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Abstract. The carbon disulfide-methanol liquid-liquid critical point is studied using a Monte
Carlo simulation of classical Stockmayer particles. A low energy configuration for the segregated
two component system is determined using standard Monte Carlo methods then a modified
Gibbs ensemble is employed to study the effect of transferring particles from one phase to
another. Rather than use the model for the entropy of mixing in the Gibbs ensemble, which is
of the regular solution type, a semi-quasi-chemical model is used which involves an interaction
energy. We are able to simulate the mixing of the two components as the temperature approaches
the critical temperature from below. Further, a method is given whereby the simulation results
can be used to predict the critical temperature.

1. Introduction
A well known limitation in the simulation of systems of particles of finite size is the inability to
reliably predict the occurrence of first and second order phase transitions; the so called finite size
effect. Though there has been some success modeling phase transitions in Ising ferromagnets
and the q-state Potts model [1], challenges remain in using computer models to predict phase
transitions in bulk liquids and solids.

For bulk phase transitions in chemical systems an energetic description for the effect is given
by the fact that at the transition temperature the chemical potentials for each of the two phases
become equivalent. Given an accurate model for the chemical potential for each phase, the
transition temperature can be predicted. However, an exact description of the chemical potential
for many species, in various states, remains elusive. Recently, this approach was successfully used
to predict the solid-solid structural phase transition temperatures within II-VI semiconductor
alloys [2]. A very similar approach is taken here in the study of a liquid-liquid phase transition.

In certain binary liquid mixtures below a particular temperature, the critical temperature
Tc, the two components are not miscible. Above the critical temperature the two phases readily
dissolve into one another. A famous system of this sort is that of a mixture of the isotopes He3

and He4 [3]. At about 0.8 K the two isotopes separate spontaneously into a nearly pure He3

phase and a He4 phase with a small amount of He3 dissolved in it. A well-known binary liquid
system with a room temperature critical point is that of isobutyric acid and water [4]. In this
work we have considered the CS2-methanol system. A liquid mixture of these two compounds
has a convenient liquid-liquid critical point of Tc = 36 oC at atmospheric pressure [5]. Below this
temperature these liquids are separated into two distinct phases. Above Tc the two compounds
dissolve into one phase. At the critical temperature the phenomenon of critical opalescence



occurs. That is, the normally clear liquid becomes opaque due to density fluctuations of sizes on
the order of the wavelength of visible light. In this equilibrium simulation we make no attempt
to reproduce these fluctuations but rather will be interested in temperatures where mixtures
of the two components are favored over the situation of two distinct phases. Using a standard
Monte Carlo method a segregated system of particles for this system is relaxed to an equilibrium
energy near its estimated cohesive energy for a particular temperature. Then, using a modified
version of the so called Gibbs ensemble [6, 7, 8] the likelihood of the particles mixing is studied.
This leads to a method for predicting the critical temperature of this system.

2. Simulation Details
The Monte Carlo scheme outlined by Mouritsen [9] is used here. A supercell of 256 particles is
established with periodic boundary conditions. That is, ghost copies of the supercell surround
the central cell on all sides. The initial configuration is fcc. The weight proportion used for the
study of the CS2-methanol liquid-liquid critical effect is 20:80 methanol to CS2 as suggested by
Gopal [5]. This proportion is approximately met by assigning half the particles to be methanol
the other half CS2.

The classical pair potential used will be the one that is associated with the name of
Stockmayer. Contained within this pair potential function is the repulsive term and the induced
dipole attraction term of a Lennard-Jones potential plus an additional term for the interaction
of static dipoles. In this representation the potential energy, U , between two particles is given
by [10]
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Here σ and ε are the standard Lennard-Jones parameters, r is the inter-nuclear distance,
µi the dipole moment of particle i and g is a function of the four angles θ1, θ2, φ2 and φ1
which describe the relative orientation of the dipoles for the two particles [11]. When using Eq.
(1), with both particles not being the same species of molecule, the Lennard-Jones parameters
are combined using the Lorentz-Berthelot mixing rules [12]. Parameters values used in the
implementation of Eq. (1) are listed in Table 1.

