elimination.² These two fundamental steps underpin numerous applications which involve the transition metal catalysed functionalization of C–C σ -bonds(Figure 1).^{3,4}

$$\begin{array}{c} \text{CH}_{3} \\ \text{L}_{n}\text{M} \\ + \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \end{array} & \begin{array}{c} \text{Oxidative} \\ \text{addition} \\ \text{CH}_{3} \end{array} & \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \end{array} \\ \\ \text{CH}_{3} \\ \end{array}$$


Figure 1. C–C σ -bond activation with transition metals.

Examples of C–C σ -bond activation by main-group compounds are limited in comparison to transition metal complexes. For example, stoichiometric C–C σ -bond activation by β -alkyl elimination has been observed during the thermolysis

of tris-neopentylaluminium at $200^{\circ}C$.⁵ Low-valent maingroup compounds including silylenes, a phosphirene, and an aluminyl anion are known to insert into a C–C bond of benzene rings. While this reactivity could be described by a formal oxidative addition process, more precisely it involves a Büchner ring-expansion. Although these examples are yet to translate into new catalytic methods, Lewis acid catalysis has been applied to the functionalization of cyclopropanes through ring-opening reactions that break a C–C σ -bond. σ -11

Herein we report $C(sp^2)-C(sp^3)$ σ -bond activation within the coordination sphere of well-defined aluminium and magnesium compounds. A combination of DFT and experimental data show that while a redox reaction is involved in the formation of intermediates, the key C-C bond breaking step involves no formal oxidation state changes. Rather, α - and β -alkyl migration mechanisms are in operation. The redox-neutral nature of the C-C σ -bond activation is leveraged to develop the first example of catalytic C-C σ -bond functionalization using magnesium-based catalysis.

Reaction of the aluminium(I) complex $\mathbf{1}^{12,13}$ with the unsaturated cyclopropane 2a at 25°C in C₆D₆ initially resulted in the formation of **3a** over the course of 4 hours (Scheme 1). This product is the result of a (4+1) cycloaddition. ¹⁴ Heating either crude or isolated samples of 3a at $100^{\circ}C$ in C_6D_6 for 15minutes results in the formation of 4a, a metallocyclobutane derived from C–C σ-bond activation. The relief of the ring strain and rearomatization provide a significant thermodynamic driving force this reaction. 3a and 4a have been characterized by single-crystal X-ray diffraction (Figure 2a). The reaction scope can be expanded to **2b-e**. The range of substrates demonstrates that aromatic substitution is not essential for C-C σ -bond activation, as alkyl-substituted substrates **2c** and **2d** react with 1 as does the parent methylidene cyclopropane 2e. For trisubstituted alkenes **2b,d** a single stereoisomer of the product was observed. For 2c, allylic C-H activation accompanies ring-opening.15

Scheme 1. Reaction of alkylidene cyclopropanes with 1.

Kinetics measurements and DFT calculations were undertaken to better understand the key C–C σ-bond activation step. The transformation of $\bf 3a \rightarrow 4a$ was found to be first-order with respect to $\bf 3a$. Eyring analysis over a 50-65°C range gave activation parameters: $\Delta H^{\ddagger} = 24.4 \pm 0.1$ kcal mol⁻¹ and $\Delta S^{\ddagger} = -10.3 \pm 1.0$ cal K⁻¹ mol⁻¹. The negative entropy of activation is consistent with an ordered transition state. The Gibbs activation energy is $\Delta G^{\ddagger}_{298K} = 24.4 \pm 0.4$ kcal mol⁻¹. The initial formation of the (4+1) cycloaddition intermediate $\bf 3a$ was calculated to occur *via* a concerted pericyclic transition state, **TS-1**. The modest energy barrier of **TS-1**, $\Delta G^{\ddagger}_{298K} = 14.1$ kcal mol⁻¹, is consistent with the observation that formation of $\bf 3a$ occurs at 25°C and is not the rate-determining step of the C–C σ-bond activation sequence. From the (4+1) cycloaddition intermediate $\bf 3a$, **TS-2** was located ($\Delta G^{\ddagger}_{298K} = 14.1$) cycloaddition intermediate $\bf 3a$, **TS-2** was located ($\Delta G^{\ddagger}_{298K} = 14.1$) cycloaddition intermediate $\bf 3a$, **TS-2** was located ($\Delta G^{\ddagger}_{298K} = 14.1$) cycloaddition intermediate $\bf 3a$, **TS-2** was located ($\Delta G^{\ddagger}_{298K} = 14.1$) cycloaddition intermediate $\bf 3a$, **TS-2** was located ($\Delta G^{\ddagger}_{298K} = 14.1$) cycloaddition intermediate $\bf 3a$, **TS-2** was located ($\Delta G^{\ddagger}_{298K} = 14.1$) cycloaddition intermediate $\bf 3a$, **TS-2** was located ($\Delta G^{\ddagger}_{298K} = 14.1$) cycloaddition intermediate $\bf 3a$, **TS-2** was located ($\Delta G^{\ddagger}_{298K} = 14.1$) cycloaddition intermediate $\Delta G^{\dagger}_{298K} = 14.1$

