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Abstract 

The rapid spread of the COVID-19 outbreak is now a global threat with over a million 

diagnosed cases and more than 70 thousand deaths. Specific treatments and effective drugs 

regarding such disease are in urgent need. To contribute to the drug discovery against 

COVID-19, we performed computational study to understand the inhibition mechanism of 

the COVID-19 3c-like protease, and search for possible drug candidates from approved or 

experimental drugs through drug repurposing screening against the DrugBank database. 

Two novel computational methods were applied in this study. We applied the “Consecutive 

Histogram Monte Carlo” (CHMC) sampling method for understanding the inhibition 

mechanism from studying the 2-D binding free energy landscape. We also applied the 

“Movable Type” (MT) free energy method for the lead compound screening by evaluating 

the binding free energies of the COVID-19 3c-like protease – inhibitor complexes. Lead 



compounds from the DrugBank database were first filtered using ligand similarity 

comparison to 19 published SARS 3c-like protease inhibitors. 70 selected compounds were 

then evaluated for protein-ligand binding affinities using the MT free energy method. 4 

drug candidates with strong binding affinities and reasonable protein-ligand binding modes 

were selected from this study, i.e. Enalkiren (DB03395), Rupintrivir (DB05102), Saralasin 

(DB06763) and TRV-120027 (DB12199).  

 

Introduction 

In 2003, the outbreak of severe acute respiratory syndrome (SARS) terrified the world 

by lethally infecting thousands of people and taking hundreds of lives. This pandemic was 

caused by SARS-CoV, a member from the big coronaviruses’ family. Although the 

epidemic of SARS died down soon, we had to admit the fact that we were still far from 

winning the battle against coronaviruses. In 2012, another human coronavirus responsible 

for the Middle East Respiratory Syndrome (MERS) emerged, which again led to thousands 

of confirmed diagnosis globally and killed more than 500 people.1,2 7 years later in the end 

of 2019, COVID-19, another acute respiratory syndrome which was very similar to SARS 

was rapidly spread global wise. The cause was soon identified as SARS-CoV-2, a 

coronavirus closely related to the SARS-CoV.3 It is the largest global coronavirus outbreak 

event in history, with over 700 thousand diagnosed cases and 34 thousand deaths and is 

still evolving rapidly at this moment. Research groups and pharmaceutical companies had 

been racing against time to develop treating agents against COVID-19, yet neither a 

vaccine nor an efficacious therapy has been available to date. Therefore, it is urgently 



necessary to design the potential therapeutic agents against COVID-19 and other mass-

pathogenic coronaviruses.  

Coronaviruses are positive-sense, single-stranded RNA viruses that contain the largest 

RNA virus genomes as known so far.4,5,6 They are the cause of many highly prevalent 

diseases in humans and animals and thus pose a great threat to public health. The main 

protease that is responsible for maturation of the polyproteins in the viral replication cycle 

is a chymotrypsin-like protease that uses a Cys instead of a Ser as the nucleophile in the 

active site, so it is often referred to as the 3C-like protease (3CLpro).7 The fact that 3CLpro 

plays such a significant role in the virus life cycle and is found in most coronaviruses made 

this protein a prominent target to develop anti-CoV drugs.4,8-12 Harris T. et. al. and Rao Z. 

et. al. reported the crystal structure of SARS-CoV 3CLpro in 2003,13,14 with the coordinates 

deposited in the Protein Data Bank (http://www.rcsb.org, PDB IDs: 1q2w, 1uj1, 1uk2, 

1uk3, 1uk4). The COVID-19 3CLpro crystal structure was released recently with PDB ID 

6lu715 having 87.1% sequence similarity, and identical residue alignments at the active site 

compared to SARS-CoV 3CLpro.16 

The crystal structure of COVID-19 3CLpro reveals a protein dimer containing three 

domains at each protomers. Domain I and II forms a chymotrypsin fold, rich in β-sheets 

and is responsible for the catalytic reaction with a Cys-His catalytic dyad (Cys-145 and 

His-41). Domain III contains five α helix strands with unclear biological functions, and is 

connected to domain II via a long loop region. The substrate-binding site is located in a 

cleft between domains I and II.13,17,18 So far, research groups have discovered a number of 

SARS-CoV 3CLpro inhibitors, which could potentially be further developed into anti-

SARS drugs. Among the various inhibitors that have been reported, the majority was found 



to target at His-41, His-163, His-164, Cys-145, Glu-166, Met-49, and Met-165 residues via 

aromatic π-π stackings and hydrogen bonds.2, 13, 19-29 Possible COVID-19 treatment could 

be provided through the development of the COVID-19 3CLpro inhibitors, which can be 

hugely encouraged from the understanding of the inhibition mechanism of SARS-CoV 

3CLpro, due to the structural similarity between the two target proteins. 