Table 1. Parameter values used in the simulation. (CO2 data used for CS2). † (Ref. [11] p.
1112).

σ (Å) ε (eV) µ (Cm)
CS2 3.794 Ref. [12] 0.0194 Ref. [12] –
methanol 3.480 † 0.04372 † 5.671 ×10−30 Ref. [13]

Beginning with the supercell evenly divided between an upper methanol layer, and a lower
CS2 layer, the system is moved to a low energy state via a Monte Carlo procedure. The initial
lattice constant was chosen so that the system was initially at approximately 1.0 kJ/mol above
the cohesive energy at that temperature. Here we approximate the cohesive energy of the liquid
as

Ec = 3R(Tm − T ) + ∆Hvap , (2)

where R is the gas constant and T is absolute temperature. Tm and ∆Hvap are the melting
temperature and the heat of vaporization for the more volatile species, in this case CS2,
respectively. We considered temperatures from the critical point at 309 K on down to just
above the methanol melting point i.e. 178 K. Typically, within 7000 to 15000 Monte Carlo
moves the system reaches the desired cohesive energy level.



Next, the propensity for the particles to mix from one phase to the other is studied. This
switching effect is examined using a modified form of the so called Gibbs ensemble. For a two
component system the Gibbs ensemble is [6, 7]:

W = ∆E + kBT ln
(V − V1)(N1 + 1)

V (N −N1)
. (3)

Here kB is Boltzmann’s constant. In a two phase fluid V1 is the volume of one phase, V2 the
other and V = V1 + V2. N1 is the number of component one particles, N2 the number of the
other and N = N1 + N2. ∆E is the change in system energy resulting from the swapping of
position for two particles of opposite type. For our case here Eq. (3) can be simplified since
V1 ' V2, N1 ' N2 and N1 >> 1. With these simplifications Eq. (3) reduces to

W = ∆E − kBT ln 2 , (4)

From this point the switching moves are sampled according to the generalized Boltzmann factor
exp[−W/kBT ].

Eq. (3) has the form of an isothermal free energy of mixing for a regular solution [14]. Here
the second term on the right is then T∆Smix where ∆Smix is an entropy of mixing. The regular
solution model assumes complete randomness in mixing. That is, the entropy of mixing is that
of an ideal mixture.

An entropy of mixing model that accounts for a temperature dependent preference of one type
of bonding over the other is the so called quasi-chemical model (Ref. [14] pg. 38). In this scheme
the geometric mean of the number of AB pairs in the mixture is weighted by exp[−w/kBT ] where
w is an interaction energy. With knowledge of w, the change in free energy upon mixing can be
derived.

In this work we take a simplified approach in the spirit of the quasi-chemical model and let
the entropy of mixing equal the regular solution entropy of mixing weighted by exp[−w/kBTc].
So for a two component mixture of mole fraction 1/2 this leads to

∆Smix = kB ln 2 exp[−w/kBTc] . (5)

If w > 0, the entropy of mixing will be less than that of the regular solution. At constant
temperature, the Gibbs free energy of mixing ∆Gmix is

∆Gmix = ∆E − T∆Smix . (6)

If ∆Gmix > 0 mixing is not favored, if ∆Gmix < 0 mixing is spontaneous. Therefore at the
critical temperature Tc we have that ∆E − Tc∆Smix = 0. We can use this to relate ∆E to w.
Solving for the entropy of mixing leads to

∆Smix =
∆E

Tc
. (7)

Now this is equated with Eq. (5) and solving for w yields

w = −kBTc ln

(
∆E

kBTc ln 2

)
. (8)

Here we let ∆E be the change in system energy per particle resulting from the switching of one
A and B pair each from its own phase in the still segregated simulation cell. From this, w is
computed. It is found for the binary system studied here that w > 0.

A random switching move, from one phase to the other, almost always leads to ∆E > 0. The
decision to accept the higher energy move is decided by comparing a random number between 0



and 1 with exp[−w/kBT ]. That is, the larger the magnitude of w the less likely the possibility
of the higher energy move being accepted.