25.8 kcal mol⁻¹) and connects directly to the product **4a**. This key step breaks the C–C σ -bond and involves an α -migration mechanism (Figure 2b). While substrates 2a-b proceed through an intermediate derived from a (4+1) cycloaddition, this pathway is inaccessible for **2c-e**. Further calculations on the reaction of 1 with 2e support the notation that a closely related reaction sequence involving a (2+1) cycloaddition and α-migration becomes accessible (supporting information). The direct oxidative addition of a C-C σ -bonds of strained three-membered rings to 1 was also considered. 16 A transition state that directly connects 1 and 2e with 4e, corresponding to an oxidative addition pathway, was found to be significantly higher in energy than the corresponding α-migration pathway $(\Delta G^{\dagger}_{298K} = 35.3 \text{ kcal mol}^{-1})$. Experimentally, 1 does not react with cyclopropylbenzene to form metallocyclobutane products even when heated at 100°C for one week in C₆D₆.

Curious as to whether the C–C σ-bond activation chemistry could be expanded to alternative main group reagents, we investigated the reaction of the magnesium(I) complex **6**^{17–20} with alkylidene cyclopropanes. Addition of 6 to 2a and 2b resulted in the ring-opened 1,3-dimagnesio-3-butene products 7a and 7b after heating for 4h at 100°C and 1h at 25°C respectively (Figure 3a). No reaction is observed with either alkylsubstituted substrates 2c or 2d. Crystallization and isolation was amenable through the preparation of their DMAP (4-dimethylaminopyridine) adducts 7a•DMAP2 and 7b•DMAP2 (Figure 3b). 7b•DMAP₂ forms as a single stereoisomer. The mechanism for C–C σ -bond activation with **6** was again investigated using DFT calculations. Based on literature precedent and by analogy to the aluminium reagent 1, it is highly likely that this reaction is initiated by the 1,2-addition of the Mg-Mg bond of 6 across the alkene to form a 1,2-dimagnesioethane intermediate.^{21,22} In line with these expectations, Int-1 was identified as an intermediate ($\Delta G^{\circ}_{298K} = -12.7 \text{ kcal mol}^{-1}$) by computational methods. From Int-1, C–C σ-bond activation occurs by β-alkyl migration via **TS-3** to form **7a** ($\Delta G^{\dagger}_{298K}$ = 12.7 kcal mol⁻¹, Figure 3c).²³

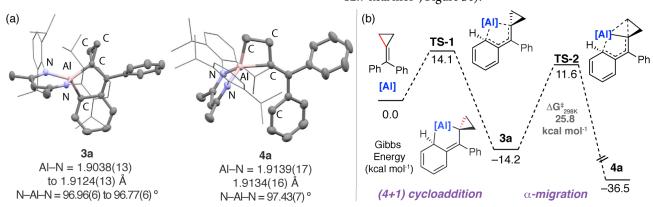


Figure 2. (a) Structures from single crystal Xray diffraction experiments on 3a and 4a. (b) DFT calculated pathway for C–C σ -bond activation *via* a (4+1) intermediate (for the analogous pathway via a (2+1) intermediate see the supporting information.

