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Ab initio calculations of resonant inelastic X-ray scattering (RIXS) rely on the

damped response theory, which prevents the divergence of response solutions in the

resonant regime. Within the damped response theory formalism, RIXS moments

are expressed as sum over all electronic states of the system (SOS expressions). By

invoking resonance arguments, these expressions can be reduced to a few terms,

an approximation commonly exploited for interpretation of the computed cross sec-

tions. We present an alternative approach: a rigorous formalism for deriving a simple

molecular orbital picture of the RIXS process from the many-body calculations using

damped response theory. In practical implementations, the SOS expressions of RIXS

moments are recast in terms of matrix elements between the zero-order wave func-

tions and first-order frequency-dependent response wave functions of the initial and

final states, such that the RIXS moments can be evaluated using complex response

one-particle transition density matrices (1PTDMs). Visualization of these 1PTDMs

connects the RIXS process with the changes in electronic density. We demonstrate

that the real and imaginary components of the response 1PTDMs can be interpreted

as contributions of the undamped off-resonance and damped near-resonance SOS

terms, respectively. By analyzing these 1PTDMs in terms of natural transition or-

bitals, we derive a rigorous, black-box mapping of the RIXS process into a molecular

orbital picture. We illustrate the utility of the new tool by analyzing RIXS tran-

sitions in the OH radical, benzene, para-nitroaniline, and 4-amino-4’-nitrostilbene.

These examples highlight the significance of both near-resonance and off-resonance

channels.
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I. INTRODUCTION

Resonant inelastic X-ray scattering1–5 (RIXS) is a two-photon process wherein a resonant

X-ray photon is absorbed and another X-ray photon of lower energy is emitted. RIXS is a

coherent two-step process that involves photoexcitation of a core electron creating a core-

excited state and simultaneous filling of this core hole by radiative decay of a valence electron,

as shown in Fig. 1. Thus, the overall transition is from the ground state to a valence excited

state and the difference in the photon energies equals the energy gap between the initial

(ground) and the final (usually, valence excited) states of the system.

The RIXS process is often described as a two-step process comprising x-ray absorption and

x-ray emission. Owing to its two-photon nature, RIXS transitions obey different selection

rules than one-photon transitions. Thus, RIXS provides information complementary to that

delivered by x-ray absorption and emission spectroscopies (XAS and XES, respectively).

Similar to XAS and XES, RIXS exploits the elemental specificity of x-rays, the compact

nature of the core orbitals, and the strong sensitivity to the local environment, bonding

pattern around, and oxidation state of a specific atom6. RIXS has been used extensively

FIG. 1: Schematic representation of the RIXS process. (a) Molecular orbital picture: one electron

is excited to an unoccupied orbital, leaving behind a hole, and another electron is coherently de-

de-excited, filling the hole. (b) Many-body states’ picture: The dashed line depicts the virtual

intermediate state, often considered to be a core-excited state resonant with the incoming photon’s

energy.
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for probing charge-transfer and crystal-field transitions in metal oxides4,5. With the advent

of high-brilliance radiation sources, RIXS is now also used to study excited-state nuclear

dynamics7 and to detect transient species in ultrafast reactions in complex environments8.

Theoretical modeling of the RIXS spectra is critical for connecting the measured RIXS

spectra with the electronic structure of the molecule. Ultimately, the mechanistic inter-

pretation the spectra hinges on our ability to describe the underlying process in terms of

transitions between molecular orbitals.

The orbital picture of one-photon UV–visible (UV–vis), XAS, and XES transitions can be

obtained from many-body wave functions by using reduced quantities, such as one-particle

transition density matrices (1PTDMs) and natural transition orbitals (NTOs)9–15. 1PTDMs

contain essential information about electronic transitions needed to compute the observables

(e.g., cross sections). NTOs, computed by singular value decomposition (SVD) of 1PTDMs,

provide the most compact representation of the transition in terms of the hole and particle

states. In contrast to the wave-function amplitudes, NTOs are invariant with respect to all

allowed orbital rotations, which makes them insensitive to the basis-set choice. Furthermore,

since 1PTDMs and NTOs are directly mapped to the experimental observables, they are

observables themselves. Thus, NTOs provide a rigorous and robust framework for wave-

function analysis.

The concept of NTOs has been generalized to two-photon absorption (2PA) transitions,

enabling the analysis of the corresponding response 1PTDMs and characteristic 2PA vir-

tual states16; to non-Hermitian quantum mechanics, enabling the analysis of the complex-

valued 1PTDMs and transitions involving states in the continuum17; and to spinless 1PT-

DMs, enabling the analysis of tensorial properties (spin-orbit couplings) and spin-forbidden

transitions18. Here, we extend the concept of NTOs to RIXS transition moments.

The main challenge in interpreting the RIXS process in terms of molecular orbitals stems

from its nonlinear (two-photon) nature. Because of it, the scattering moments are given by

cumbersome sum-over-states (SOS) expressions19–21 and not by matrix elements between the

initial and final states, as in the case of UV–vis, XAS, and XES transitions. This dependence

on all electronic states of the system makes the analysis of RIXS moments more difficult

than the analysis of one-photon moments (matrix elements of dipole operator between the

initial and final states). Furthermore, the RIXS moments are complex-valued and tensors

of rank two (3×3 matrices), in contrast to the one-dimensional one-photon moments, which
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are real-valued vectors along the three Cartesian coordinates.

Because of its resonant nature, the qualitative picture of the RIXS transition is tradi-

tionally derived using approximate few-states models—in particular, a three-states model—

involving few near-resonant core-excited states along with the initial and final states. In

a few-states model, the orbitals involved in the transitions from the initial state to differ-

ent intermediate states and from these intermediate states to the final state are computed

and stitched together to construct the orbital picture of the RIXS process. For example,

in the three-states model, the virtual state (see Fig. 1) of the two-photon RIXS process

corresponds to the core-excited state for which the XAS peak is resonant with the incom-

ing photon’s energy. While being physically justified, such approach involves arbitrariness

and is prone to a potential loss of accuracy because it is not always easy to identify the

important intermediate states that need to be included in these few-state models. In this

approach, the orbital character of the virtual state of the RIXS process is determined by the

(somewhat arbitrary) choice of the intermediate states picked in the few-states model. The

loss of accuracy can occur when off-resonance channels make non-negligible contributions to

the RIXS cross sections.