Attempts at switching particles are made according to the prescription discussed above.
Once a switch is accepted this event is tabulated and the system is returned to its original low
energy state. Once a pair is successfully switched it is taken from the set of future possible
switches. For purposes of visualization no more than 64 successful switches are allowed at
the highest temperature considered. This is typically accomplished with approximately 525
switching attempts. Then, for all lower temperatures considered, the maximum number of
switching attempts is set at 525 as well. For purposes of visualization, the location of accepted
switched pairs is saved for each temperature considered. Then, selected configurations showing
switched pairs are depicted for four temperatures between the melting temperature of methanol
and the critical temperature for the CS2-methanol system.

3. Results
The simulation was carried out for eight temperatures between 178 K and 309 K. At each
temperature the simulation was repeated ten times. The values for w and ∆E were found to
be independent of temperature with mean values of 0.061 eV and 0.00187 eV respectively. In
Figures 1 through 4 are depicted the supercell after the MC relaxation and switching for four
representative temperatures for the liquid-liquid system leading up to the critical temperature
at 309 K. In Figure 5 the average number of accepted switching moves vs. temperature, for the
eight temperatures from 178 K to 309 K, are plotted.

In Figure 6 a sketch is given of ∆Gmix vs. T as given by Eqs. (5) and (6) using the values
for w and ∆E mentioned above. The free energy of mixing is positive for low temperatures,
goes to zero at the critical temperature then to negative for higher temperatures. One can see
how a system say oil and water, would have a positive free energy of mixing over all relevant
temperatures and thus never mix while a system like water and methanol would have a negative
free energy of mixing over all relevant temperatures and thus never be observed to separate into
two distinct phases.

Here the known critical temperature was used in the determination of the interaction energy
w. However, given a model for the interaction energy, Eq. (8) could then be used to directly
compute the critical temperature. Guggenheim suggests that 2w/z should equal the energy to
take one A dimer and one B dimer and create two AB molecules, where z is number of nearest
neighbors (Ref. [14] p. 38). We can write this as

2w

z
= 2EAB − EAA − EBB . (9)

Using data from Table 1 along with our Stockmayer potential given by Eq. (1) we can
estimate the energies in Eq. (9) and determine a value for w. The binding energy is computed
for the three cases: AB, AA and BB. The dipoles for two methane molecules are paired so as to
give the lowest dipole energy configuration and likewise all internuclear distances are set to give
the lowest Lennard-Jones energy. Computing and substituting these values into Eq. (9) yields:
2w/z = 0.032556 eV. Assuming that z = 4 we find that w = 0.065112 eV. Using this value for
w, along with ∆E from above in Eq. (8), leads to Tc ' 323 K. This similarity with the known
value for Tc is significant and further investigation is warranted.



Figure 1. Supercell of 256 molecules in a simulated
liquid mixture after MC relaxation and particle switching
at 178 K. Amber dots represent CS2 while blue ones
denote methanol. Distances are in angstroms.

Figure 2. Supercell of 256 molecules in a simulated
liquid mixture after MC relaxation and particle switching
at 210 K.

Figure 3. Supercell of 256 molecules in a simulated
liquid mixture after MC relaxation and particle switching
at 270 K.

Figure 4. Supercell of 256 molecules in a simulated
liquid mixture after MC relaxation and particle switching
at the critical temperature of 309 K.



Figure 5. Number of accepted pair switches n vs.
temperature.

Figure 6. Estimated free energy of mixing per particle
for the CS2-methanol system.

This study points to several items for future work. Repeating these simulations using three-
body potentials [15, 16] for CS2 and methanol should be considered. Other important binary
liquids that display this type of transition could be analyzed as in this report. Such systems
include 3He/4He, isobutyric acid-water and methanol-cyclohexane. Additionally, the full quasi-
chemical treatment, where the entropy of mixing is a function of temperature and an interaction
energy, should be considered.
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