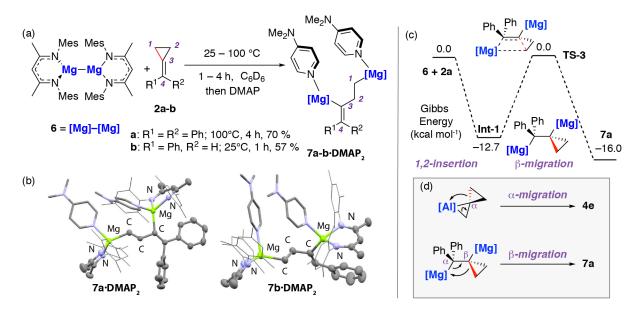
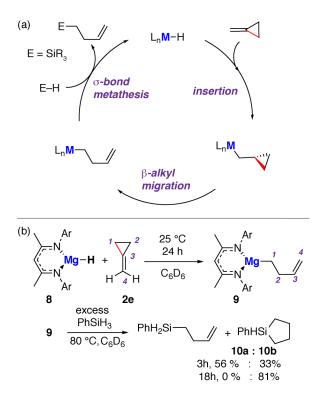



Figure 3. (a) C–C bond activation with magnesium(I) compound 6. (b) Structures for 7a•DMAP₂ and 7b•DMAP₂ from single crystal X-ray diffraction experiments. (c) DFT calculated pathway for C–C bond activation *via* a 1,2-dimagnesioethane intermediate. (d) Comparison of α-migration and β-migration pathways.

The data show that the key factor for achieving C–C σ -bond activation is not the redox reactivity of the main group reagents 1 and 6 but being able to install electropositive Al or Mg atoms in the correct position of the hydrocarbon scaffold in order to promote an α - or β -alkyl migration mechanism. Further insight into the migratory mechanisms was provided by NBO calculations. Second-order perturbation analysis implicates the participation of the electrophilic main group site in C–C σ -bond activation in both mechanisms. Donor-acceptor interactions involving electron donation from the breaking C–C σ -bond into low-lying orbitals of aluminium or magnesium can be identified in both TS-2 and TS-3 (arrow-pushing - Figure 3d, see supporting information for details).

Based on the advancement of our understanding, we envisioned a new catalytic protocol for C–C σ-bond functionalization. By combining the new β -alkyl migration step with established σ -bond metathesis and alkene insertion chemistry of group 2 hydride catalysts the catalytic heterofunctionalization of C-C bonds should be accessible (Figure 4a).²⁴ Initially, each of the proposed steps of the catalytic cycle were investigated in stoichiometric reactions. The addition of the \betadiketiminate stabilized magnesium hydride 8 to 2e results in near quantitative formation of the ring-opened but-4-en-1-yl magnesium species 9 over 24 hours at 25°C. 9 results from the anti-Markovnikov insertion of the alkene into the Mg-H bond of **8** followed by facile β -migration involving C–C σ -bond activation. Subsequent addition of PhSiH₃ (2 eq.) to a solution of 8 and heating the resultant mixture at 80°C for 3 hours afforded the known products 10a and 10b in a 5:3 ratio, and 89% yield along with reformation of 8. The former silane is derived from a net hydrosilylation of the C-C σ -bond, the latter forms from a second intramolecular hydrosilylation of 10a (Figure 4b).

Figure 4. (a) Proposed catalytic cycle for C–C bond hydrosilylation. (b) Reaction of **8** with **2e** and **9** with PhSiH₃.

A catalytic procedure involving the reaction of **2e**, PhSiH₃ (2 eq.) and 10 mol% **8** led to the formation of **10a:10b** in 73 % overall yield and a 4.6:1ratio after 3h at 80°C. Further heating converted **10a** into **10b** in near quantitative yield. Similarly, the substituted alkylidene cyclopropanes **2a** and **2b** undergo catalytic C–C s-bond hydrosilylation with **8**. In the case of **2b** a 1:1.1 mixture of *E:Z*-stereoisomers of the product was obtained (Figure 5).