Here, we overcome these challenges using a novel approach of deriving the mechanistic

details of the RIXS transitions by means of NTOs computed directly from the complex-

valued damped response 1PTDMs that enter the expressions of RIXS moments. This leads

to a rigorous and black-box procedure of mapping the computed scattering moments into

molecular orbitals. In contrast to traditional approaches, our scheme does not invoke arbi-

trary truncation of the SOS expressions and is orbital invariant. We discuss the meaning

of the real and the imaginary components of these 1PTDMs and the corresponding NTOs

by analyzing RIXS transitions in the OH radical, benzene, para-nitroaniline (pNA), and

4-amino-4’-nitrostilbene (4A4NS). The pNA and 4A4NS examples illustrate the importance

of off-resonance RIXS channels and highlight the advantages of fully analytic calculation

and analysis of the RIXS moments over approximate treatments by few-states models. We

also illustrate how a quantitative metric for the extent of delocalization of electronic density

during the RIXS transition can be computed using these response 1PTDMs. While this

approach builds upon our prior work on 2PA transitions16, the novelty lies in the interpre-

tation of complex-valued RIXS 1PTDMs (and their NTOs) instead of the real-valued 2PA

1PTDMs.
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II. THEORY

The RIXS scattering moments are given by the Kramers-Heisenberg-Dirac formula as

SOS expressions19–22:

Mxy
g→f (ω1x,−ω2y, ε) = −

∑
n

(〈Ψf |µy|Ψn〉〈Ψn|µx|Ψg〉
Ωng − ω1x − iεn

+
〈Ψf |µx|Ψn〉〈Ψn|µy|Ψg〉

Ωng + ω2y + iεn

)
(1)

and

Mxy
f→g (−ω1x, ω2y,−ε) = −

∑
n

(〈Ψg|µx|Ψn〉〈Ψn|µy|Ψf〉
Ωng − ω1x + iεn

+
〈Ψg|µy|Ψn〉〈Ψn|µx|Ψf〉

Ωng + ω2y − iεn

)
. (2)

where Ωng = En −Eg and ω1x and ω2y are the absorbed and emitted frequencies (polarized

along x- and y-directions), satisfying the RIXS resonance condition,

ω1 − ω2 = Ωfg. (3)

Note that

Mxy
f→g (−ω1x, ω2y,−ε) =

(
Mxy

g→f (ω1x,−ω2y, ε)
)∗
, (4)

where ∗ denotes complex conjugation. In Hermitian theories, the two scattering moments

are complex conjugates of each other; however, for coupled-cluster methods, this is not the

case20–22. εn is the inverse lifetime parameter for state n. If the lifetimes of all states are

infinite (εn = 0 ∀ n), in the case of the RIXS, at least for one state k, the SOS has zero

denominator (Ωkg − ω1 = 0). In other words, the RIXS moments have first-order poles at

Ωngs. Practically, this means that attempts to calculate RIXS moments assuming infinite

lifetimes of electronic states result in divergent solutions.

Most theoretical formulations for calculating RIXS moments use empirical non-zero in-

verse lifetimes for all states, which are assumed to have the same nonzero value ε19–25. The

introduction of this imaginary phenomenological (damping) parameter iε brings the poles

due to the resonances into the complex plane. The impact of introducing iε on individual

SOS terms depends on whether |Ωng − ω1| is less or greater than |ε|, as explained in Fig. 2.

The contribution of the SOS terms that have |Ωng−ω1| < |ε| (nearly resonant SOS terms) is

dominated by their imaginary components. The real components of these terms are smaller

than the imaginary components. In particular, for the SOS terms with |Ωng − ω1| = 0,

the real components are zero and the imaginary components equal
〈Ψf |µy |Ψn〉〈Ψn|µx|Ψg〉

ε
(or
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FIG. 2: Impact of the imaginary phenomenological damping (iε) on the RIXS moments. Individual

SOS terms are given by
〈Ψg |µ|Ψn〉〈Ψn|µ|Ψf 〉

Ωng−ω+iε = µgnµnf U ε(Ωng − ω), where U ε(Ωng − ω) is related to

the Green’s function: G+(ω) = limε→0+ [H − ω + iε]−1 = limε→0+
∑

n |Ψn〉U ε(Ωng − ω)〈Ψn|. The

poles of U are also poles of the Green’s function. U can be written as U ε(Ω− ω) =
(

1
Ω−ω+iε

)
. The

black hyperbola represents U without the imaginary damping, i.e., U0(Ω− ω) =
(

1
Ω−ω

)
. When

Ω − ω = 0, this function has a pole and is indeterminate. The red and blue curves represent

the imaginary and real components of damped U , ImU ε(Ω− ω) = ε
(Ω−ω)2+ε2

and ReU ε (Ω− ω) =

Ω−ω
(Ω−ω)2+ε2

. When Ω − ω = 0, ImU ε = 1
ε and ReU ε = 0. Effectively, the imaginary damping brings

the damped contribution of U0 predominantly into the imaginary component of U ε for Ω− ω < ε

(near resonance). For Ω − ω > ε (off resonance), the damping has a smaller impact such that U0

and ReU ε have similar magnitude for large Ω− ω.

