
Activation and Functionalization of C–C σ-Bonds of Alkylidene  
Cyclopropanes at Main Group Centers 

Richard Y. Kong and Mark R. Crimmin* 

Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City, London, W12 0BZ, UK. 
 Supporting Information Placeholder

ABSTRACT: Aluminum(I) and magnesium(I) compounds are 
reported for the C–C s-bond activation of strained alkylidene cy-
clopropanes. These reactions result in the formal addition of the 
C–C s-bond to main group center either at a single site (Al) or 
across a metal–metal bond (Mg–Mg). Mechanistic studies sug-
gest that rather than occurring by a concerted oxidative addition, 
these reactions involve stepwise processes in which substrate 
binding to the main group metal acts as a precursor to a- or b-
alkyl migration steps that break the C–C s-bond. This mechanis-
tic understanding is used to develop the magnesium-catalyzed 
hydrosilylation of the C–C s-bonds of alkylidene cyclopropanes. 

Reactions that break the strong C–C σ-bonds of hydrocar-
bons are essential for processing crude oil. The petrochemical 
industry relies on catalysis to crack long-chain hydrocarbons 
into shorter and more valuable building blocks. This transfor-
mation is challenging: C–C σ-bonds of hydrocarbons are 
strong, sterically congested, and surrounded by C–H bonds - 
which are often the first site to react. Common pathways for 
C–C σ-bond activation with transition metal complexes in-
clude oxidative addition1 and β-alkyl elimination.2 These two 
fundamental steps underpin numerous applications which in-
volve the transition metal catalysed functionalization of C–C 
σ-bonds(Figure 1).3,4  

 

Figure 1. C–C s-bond activation with transition metals. 

Examples of C–C σ-bond activation by main-group com-
pounds are limited in comparison to transition metal com-
plexes. For example, stoichiometric C–C σ-bond activation by 
b-alkyl elimination has been observed during the thermolysis 

of tris-neopentylaluminium at 200°C.5 Low-valent main-
group compounds including silylenes,6 a phosphirene,7 and an 
aluminyl anion8 are known to insert into a C–C bond of ben-
zene rings. While this reactivity could be described by a formal 
oxidative addition process, more precisely it involves a Büch-
ner ring-expansion. Although these examples are yet to trans-
late into new catalytic methods, Lewis acid catalysis has been 
applied to the functionalization of cyclopropanes through 
ring-opening reactions that break a C–C s-bond.9–11 

Herein we report C(sp2)–C(sp3) σ-bond activation within 
the coordination sphere of well-defined aluminium and mag-
nesium compounds. A combination of DFT and experimental 
data show that while a redox reaction is involved in the for-
mation of intermediates, the key C–C bond breaking step in-
volves no formal oxidation state changes. Rather, α- and β-al-
kyl migration mechanisms are in operation. The redox-neutral 
nature of the C–C σ-bond activation is leveraged to develop 
the first example of catalytic C–C σ-bond functionalization 
using magnesium-based catalysis.  

Reaction of the aluminium(I) complex 112,13 with the un-
saturated cyclopropane 2a at 25°C in C6D6 initially resulted in 
the formation of 3a over the course of 4 hours (Scheme 1). 
This product is the result of a (4+1) cycloaddition.14 Heating 
either crude or isolated samples of 3a at 100°C in C6D6 for 15 
minutes results in the formation of 4a, a metallocyclobutane 
derived from C–C σ-bond activation. The relief of the ring 
strain and rearomatization provide a significant thermody-
namic driving force this reaction. 3a and 4a have been charac-
terized by single-crystal X-ray diffraction (Figure 2a). The re-
action scope can be expanded to 2b-e. The range of substrates 
demonstrates that aromatic substitution is not essential for C–
C σ-bond activation, as alkyl-substituted substrates 2c and 2d 
react with 1 as does the parent methylidene cyclopropane 2e.  
For trisubstituted alkenes 2b,d a single stereoisomer of the 
product was observed. For 2c, allylic C–H activation accom-
panies ring-opening.15  



 

 

Scheme 1. Reaction of alkylidene cyclopropanes with 1.  

Kinetics measurements and DFT calculations were under-
taken to better understand the key C–C σ-bond activation 
step. The transformation of 3a à 4a was found to be first-or-
der with respect to 3a. Eyring analysis over a 50-65°C range 
gave activation parameters: ΔH‡ = 24.4 ± 0.1 kcal mol-1 and 
ΔS‡ = –10.3 ± 1.0 cal K-1 mol-1. The negative entropy of acti-
vation is consistent with an ordered transition state. The 
Gibbs activation energy is ΔG‡

298K = 24.4 ± 0.4 kcal mol-1. The 
initial formation of the (4+1) cycloaddition intermediate 3a 
was calculated to occur via a concerted pericyclic transition 
state, TS-1. The modest energy barrier of TS-1, ΔG‡

298K = 
14.1 kcal mol-1, is consistent with the observation that for-
mation of 3a occurs at 25°C and is not the rate-determining 
step of the C–C s-bond activation sequence. From the (4+1) 
cycloaddition intermediate 3a, TS-2 was located (ΔG‡

298K = 

25.8 kcal mol-1) and connects directly to the product 4a. This 
key step breaks the C–C σ-bond and involves an a-migration 
mechanism (Figure 2b). While substrates 2a-b proceed 
through an intermediate derived from a (4+1) cycloaddition, 
this pathway is inaccessible for 2c-e. Further calculations on 
the reaction of 1 with 2e support the notation that a closely 
related reaction sequence involving a (2+1) cycloaddition and 
a-migration becomes accessible (supporting information). 
The direct oxidative addition of a C–C σ-bonds of strained 
three-membered rings to 1 was also considered.16 A transition 
state that directly connects 1 and 2e with 4e, corresponding 
to an oxidative addition pathway, was found to be significantly 
higher in energy than the corresponding α-migration pathway 
(ΔG‡

298K = 35.3 kcal mol-1). Experimentally, 1 does not react 
with cyclopropylbenzene to form metallocyclobutane prod-
ucts even when heated at 100°C for one week in C6D6.  