Figure 5. Catalytic C–C bond hydrosilylation with 8.

In summary, we report C–C σ -bond activation of strained alkylidene cyclopropanes by main group reagents. Analysis of the mechanism through isolation of intermediates, kinetics and DFT studies shows that C–C σ -bond activation at main group centers is possible by either α - or β -migration mechanisms. This understanding was used to develop a magnesium catalysed hydrosilylation of C–C bonds. We are continuing to expand the scope of this catalytic methodology and to explore the origin of stereochemistry.

ASSOCIATED CONTENT

The Supporting Information is available free of charge on the ACS Publications website. X-ray crystallographic data for 3a, 4a-c, 7a.DMAP₂, 7b.DMAP₂, and 9 are available from the Cambridge Crystallographic Data Centre (CCDC 1984848-1984854) and as a .cif file, full details of the experiments and calculations are available as a .pdf.

Corresponding Author

*m.crimmin@imperial.ac.uk

Funding Sources

No competing financial interests have been declared. We are grateful to the ERC (FluoroFix: 677367) for generous funding. We thank Imperial College London for the award of a President's Scholarship (RYK).

REFERENCES

- (1) Souillart, L.; Cramer, N. Catalytic C–C Bond Activations via Oxidative Addition to Transition Metals. *Chem. Rev.* **2015**, *115*, 9410–9464.
- (2) O'Reilly, M. E.; Dutta, S.; Veige, A. S. β -Alkyl Elimination: Fundamental Principles and Some Applications. *Chem. Rev.* **2016**, *116*, 8105–8145.
- (3) Murakami, M.; Ishida, N. Potential of Metal-Catalyzed C–C Single Bond Cleavage for Organic Synthesis. *J. Am. Chem. Soc.* **2016**, *138*, 13759–13769.
- (4) Sarpong, R.; Wang, B.; Perea, M. A. Transition Metal-Mediated C–C Single Bond Cleavage: Making the Cut in Total Synthesis. *Angew. Chem., Int. Ed.* **2020**, DOI: 10.1002/anie.201915657.
- (5) Pfohl, W. Metallorganische Verbindungen, XXXVII Aluminiumtri-neopentyl. *Liebigs Ann.* **1960**, 629, 207–209.
- (6) Wendel, D.; Porzelt, A.; Herz, F. A. D.; Sarkar, D.; Jandl, C.; Inoue, S.; Rieger, B. From Si(II) to Si(IV) and Back: Reversible Intramolecular