〈Ψg |µx|Ψn〉〈Ψn|µy |Ψf 〉
ε

); thus, the absolute contribution of each of these SOS terms is effectively

damped from infinity to a finite value by virtue of iε. On the other hand, the real com-

ponents are larger than the imaginary ones for the SOS terms for which |Ωng − ω1| > |ε|.
In short, damping puts the near-resonance and off-resonance contributions in the imaginary

and real components of the RIXS moments, respectively.
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Computing the full set of electronic states for calculating the RIXS moments via Eqs. (1)

and (2) is obviously impractical. Often, an approximated (truncated) SOS can provide a

qualitatively correct value of the RIXS moment; however, the error introduced due to trun-

cation is difficult to evaluate a priori. Nevertheless, many studies employ such truncations

for computing the RIXS moments and other non-linear properties. An alternative, more

rigorous strategy involves recasting the SOS expressions into a closed form using damped

response theory19–22,26–31. By doing so, one circumvents the need to compute the wave func-

tions and energies of all electronic states. Instead, only a handful of response wave functions

need to be computed26. The RIXS moments computed with the damped response theory

approach are formally and numerically equivalent to the full SOS result. This strategy for

RIXS calculations has been exploited in the analytic implementations based on algebraic

diagrammatic construction19, coupled-cluster20,22, and equation-of-motion coupled-cluster21

methods. Importantly, the damped response theory approach can be formulated in terms of

response transition density matrices, which can be exploited to obtain a concise description

of the RIXS transition.

Within the damped response theory framework with εn = ε ∀ n, Eqs. (1) and (2) are

rewritten using Eq. (3) as

Mxy
g→f (ω1x, ε) = −

∑
n

(〈Ψf |µy|Ψn〉〈Ψn|µx|Ψg〉
Ωng − ω1x − iε

+
〈Ψf |µx|Ψn〉〈Ψn|µy|Ψg〉

Ωnf + ω1x + iε

)
= −

(
〈Ψf |µy|Xε,ω1x

g 〉+ 〈X̃ε,ω1x

f |µy|Ψg〉
) (5)

and

Mxy
f→g (ω2y,−ε) = −

∑
n

(〈Ψg|µx|Ψn〉〈Ψn|µy|Ψf〉
Ωnf − ω2y + iε

+
〈Ψg|µy|Ψn〉〈Ψn|µx|Ψf〉

Ωng + ω2y − iε

)
= −

(
〈Ψg|µx|X−ε,ω2y

f 〉+ 〈X̃−ε,ω2y
g |µx|Ψf〉

)
,

(6)

where the |Xε,ωx
k 〉 and 〈X̃ε,ωx

k | are the complex right and left first-order response wave func-

tions of state k due to the perturbing electric field of frequency ω1x polarized along the x

direction. These response wave functions depend parametrically on ε and are given, accord-

ing to first-order perturbation theory, as16,21,28

|Xε,ω1x

k 〉 =
∑
n

|Ψn〉
〈Ψn|µx|Ψk〉

Ωnk − ω1x − iε
(7)

and

〈X̃ε,ω1x

k | =
∑
n

〈Ψn|µx|Ψk〉
Ωnk + ω1x + iε

〈Ψn|. (8)
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These first-order many-body response functions are computed iteratively by solving the

response equations

(H − Ek − ω1x − iε)Xε,ω1x

k = 〈Φν |µx|Ψk〉 (9)

and

X̃ε,ω1x

k (H − Ek + ω1x + iε) = 〈Ψk|µx|Φν〉, (10)

where {Φν} is the set of ν-tuply excited Slater determinants from the target-states manifold;

e.g., in EOM-CCSD damped response theory, {Φν} spans the reference, singly excited, and

doubly excited determinants. We recast Eqs. (5) and (6) as

Mxy
g→f (ω1x,+ε) =

∑
pq

γε,xpq µ
y
pq (11)

and

Mxy
f→g (ω2y,−ε) =

∑
pq

γ̃−ε,ypq µxpq, (12)

where γx and γ̃y are the complex response reduced 1PTDMs given by

γε,xpq = γ+ε,ω1x
pq = −

(
〈Ψf |p̂†q̂|Xε,ω1x

g 〉+ 〈X̃ε,ω1x

f |p̂†q̂|Ψg〉
)

(13)

and

γ̃−ε,ypq = γ̃−ε,ω2y
pq = −

(
〈Ψg|p̂†q̂|X−ε,ω2y

f 〉+ 〈X̃−ε,ω2y
g |p̂†q̂|Ψf〉

)
, (14)

where p̂† and q̂ are the creation and annihilation operators in molecular orbitals φp and

φq, respectively. Following our previous work16, we use ωDM to denote the individual

components of 1PTDMs on the RHS of Eqs. (13) and (14) between a frequency-dependent

response state and a zero-order state. Thus, γε,x is the sum of a ωDM between the final and

response ground state and another ωDM between the initial and response final state.

For one-photon transitions, the reduced 1PTDM can be interpreted as the exciton’s wave

function according to

Ψexc (rh, rp) =
∑
pq

γpq φ (rh)φ (rp) , (15)

where rh and rp are the hole and electron (particle) coordinates12,14,32. For second-order

(two-photon) RIXS process, the exciton’s wave function (as well as response 1PTDMs) has

polarized components along the three Cartesian components (x̂, ŷ, and ẑ):

Ψε,x
exc (rh, rp) =

∑
pq

γε,xpq φq (rh)φp (rp) (16)
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and

Ψε
exc (rh, rp) = Ψε,x

exc (rh, rp) x̂+ Ψε,y
exc (rh, rp) ŷ + Ψε,z

exc (rh, rp) ẑ. (17)

In spatial representation, the exciton’s wave function provides a visual map of how the

electronic distribution changes upon the transition12,14,33,34. It can also be used to compute

various physical quantities, such as the correlation between the hole and electron and their

average separation12,15:

dexc =

√
〈Ψexc (rh, rp) | (rh − rp)2 |Ψexc (rh, rp)〉

=

√
||γε,x||2 (dε,xexc)

2 + ||γε,y||2 (dε,yexc)
2 + ||γε,z||2 (dε,zexc)

2

||γε,x||2 + ||γε,y||2 + ||γε,z||2 ,

(18)

where

dε,xexc =

√
〈Ψε,x

exc (rh, rp) | (rh − rp)2 |Ψε,x
exc (rh, rp)〉

=

√√√√ ||γε,x,Re||2
(
dε,x,Re
exc

)2

+ ||γε,x,Im||2
(
dε,x,Imexc

)2

||γε,x,Re||2 + ||γε,x,Im||2 ,

(19)

dε,x,Re/Im
exc =

√
〈Ψε,x,Re/Im

exc (rh, rp) | (rh − rp)2 |Ψε,x,Re/Im
exc (rh, rp)〉, (20)

and

||γε,x||2 = ||γε,x,Re||2 + ||γε,x,Im||2. (21)

These exciton descriptors facilitate the assignment of the transitions in terms of valence,

Rydberg, or charge-transfer character12,15.