Two computational methods were employed in this study for drug candidate virtual 

screening and binding mechanism analysis respectively. (1) The Movable Type (MT) 

method was first developed in our lab in 2013.30 Further refinement was later on published 

in 2018.31 This method is now commercialized through QuantumBio Inc. Please contact 

http://www.quantumbioinc.com for requesting the MT method software product. This 

method is a molecular energy-state sampling algorithm using Monte Carlo integration and 

numerical integral for fast free energy estimation. In this study, we apply the MT method 

to perform virtual screenings, and free energy evaluations aiming to discover drug 

candidates for COVID-19 3CLpro inhibition referencing a free-energy level computational 

protocol. (2) The Consecutive Histogram Monte Carlo (CHMC) sampling method was a 

novel simulation technique developed in our group. The CHMC protocol employs 

independent energy-state sampling for calculating the ensemble energy within a series of 

consecutively distributed ligand sampling volumes across the protein surface centered at 

the binding active site. Evenly distributed ligand’s energy-state ensembles on the protein 

surface were generated using a Monte Carlo sampling protocol representing a reversible 

work pathway for the ligand transition. We applied this protocol for the binding mechanism 

analysis and possible binding pathway study against the selected good binders from the 

virtual screening procedure. 

http://www.quantumbioinc.com/


Results and Discussion 

In this study, we first examined the validity of applying the MT method to the 3CLpro 

– inhibitor binding free energy estimation by analyzing the binding affinity reproduction 

regarding the 3CLpro – inhibitor systems with published experimental binding affinities 

using 19 complexes for SARS-CoV and 28 complexes for other viruses e.g. Enterovirus 

71 and Norovirus. Apart from that we also explored the structure of the COVID-19 3CLpro 

binding active site using the 6lu7 crystal structure, and the binding mode between COVID-

19 3CLpro and a peptide-like inhibitor suggested by the 6lu7 crystal structure deposition 

authors, in order to study the contact map and locate the important residues at the active 

site for effective inhibitor discovery. The CHMC sampling protocol was employed to 

analyze the free energy surface for the peptide-like inhibitor’s transition on the 3CLpro 

surface around the binding active site. Understanding the general performance of the MT 

method against the 3CLpro – inhibitors binding affinity predictions, as well as the 

inhibition mechanism of COVID-19 3CLpro on a molecular level, we performed a MT-

based virtual screening against the Drugbank database, through ligand similarity 

comparison, binding affinity evaluation, and binding mode analysis, aimed to select 

druggable inhibitor for COVID-19 3CLpro. Employing this database, our research focused 

more on drug repurposing, to look for COVID-19 3CLpro inhibitors from approved and 

experimental drugs, in order to increase the drug discovery efficiency, or find ready-to-use 

drugs. 

(1) Method Validation Against Published 3CLpro – Inhibitor Complexes 

We first examined the binding affinity reproduction performance of the MT method. 

Yet there is no proven inhibitor published for COVID-19 3CLpro for our free energy 



estimation method validation, we first introduced validation cases targeting the SARS-CoV 

3CLpro receptor, which closely relates to the COVID-19 3CLpro with only 14 out of a 

total number of 306 residue disagreement in a protomer, and 100% identical residue 

alignments at the binding active area. 19 complexes with experimental binding affinity data 

for the SARS-CoV 3CLpro – inhibitor systems were collected from the Protein Data Bank. 

The 19 published ligands in this validation set have a broad binding affinity distribution 

range from -5.41 to -10.11 kcal/mol. Statistics of this calculation approach showed an 

RMSE as 1.72 kcal/mol, the Pearson’s correlation as 0.74 and Kendall’s tau correlation as 

0.48, revealing a good prediction accuracy and ranking capability of the MT method 

against the SARS-CoV 3CLpro – inhibitor validation set. We then introduced 28 more test 

cases using 3CLpro receptors from other viruses to broaden the validation and examine the 

robustness of the MT method against different 3CLpro receptor – ligand complex systems. 