- Carbon–Carbon Bond Activation by an Acyclic Iminosilylene. *J. Am. Chem. Soc.* **2017**, *139*, 8134–8137.
- (7) Liu, L. L.; Zhou, J.; Cao, L. L.; Andrews, R.; Falconer, R. L.; Russell, C. A.; Stephan, D. W. A Transient Vinylphosphinidene via a Phosphirene–Phosphinidene Rearrangement. *J. Am. Chem. Soc.* **2018**, *140*, 147–150.
- (8) Hicks, J.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. Reversible, Room-Temperature C—C Bond Activation of Benzene by an Isolable Metal Complex. *J. Am. Chem. Soc.* **2019**, *141*, 11000–11003.
- (9) Roy, A.; Bonetti, V.; Wang, G.; Wu, Q.; Klare, H. F. T.; Oestreich, M. Silylium-Ion-Promoted Ring-Opening Hydrosilylation and Disilylation of Unactivated Cyclopropanes. *Org. Lett.* **2020**, *22*, 1213–1216.
- (10) Morton, J. G. M.; Dureen, M. A.; Stephan, D. W. Ring-Opening of Cyclopropanes by "Frustrated Lewis Pairs." *Chem. Commun.* **2010**, *46*, 8947–8949.
- (11) Zhang, Z.-Y.; Liu, Z.-Y.; Guo, R.-T.; Zhao, Y.-Q.; Li, X.; Wang, X.-C. B(C6F5)3-Catalyzed Ring Opening and Isomerization of Unactivated Cyclopropanes. *Angew. Chem., Int. Ed.* **2017**, *56*, 4028–4032.
- (12) Cui, C.; Roesky, H. W.; Schmidt, H.-G.; Noltemeyer, M.; Hao, H.; Cimpoesu, F. Synthesis and Structure of a Monomeric Aluminum(I) Compound [{HC(CMeNAr)₂}Al] (Ar=2,6-iPr₂C₆H₃): A Stable Aluminum Analogue of a Carbene. *Angew. Chem., Int. Ed.* **2000**, 39, 4274–4276.
- (13) Zhong, M.; Sinhababu, S.; Roesky, H. W. The Unique β -Diketiminate Ligand in Aluminum(I) and Gallium(I) Chemistry. *Dalton Trans.* **2020**, 49, 1351–1364.
- (14) Bakewell, C.; Garçon, M.; Kong, R. Y.; O'Hare, L.; White, A. J. P.; Crimmin, M. R. Reactions of an Aluminum(I) Reagent with 1,2-, 1,3-, and 1,5-Dienes: Dearomatization, Reversibility, and a Pericyclic Mechanism. *Inorg. Chem.* **2020**. In press, DOI: 10.1021/acs.inorgchem.9b03701.
- (15) Bakewell, C.; White, A. J. P.; Crimmin, M. R. Reversible Alkene Binding and Allylic C–H Activation with an Aluminium(I) Complex. *Chem. Sci.* **2019**, *10*, 2452–2458.
- (16) Jain, S.; Vanka, K. The Unusual Role of Aromatic Solvent in Single-Site Aluminum(I) Chemistry: Insights from Theory. *Chem. Eur. J.* **2017**, 23, 13957–13963.
- (17) Green, S. P.; Jones, C.; Stasch, A. Stable Magnesium(I) Compounds with Mg-Mg Bonds. *Science* **2007**, *318*, 1754–1757.
- (18) Bonyhady, S. J.; Jones, C.; Nembenna, S.; Stasch, A.; Edwards, A. J.; McIntyre, G. J. β -Diketiminate-Stabilized Magnesium(I) Dimers and Magnesium(II) Hydride Complexes: Synthesis, Characterization, Adduct Formation, and Reactivity Studies. *Chem. Eur. J.* **2010**, *16*, 938–955.
- (19) Stasch, A.; Jones, C. Stable Dimeric Magnesium (I) Compounds: From Chemical Landmarks to Versatile Reagents. *Dalton Trans.* **2011**, *40*, 5659–5672.
- (20) Jones, C. Dimeric Magnesium(I) β-Diketiminates: A New Class of Quasi-Universal Reducing Agent. *Nat. Rev. Chem.* **2017**, *1*, 1–9.
- (21) Boutland, A. J.; Carroll, A.; Alvarez Lamsfus, C.; Stasch, A.; Maron, L.; Jones, C. Reversible Insertion of a C=C Bond into Magnesium(I) Dimers: Generation of Highly Active 1,2-Dimagnesioethane Compounds. J. Am. Chem. Soc. 2017, 139, 18190–18193.
- (22) Dange, D.; Gair, A. R.; Jones, D. D. L.; Juckel, M.; Aldridge, S.; Jones, C. Acyclic 1,2-Dimagnesioethanes/-Ethene Derived from Magnesium(I) Compounds: Multipurpose Reagents for Organometallic Synthesis. *Chem. Sci.* **2019**, *10*, 3208–3216.
- (23) The discrepancy between experimentally ob-served reaction conditions (4 h at 100°C) and calculated barriers (ΔG^{+}_{298K} = 12.7 kcal mol-1) suggest that in this case, breaking of the C–C bond is not rate limiting. While a transition state towards the formation of the 1,2-dimagnesioethane intermediate could not be located, the reaction proved sensitive to the steric demands of the magnesium reagent and did not proceed with bulkier analogues of **6**.
- (24) Garcia, L.; Dinoi, C.; Mahon, M. F.; Maron, L.; Hill, M. S. Magnesium Hydride Alkene Insertion and Catalytic Hydrosilylation. *Chem. Sci.* **2019**, *10*, 8108–8118.