The description of exciton’s wave function for a one-photon transition is the most concise

in terms of NTOs, which are computed by means of unitary orbital transformations12,13,16.

This is achieved by singular value decomposition (SVD) of the 1PTDM as follows:

γ = VΣUT, (22)

where Σ is the diagonal matrix of singular values, σKs, and matrices V and U contain the

hole and particle NTOs according to

ψpK (r) =
∑
q

VqKφq (r) (23)

and

ψhK (r) =
∑
q

UqKφq (r) . (24)
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The squares of σKs can be interpreted as the weights of the respective NTO pair when

divided by the square of the Frobenius norm of γ:

||γ||2 ≡
∑
pq

γ2
pq =

∑
k

σ2
K . (25)

In the analyses below, we report such normalized singular values:

σ′K =
σK
||γ|| , (26)

which is equivalent to using normalized 1PTDMs in the wave-function analysis.

The SVD procedure removes the arbitrariness associated with the orbital choice. Since

only a handful of σKs are non-negligible, the NTO representation enables the most compact

molecular orbital representation of any transition, including the transitions between multi-

configurational correlated wave functions. In terms of NTOs, the exciton’s wave function

for a one-photon transition is given by

Ψexc (rh, rp) =
∑
K

σKψ
p
K (rp)ψ

h
K (rh) . (27)

In contrast to the real-valued exciton’s wave functions and 1PTDMs for one-photon and

two-photon absorption processes in Refs. 12, 13, and 16, the exciton’s wave function and

response 1PTDMs for the RIXS process are complex because within the damped response

theory formalism the response wave functions become complex. Below we explain how to

interpret these complex 1TPDMs.

Rewriting the response 1PTDM in Eq. (16), we obtain

Ψε,x
exc (rh, rp) =

∑
pq

γε,x,Re
pq φq (rh)φp (rp) + i

∑
pq

γε,x,Impq φq (rh)φp (rp) . (28)

Since the real and imaginary components of the RIXS scattering moments respectively

accumulate the off-resonance and near-resonance SOS terms, the corresponding real and

imaginary response 1PTDMs respectively provide the cumulative orbital information of these

off-resonance and near-resonance terms. We reformulate Eq. (28) to

Ψε,x
exc (rh, rp) =

∑
K

σε,x,Re
K ψε,x,Re

K (rp) ψε,x,Re
K (rh)

+ i
∑
L

σε,x,ImL ψε,x,ImL (rp) ψε,x,ImL (rh)
(29)
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by performing SVD on the real and imaginary response 1PTDMs separately, so that two

sets of real NTOs ({ψRe
K (rp) , ψ

Re
K (rh)} and {ψIm

L (rp) , ψ
Im
L (rh)}) are obtained and used for

visualization and interpretation.

The relative significance of the off-resonance and near-resonance terms for a given RIXS

moment can be estimated from the norms of the real and imaginary response 1PTDMs,

||γε,x,Re|| and ||γε,x,Im||. For example, if υx,Im = ||γε,x,Im||2
||γε,x||2 ≈ 1 or υx,Re = ||γε,x,Re||2

||γε,x||2 ≈ 0, the

corresponding x component of the exciton’s wave function can be approximated by just

the imaginary near-resonance contributions. Similarly, the relative significance of the off-

resonance and near-resonance terms for the overall RIXS transition can be estimated using

the norms of response 1PTDMs along the three Cartesian coordintates. For example, if

ΥIm = Υx,Im+Υy,Im+Υz,Im ≈ 1 or ΥRe = Υx,Re+Υy,Re+Υz,Re ≈ 0, where Υx,Im = ||γε,x,Im||2∑
x,y,z ||γε,x||2

and Υx,Re = ||γε,x,Re||2∑
x,y,z ||γε,x||2

, then the RIXS transition has predominant contributions from near-

resonance channels. In the discussion that follows, we drop the index ε in γε,x,Re and γε,x,Im

for brevity.

III. COMPUTATIONAL DETAILS

Using the existing infrastructure of the libwfa library15 for wave-function analysis12,13, we

implemented the calculations of the NTOs for RIXS 1PTDMs in a development version of Q-

Chem35,36. Below we illustrate the utility of this orbital analysis for the RIXS transitions in

the OH radical, benzene, para-nitroaniline, and 4-amino-4’-nitrostilbene. In all calculations,

we employ the recently developed implementation21 of RIXS calculations within the fc-

CVS-EOM-EE-CCSD framework37. For the OH radical, benzene, and pNA, we use the

6-311(2+,+)G** basis set with the uncontracted core (uC) functions38. For the OH radical,

we use the experimental bond length of 0.9697 Å. We use the geometries from Refs. 21 and

16 for benzene and pNA, respectively. For 4A4NS, we use the B3LYP/6-311G** optimized

geometry and the 6-31+G* basis set with the uncontracted core functions for XAS, XES,

and RIXS calculations. Relevant Cartesian coordinates are provided in the Supplemental

Materials (SI). The phenomenological damping parameter ε was set to 0.005 (OH), 0.01

(benzene and pNA), and 0.03 (4A4NS).

We use Q-Chem’s symmetry notations throughout this letter (more details can be found in

Refs. 21 and 16 and at http://iopenshell.usc.edu/resources/howto/symmetry/). We use the
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C2v symmetry group for OH and pNA, D2h symmetry group for benzene, and Cs symmetry

group for 4A4NS. We visualize the NTOs and canonical MOs with Gabedit39 and IQMol40,

respectively.