Curious as to whether the C–C σ-bond activation chemis-
try could be expanded to alternative main group reagents, we 
investigated the reaction of the magnesium(I) complex 617–20 
with alkylidene cyclopropanes. Addition of 6 to 2a and 2b re-
sulted in the ring-opened 1,3-dimagnesio-3-butene products 
7a and 7b after heating for 4h at 100°C and 1h at 25°C respec-
tively (Figure 3a). No reaction is observed with either alkyl-
substituted substrates 2c or 2d. Crystallization and isolation 
was amenable through the preparation of their DMAP (4-di-
methylaminopyridine) adducts 7a•DMAP2 and 7b•DMAP2 
(Figure 3b). 7b•DMAP2 forms as a single stereoisomer. The 
mechanism for C–C σ-bond activation with 6 was again inves-
tigated using DFT calculations. Based on literature precedent 
and by analogy to the aluminium reagent 1, it is highly likely 
that this reaction is initiated by the 1,2-addition of the Mg–Mg 
bond of 6 across the alkene to form a 1,2-dimagnesioethane 
intermediate.21,22 In line with these expectations, Int-1 was 
identified as an intermediate(ΔG°298K = –12.7 kcal mol-1) by 
computational methods. From Int-1, C–C s-bond activation 
occurs by b-alkyl migration via TS-3 to form 7a (ΔG‡

298K = 
12.7 kcal mol-1, Figure 3c).23

 
Figure 2. (a) Structures from single crystal Xray diffraction experiments on 3a and 4a. (b) DFT calculated pathway for C–C s-bond activation via a 

(4+1) intermediate (for the analogous pathway via a (2+1) intermediate see the supporting information. 



 

 

Figure 3. (a) C–C bond activation with magnesium(I) compound 6. (b) Structures for 7a•DMAP2 and 7b•DMAP2 from single crystal X-ray diffrac-
tion experiments. (c) DFT calculated pathway for C–C bond activation via a 1,2-dimagnesioethane intermediate. (d) Comparison of a-migration 

and b-migration pathways. 

The data show that the key factor for achieving C–C s-bond 
activation is not the redox reactivity of the main group rea-
gents 1 and 6 but being able to install electropositive Al or Mg 
atoms in the correct position of the hydrocarbon scaffold in 
order to promote an a- or b-alkyl migration mechanism. Fur-
ther insight into the migratory mechanisms was provided by 
NBO calculations. Second-order perturbation analysis impli-
cates the participation of the electrophilic main group site in 
C–C s-bond activation in both mechanisms. Donor-acceptor 
interactions involving electron donation from the breaking C–
C σ-bond into low-lying orbitals of aluminium or magnesium 
can be identified in both TS-2 and TS-3 (arrow-pushing - Fig-
ure 3d, see supporting information for details).  

Based on the advancement of our understanding, we envi-
sioned a new catalytic protocol for C–C σ-bond functionali-
zation. By combining the new b-alkyl migration step with es-
tablished s-bond metathesis and alkene insertion chemistry 
of group 2 hydride catalysts the catalytic heterofunctionaliza-
tion of C–C bonds should be accessible (Figure 4a).24 Initially, 
each of the proposed steps of the catalytic cycle were investi-
gated in stoichiometric reactions. The addition of the b-
diketiminate stabilized magnesium hydride 8 to 2e results in 
near quantitative formation of the ring-opened but-4-en-1-yl 
magnesium species 9 over 24 hours at 25°C. 9 results from the 
anti-Markovnikov insertion of the alkene into the Mg–H bond 
of 8 followed by facile b-migration involving C–C σ-bond ac-
tivation. Subsequent addition of PhSiH3 (2 eq.) to a solution 
of 8 and heating the resultant mixture at 80°C for 3 hours af-
forded the known products 10a and 10b in a 5:3 ratio, and 
89% yield along with reformation of 8. The former silane is 
derived from a net hydrosilylation of the C–C s-bond, the lat-
ter forms from a second intramolecular hydrosilylation of 10a 
(Figure 4b).   

 

Figure 4. (a) Proposed catalytic cycle for C–C bond hydrosilylation. 
(b) Reaction of 8 with 2e and 9 with PhSiH3.  

A catalytic procedure involving the reaction of 2e, PhSiH3 
(2 eq.) and 10 mol% 8 led to the formation of 10a:10b in 73 
% overall yield and a 4.6:1ratio after 3h at 80°C. Further heat-
ing converted 10a into 10b in near quantitative yield. Simi-
larly, the substituted alkylidene cyclopropanes 2a and 2b un-
dergo catalytic C–C s-bond hydrosilylation with 8. In the case 
of 2b a 1:1.1 mixture of E:Z-stereoisomers of the product was 
obtained (Figure 5). 



 

 

 

Figure 5. Catalytic C–C bond hydrosilylation with 8.  

In summary, we report C–C s-bond activation of strained al-
kylidene cyclopropanes by main group reagents. Analysis of 
the mechanism through isolation of intermediates, kinetics 
and DFT studies shows that C–C s-bond activation at main 
group centers is possible by either a- or b-migration mecha-
nisms. This understanding was used to develop a magnesium 
catalysed hydrosilylation of C–C bonds. We are continuing to 
expand the scope of this catalytic methodology and to explore 
the origin of stereochemistry. 
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