IV. RESULTS AND DISCUSSION

A. Wave-function analysis of RIXS transition in OH

In the OH radical, the πy orbital is singly occupied (see Fig. 3) and the lowest resonant x-

ray absorption involves the excitation of the 1sO electron to fill the valence π hole41. This is

clearly shown by the NTO analysis of the XB2 → c1A1 transition (“c” denotes a core-excited

state), which is given in Fig. 4 (and the SI).

FIG. 3: Molecular orbitals and ground-state electronic configuration of the OH radical. Electronic

states involving excitation of 1sO electrons are denoted by prefix ’c’.

The lowest valence excited state is the 1A1 state at 4.15 eV. Within the three-states

model, the XB2 → 1A1 RIXS transition with the incoming photon’s energy tuned at the

XB2 → c1A1 resonance entails x-ray absorption from the ground state to the c1A1 state

and x-ray emission from the c1A1 state to the final valence 1A1 state. This transition is

the dominant inelastic feature in the RIXS spectrum of aqueous OH8. The NTO analysis

for the c1A1 → 1A1 emission is shown in Fig. 4, which indicates σz → 1s character. Based

on this three-states model, one can now identify the σz → 1s → πy orbital channel as the

dominant pathway in the XB2 → 1A1 RIXS transition.

Let us now compare this approximate analysis based on the three-states model with the

NTO analysis of the RIXS 1PTDMs. In the analytic RIXS calculations, we find that the
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FIG. 4: NTO analysis of the XB2 → 1A1 RIXS transition in the OH radical. Comparison of

important NTO pairs computed separately for the x-ray absorption (XB2 → c1A1) and x-ray

emission (c1A1 → 1A1) transitions with the NTO pairs computed from the RIXS 1PTDMs show

that the three-states model is appropriate for this transition.

imaginary Myz components—and thus the near-resonance orbital channels—are dominant

for the XB2 → 1A1 RIXS transition and, therefore, have the dominant contribution to

the cross section. The RIXS 1PTDMs corresponding to the imaginary Myz
g→f and Myz

f→g

components are the γy,Im and γ̃z,Im 1PTDMs, respectively. The detailed NTO analyses of

these RIXS 1PTDMs are given in the SI.

By inspecting the norms of the imaginary RIXS 1PTDMs and of the respective ωDMs

we note that only the first terms in Eqs. (13) and (14) provide significant contribution.

Thus, the NTOs of the full imaginary RIXS 1PTDMs can be explained by interpreting

these imaginary ωDMs. The first imaginary ωDM in Eq. (13) reflects the transition from

the “virtual” Xg state (first-order response ground state) to the final state and so the NTO

pairs correspond to the transition that fills the core hole (emission). Complementary to

this orbital transition, the NTO pairs from the first imaginary ωDM in Eq. (14) reflect

the transition from the Xf “virtual” state (first-order perturbed final state) to the initial

state, i.e., the reverse of core-hole formation (reverse of absorption). By joining these two

sets of NTO pairs together, the orbital picture of the RIXS transition is constructed. For

the XB2 → 1A1 RIXS transition, each set consists of one dominant NTO pair (see the

SI). The analysis of γy,Im identifies the σz hole and 1s particle NTOs; the analysis of γ̃z,Im

identifies the πy hole and 1s particle NTOs. Using the norms of response 1PTDMs, we get

ΥIm equal to 1.00 for this transition. Thus, the dominant RIXS channel is resonant and
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given by σz → 1s→ πy with its 1s→ πy excitation and σz → 1s de-excitation components.

This is consistent with the three-states model described above, indicating that for this RIXS

transition the three-states model provides a good approximation to the full SOS expression.

B. Wave-function analysis of RIXS transitions in benzene

Fig. 5 shows occupied molecular orbitals of benzene. The six 1sC core orbitals form

six nearly degenerate delocalized molecular orbitals. Depending on the symmetry of the

target orbital, different core orbitals are active in the XAS transitions21. The relevant

FIG. 5: Molecular orbitals and ground-state electronic configuration of benzene. The six core

orbitals and the electronic states involving excitations from these orbitals are denoted by prefix ’c’.
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virtual molecular orbitals (not shown) are doubly degenerate π∗ LUMO and diffuse s and p

Rydberg orbitals.

The two dominant features in the XAS spectrum of benzene42–49 are peak A and peak B at

285.97 eV and 287.80 eV, respectively (theoretical values21 computed with fc-CVS-EOM-EE-

CCSD/uC-6-311(2+,+)G**). When the incoming photon’s energy is tuned to the peak-A

resonance, the dominant inelastic feature is the energy-loss peak at 10.67 eV, characterized

by equal contributions from the degenerate XAg → 13B2g and XAg → 12B3g transitions. In

contrast, when the incoming photon’s energy is tuned to the peak-B resonance, the dominant

inelastic feature is the energy-loss peak at 6.45 eV, characterized by equal contributions

from the degenerate XAg → 1B2g and XAg → 1B3g transitions. Below we show the NTO

analysis of only the XAg → 13B2g and XAg → 1B2g RIXS transitions with incoming photon

energies tuned at peak-A and peak-B resonances, respectively. The NTO analyses for the

two transitions are similar except for the differences in symmetry labels of the orbitals.

The NTO analysis for the dark one-photon XAg → 13B2g transition (given in the SI)

suggests that this valence transition is made up of two orbital transitions: b2u → au and

b3u → b1u. Similarly, the NTO analysis of XAS peak A (XAg → c2B1u) transition in

Fig. 6 shows two dominant orbital transitions: cb1g → au and cag → b1u. Similarly, the

FIG. 6: NTO analysis of the XAg → 13B2g RIXS transition in benzene. Comparison of important

NTO pairs computed separately for the x-ray absorption (XAg → c2B1u) and x-ray emission

(c2B1u → 13B2g) transitions with the NTO pairs computed from the RIXS 1PTDMs shows that

the three-states model is adequate for this RIXS transition. Both orbital channels contribute

significantly into this transition.
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NTO analysis of the c2B1u → 13B2g x-ray emission shows two dominant orbital transitions:

b2u → cb1g and b3u → cag. Based on these analyses, the three-states model for the XAg →
13B2g RIXS transition identifies two important orbital channels: b2u → cb1g → au and

b3u → cag → b1u.

The g → f and f → g RIXS moment tensors are dominated by the imaginary zx

components. This is also reflected in the norms of the imaginary 1PTDMs given in the SI,

which are a few orders of magnitude larger than those of real 1PTDMs (ΥIm = 1.00). The

NTO analyses of the γz,Im and γ̃x,Im RIXS 1PTDMs of the XAg → 13B2g shown in Fig.

6 and in the SI identifies two dominant near-resonance orbital channels: b2u → cb1g → au

and b3u → cag → b1u. In other words, cb1g and cag are the intermediate core orbitals that

facilitate the two-photon inelastic scattering, driving the electronic density from the b2u

orbital to the 2au orbital and from the b3u orbital to the 4b1u orbital, respectively. This

orbital analysis of the RIXS 1PTDMs is consistent with the approximate analysis from the

three-states model.

The one-photon XAg → 1B2g transition is dark; its NTO analysis given in the SI reveals

its dominant HOMO-LUMO character (b2g → ag) and a miniscule contribution from the

b1u → b3u transition. The NTO analysis of XAS peak B transition (XAg → c2B3u) shown

FIG. 7: NTO analysis of the 1Ag → 1B2g RIXS transition in benzene. Comparison of impor-

tant NTO pairs computed separately for the x-ray absorption (1Ag → c2B3u) and x-ray emission

(c2B3u → 1B2g) transitions with the NTO pairs computed from the RIXS 1PTDMs shows that

the three-states model is adequate for this RIXS transition. Orbital channel 1 provides dominant

contributions.
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in the SI and Fig. 7 indicates that this core excitation has predominantly cb3u → ag orbital

character, with a small contribution from the cag → b3u transition. The NTO analysis

of the c2B3u → 1B2g X-ray emission transition has a predominantly b2g → cb3u character

with a small contribution from the b1u → cag transition. Thus, within the three-states

model, the NTO analyses of the XAg → c2B3u x-ray absorption and c2B3u → 1B2g x-ray

emission identify the orbital character as b2g → cb3u → ag, with a small contribution from

the b1u → cag → b3u channel.

The RIXS moment tensor for the XAg → 1B2g transition is dominated by the imaginary

component of Mxz moments. Here, we perform NTO analyses of the γx,Im and γ̃z,Im RIXS

1PTDMs corresponding to the Mxz
g→f and Mxz

f→g components, respectively. The analysis of

γx,Im identifies the b2g → cb3u NTO pair as dominant, with miniscule contribution from the

b1u → cag NTO pair. The analysis of γ̃z,Im identifies the dominant ag → cb3u NTO pair

and a less important b3u → cag NTO pair. Combining these two analyses, the dominant

orbital channel is b2g → cb3u → ag. We get ΥIm equal to 0.98 for this RIXS transition. This

is consistent with the analysis from the three-states model discussed above. Similarly, the

dominant RIXS channel is resonant and given by b3g → cb2u → ag for the XAg → 1B3g

transition.

C. Wave-function analysis of RIXS transitions in para-nitroaniline

The orbital analysis of the selected RIXS transitions in the OH radical and benzene

supports the notion that the dominant orbital channel in RIXS is (nearly) resonant and

that three-states models are sufficient for determining the important orbitals involved in the

RIXS transition. In this section, we present a counter example illustrating the limitations

of few-core-excited-states models. We consider RIXS transitions in para-nitroaniline (pNA)

and show that for this system the predominant channel driving the electronic density in the

course of inelastic scattering may or may not be (nearly) resonant in character.

Fig. 8 shows occupied molecular orbitals of pNA. The special feature of this molecule is

that the lowest excited state has strong intermolecular charge-transfer character50–53. This

is the lowest fully symmetric XA1 → 2A1 transition with large oscillator strength (f =

0.4). The NTO analysis, provided in the SI, shows that this transition can be described as

HOMO-LUMO excitation: π (b2)→ π∗ (b2).
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FIG. 8: Occupied molecular orbital diagram for para-nitroaniline. Core orbitals and the electronic

states involving excitations from these orbitals are denoted by prefix ’c’.
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The strong charge-transfer character of this transition (∆µ = 3.2 a.u.) has non-trivial

consequences on the character of the 2PA transition, as was discussed in Ref. 16. Specifically,

we have shown that the 2PA moments for the XA1 → 2A1 transition in pNA can be described

by the two-states model involving just the initial and final states, in contrast to other 2PA

examples involving specific virtual states giving dominant contributions to the cross sections.

Thus, for this transition, the 2PA transition moments are given according to

Mxy
g→f ≈ −

∑
n=g,f

(〈Ψf |µy|Ψn〉〈Ψn|µx|Ψg〉
Ωng − ω1x − iε

+
〈Ψf |µx|Ψn〉〈Ψn|µy|Ψg〉

Ωng − ω2y − iε

)
≈ −〈Ψf |µy|Ψg〉

〈Ψf |µx|Ψf〉 − 〈Ψg|µx|Ψg〉
ω1x + iε

− 〈Ψf |µx|Ψg〉
〈Ψf |µy|Ψf〉 − 〈Ψg|µy|Ψg〉

ω2y + iε

(30)

and

Mxy
f→g ≈ −

∑
n=g,f

(〈Ψg|µx|Ψn〉〈Ψn|µy|Ψf〉
Ωng − ω1x − iε

+
〈Ψg|µy|Ψn〉〈Ψn|µx|Ψf〉

Ωng − ω2y − iε

)
≈ −〈Ψg|µy|Ψf〉

〈Ψf |µx|Ψf〉 − 〈Ψg|µx|Ψg〉
ω1x + iε

− 〈Ψg|µx|Ψf〉
〈Ψf |µy|Ψf〉 − 〈Ψg|µy|Ψg〉

ω2y + iε
.

(31)

Similarly to the one-photon transition, this 2PA transition also has intramolecular charge-

transfer character; its large 2PA moments result from the large one-photon transition dipole

moment and the large difference in the dipole moments between the initial and final states.

As discussed in Ref. 16, these two quantities are present in the numerators of Eqs. (30)

and (31). On the other hand, it is the pole structure (which comes from denominators) of

Eqs. (1) and (2) that imparts the resonant character to a RIXS transition. Thus, one can

potentially identify two-photon RIXS transitions involving the XA1 and 2A1 states in pNA

for which both the near-resonance (involving intermediate core states) and off-resonance

(involving the initial and final valence states) orbital channels are important. Below we

provide such an example by considering the XA1 → 2A1 RIXS transition in pNA for which

the incoming photon frequency is tuned to its XA1 → c6B2 C-edge resonance at 288.01 eV.

We compute the XA1 → 2A1 RIXS cross section using a modified fc-CVS-EOM-EE-CCSD

method in which the SOS includes the CVS states plus the initial and the final states, so

that the RHS terms in Eqs. (30) and (31) are also incorporated.
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FIG. 9: NTO analysis of the XA1 → 2A1 RIXS transition in pare-nitroaniline using the three-states

model involving the core-excited (top panel) c6B2 state, (middle panel) c1A1 state, and (bottom

panel) c1B1 state.
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The XA1 → c6B2 core excitation is dark due to symmetry, but it is nearly degenerate

with the bright (near-)degenerate XA1 → c1A1 and XA1 → c1B1 transitions at 287.96 eV

(see the SI). The NTO analysis for XA1 → c6B2 core excitation given in the SI and Fig. 9

reveals its two dominant orbital transitions: ca1 → b2 and cb1 → a2. From the NTO analyses

of the XA1 → c6B2 x-ray absorption and c6B2 → 2A1 x-ray emission, the three-states model

suggests the b2 → ca1 → b2 near-resonance channel should dominate for the γy,Im and γ̃y,Im

1PTDMs.

For this RIXS transition, the Mxx, Myy, and M zz RIXS moments are comparable. Myy,Im

and Mxx,Im have larger magnitudes, indicating that the near-resonance channels along the y

and x axis have the largest contribution. The NTO analyses of γy and γ̃y RIXS 1PTDMs are

given in the SI. The near-resonance mechanism of electronic density transfer in the inelastic

scattering obtained from analyzing γy,Im and γ̃y,Im is not what is expected from the three-

states model (Fig. 10); the intermediate core orbitals obtained are a linear combination of the

six 1sC molecular orbitals. This reflects that the SOS resonant term with Ωng = ω1 does not

provide the dominant contribution to the RIXS moment. In fact, the damped contributions

from other off-resonance terms that are collected in the γy,Im and γ̃y,Im 1PTDMs contribute

FIG. 10: NTO analysis of the real and imaginary γy and γ̃y 1PTDMs for the XA1 → 2A1 RIXS

transition in para-nitroaniline. Here, the off-resonance channel is dominant and the near-resonance

channel is not the one predicted by the three-states model. For both channels, the core-hole NTOs

are given as a linear combination of the six 1sC molecular orbitals as the large numerators of some

of the off-resonance SOS terms make their contribution larger than that of the near-resonant SOS

terms even in the imaginary components of these 1PTDMs.
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more than the near-resonance term primarily due to larger transition dipole moments than

the ones forming the near-resonance term (i.e., the transition dipole moments for XA1 →
c6B2 and 2A1 → c6B2 transitions). The fact that the off-resonance terms are dominant is

also reflected in the larger norms of the γy,Re and γ̃y,Re 1PTDMs than the γy,Im and γ̃y,Im

1PTDMs (υy,Im = 0.03). Further, the RMS electron–hole distances (dyexc) computed for these

components of the RIXS transition (≈2.4 Å) is smaller than the 3.6 Å computed for the

one-photon XA1 → 2A1 transition (see the SI), highlighting the local character of the RIXS

transition along the y direction.

Since the XA1 → c6B2 core excitation is nearly degenerate with XA1 → c1A1 and XA1 →
c1B1 core excitations, the latter two transitions with larger oscillator strengths open near-

resonance orbital channels and impact the imaginary Mzz and Mxx RIXS moments. As

shown in Fig. 9, the ca1 → a1 and cb1 → b1 orbital transitions are important in the XA1 →
c1A1 core excitation and the cb1 → a1 and ca1 → b1 orbital transitions are important in

the XA1 → c1B1 core excitation. These orbital transitions also dominate the NTO analysis

of γ̃z,Im and γ̃x,Im 1PTDMs consistent with the three-states models constructed with the

NTO analyses of these two XAS peaks. Further, the RMS electron–hole distances for these

1PTDMs are smaller than the one computed for the one-photon XA1 → 2A1 transition,

indicating that these near-resonance channels are local and confined to the respective active

core-hole orbitals.

For the Mxx RIXS moments, the imaginary components are larger than the respective real

FIG. 11: NTO analysis of the real and imaginary γx and γ̃x 1PTDMs for the XA1 → 2A1 RIXS

transition in para-nitroaniline. Here, the near-resonance channel 1 is dominant. The two near-

resonance channels are also consistent with the ones predicted by the three-states model.



23

FIG. 12: NTO analysis of the real and imaginary γz and γ̃z 1PTDMs for the XA1 → 2A1 RIXS

transition in para-nitroaniline. Here, the off-resonance channel is dominant and features the same

π → π∗ intramolecular charge-transfer channel that characterizes the one-photon XA1 → 2A1

transition. The near-resonance channel is the one predicted by the three-states model.

components (υx,Im = 0.71), consistent with larger norm for the γx,Im and γ̃x,Im 1PTDMs than

the respective γx,Re and γ̃x,Re 1PTDMs (Fig. 11). On the other hand, the real components

are larger than the imaginary components for the Mzz moments (υz,Im = 0.01), consistent

with the larger norms for γz,Re and γ̃z,Re 1PTDMs than those for γz,Im and γ̃z,Im1PTDMs.

The NTO analyses of the γz,Re and γ̃z,Re 1PTDMs show that the 4b2 → 5b2 transition is

the significant off-resonance RIXS channel, highlighting that this two-photon process has

some intramolecular charge-transfer character (Fig. 12). This is further supported by the

larger RMS electron–hole distances for the γz,Re and γ̃z,Re 1PTDMs than the other RIXS

1PTDMs and comparable to the RMS electron–hole distance for the one-photon XA1 →
2A1 transition. This intramolecular π → π∗ charge-transfer channel is, however, not the

dominant off-resonance channel in the overall RIXS process as Υz,Re < Υy,Re, even though

the overall character of this RIXS transition is not resonant (ΥIm = 0.03).

D. Wave-function analysis of RIXS transitions in 4-amino-4’-nitrostilbene

Similar to pNA, 4-amino-4’-nitrostilbene (4A4NS) is a push-pull chromophore. Its one-

photon XA’→ 2A’ transition has an even larger oscillator strength than that in pNA, with

strong intramolecular charge-transfer character (f = 1.22, ∆µx = 5.0 a.u.; see NTO analysis

of this transition in the SI). For this molecule, we pick the XA’→ 2A’ RIXS transition and
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the incoming photon frequency that is resonant with its lowest N-edge XAS peak (XA’→
c1A’) computed at 404.01 eV. As in the pNA example discussed above, here we also use

the modified fc-CVS-EOM-EE-CCSD method. For the XA’→ 2A’ RIXS transition, only

the real Mxx moments and the real and imaginary Mzz moments are important. The NTO

analysis in Fig. 13 of the γx,Re and γ̃x,Re RIXS 1PTDMs identifies its dominant off-resonance

intramolecular charge-transfer channel (υx,Re = 1.00), which also describes the one-photon

XA’→ 2A’ transition. The NTO analyses of the real and imaginary components of γz and γ̃z

1PTDMs show similar orbitals (see the SI) with the norms of the real 1PTDMs larger than

the imaginary 1PTDMs (υz,Im = 0.28). This indicates that important orbital channels along

the z axis are off-resonance, originating from the large numerators in the SOS off-resonance

terms, which also dominate the imaginary 1PTDMs. This is not surprising because the

lowest N-edge XAS peak (at which the incoming photon energy is tuned) is separated by

more than 1 eV from other XAS transitions. Clearly, a few-core-excited-states model would

be inadequate for this transition, dominated by off-resonance channels, in particular, the

intramolecular charge-transfer channel—unlike in the case of pNA—with Υx,Re equal to

0.50. This example provides another illustration of the merits of a fully analytic approach

for characterizing RIXS transitions.

FIG. 13: NTO analysis of the x- and z-component 1PTDMs for the XA’→ 2A’ RIXS transition in

4-amino-4’-nitrostilbene. Here, the off-resonance channels are dominant. The three-states model

predicts near-resonance channels; thus, it is inadequate for this transition.
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V. CONCLUSION

We presented a novel black-box approach for deriving the molecular orbital picture of

RIXS transitions based on the corresponding response 1PTDMs and their NTOs. This is

the first example of the generalization of the concept of NTOs to nonlinear x-ray processes.

This new tool for analyzing RIXS transitions relies on the rigorous and compact formalism of

the response 1PTDMs based on damped response theory. Not only do the NTOs computed

with this approach facilitate the visualization of RIXS transitions, 1PTDMs are also useful

for computing physical quantities related to the spatial extent of the RIXS transitions such as

the average electron–hole separation. This approach is superior to the traditional few-states

approach, which relies on computing few intermediate core-excited states for a qualitative

orbital picture of RIXS. The few-states approach inherently suffers from the arbitrariness

of the choice of intermediate states and potential loss of accuracy. We demonstrate the

utility of the new analysis tool by calculating the orbital picture of RIXS transitions in

the OH radical, benzene, pNA, and 4A4NS molecules. The RIXS transitions in the latter

two systems have significant contributions from off-resonance orbital channels, which are

difficult to capture with the few-states models, illustrating the merits of rigorous analytic

approaches for analyzing RIXS transitions. For chromophores in complex environments, ab

initio methods augmented with our analysis tool can help elucidate the role of molecular

structure and intermolecular interactions on the RIXS spectra and can provide a rigorous

characterization of experimental RIXS spectra.

Supplementary Material

This document contains: tabulated NTO analysis for valence absorption, x-ray absorp-

tion, x-ray emission, and RIXS transitions; relevant Cartesian coordinates; and basis sets

used in our calculations.
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49 Kolczewski, C.; Püttner, R.; Martins, M.; Schlachter, A. S.; Snell, G.; Sant’Anna, M. M.;

Hermann, K.; Kaindl, G. Spectroscopic analysis of small organic molecules: A comprehensive

near-edge x-ray-absorption fine-structure study of C6-ring-containing molecules J. Chem. Phys.

2006, 124, 034302.

50 Khalil, O.S.; Seliskar, C.J.; McGlynn, S.P. Electronic spectroscopy of highly-polar aromatics.

II. Luminescence of nitroanilnes J. Chem. Phys. 1973, 58, 1607–1612.

51 Carsey, T.P.; Findley, G.L.; McGlynn, S.P. Systematics in the electronic spectra of polar

molecules. 1. Para-disubstituted benzenes J. Am. Chem. Soc. 1979, 101, 4502–4510.

52 Kovalenko, S.A.; Schanz, R.; Farztdinov, V.M.; Hennig, H.; Ernsting, N.P. Femtosecond re-

laxation of photoexcited para-nitroaniline: solvation, charge transfer, internal conversion and

cooling Chem. Phys. Lett. 2000, 323, 312–322.

53 Slipchenko, L. V. Solvation of the excited states of chromophores in polarizable environment:

Orbital relaxation versus polarization J. Phys. Chem. A 2010, 114, 8824–8830.