This validation set contained 3CLpro from different organisms including TGEV, feline 

coronavirus, bat coronavirus HKU4, norovirus, coxsackievirus A16, B3, B4, Human 

enterovirus 71, 72, 73, 74, 75, 76, 77, 78, and 79. Against this validation set, the MT 

calculation generated an RMSE as 1.49 kcal/mol, the Pearson’s correlation as 0.56 and 

Kendall’s tau correlation as 0.29, illustrating an acceptable error and moderate correlation 

compared to the experimental binding free energies. Dropping of prediction accuracy could 

be caused by the increase of chemical variety of the target structures in this validation set. 

Against all the validation cases when merging the two sets, the MT calculation generated 

an RMSE as 1.59 kcal/mol, the Pearson’s correlation as 0.67 and Kendall’s tau correlation 

as 0.44, showing a generally good reproduction accuracy and correlation regarding the 

overall 47 3CLpro – inhibitor complexes.  



 

Figure 1. Scattered plots comparing the binding free energy calculated by Moveable Type 

to experimental data for the 3CLpro – inhibitor test sets: (A) SARS-CoV 3CLpro test set 

(19 test cases) (B) expanded 3CLpro test set (28 test cases) (C) all 47 3CLpro – inhibitor 

test cases (blue dots for the SARS-CoV 3CLpro test cases and yellow squares for the 

expanded 3CLpro test cases). 

 

(2) COVID-19 3CLpro Binding Active Site Analysis 

Introducing these test sets revealed a general picture of the binding affinity prediction 

using the MT method against 3CLpro – inhibitor complexing, with diverse structural 

features. On the other hand, drug discovery for the COVID-19 3CLpro inhibition required 

in-depth understanding of the inhibition mechanism of the COVID-19 3CLpro and the 

structural feature at the active binding site. 6lu7 was the first published COVID-19 3CLpro 

crystal structure revealing important information regarding the active binding site structure 

and valuable protein-ligand contact map using a competitive protease inhibitor (ligand ID: 

PRD_002214). Residues with close contacts to the inhibitor can be discovered at 5 active 

regions in the binding site:  

(1) S1 region included residue His41 and Met49; 

(2) S2 region included residue Thr24, Thr25, Thr26 and Leu27; 



(3) S3 region included residue Phe140, Leu141, Asn142, Gly143, Ser144, and Cys145; 

(4) S4 region included residue His163, His164, Met165, Glu166, Leu167, and Pro168; 

(5) S5 region included residue Glu189, Thr190, and Ala191. 

The S4 and S5 regions acted as a pair of “tweezers” to grasp and stabilize the 

polypeptide substrate by forming backbone – backbone hydrogen bonds, and receptor 

sidechain – substrate backbone hydrogen bond using Glu189. His41 at S1 and Cys145 at 

S3 formed a His ⋯ Cys catalytic dyad. Other residues at these active regions formed 

cavities for containing substrate residues or deploy close-range contacts for further 

stabilizing the substrate at the binding site.  

Other studies also reported matching residues and active regions at the binding site 

playing important roles to the substrate-3CLpro complexing, by analyzing the SARS-CoV 

3CLpro structure. Song J. X. et al. reported 6 binding subsites binding correspondingly to 

the P1-P6 residues of the substrates. Those 6 binding subsites generally agreed with the 

aforementioned S1 to S5 active regions in this work, with Glu166, Gly-143 and Cys-145 

as in the S1 subsite specifically recognizing the side-chain NE2 of Gln-P1; Thr-25, Leu-

27, Val-42, Cys-44, Thr-47, Asp-48, Met-49, Tyr-54, Leu-164 and Met-165 as in the S2 

subsite binding in particular with the Leu-P2.19,20 Yokoyama, S. et al. also reported a 

similar group of residues holding the Leu-P2 of substrates in position21 during the 

catalyzation. All these studies provided us important information and inspiring 

perspectives for the anti-CoV drug design in this work. 



 

Figure 2. Illustration of the active regions at the substrate binding site of the COVID-19 

3CLpro. (A) Crystal structure of COVID-19 3CLpro in complex with the inhibitor 

PRD_002214 (PDB ID: 6lu7). (B) A peptide-like inhibitor suggested in the crystal 

structure 6lu7 as a competitive inhibitor at the substrate binding site, important residues 

are marked in different colors representing different active regions at the binding site. (C) 

Five active regions marked as S1~S5 with different colors at the substrate binding site. (D) 

The five active regions sieged to form a reversed “T-shaped” pocket (circled with brown 

curve) with a small cavity at the “T” junction (circled with blue curve). 

 

We applied the CHMC protocol for generating the ligand transition free energy 

landscape near the binding site of the COVID-19 3CLpro using the inhibitor provided in 



6lu7. A 2-D free energy heatmap was generated, where the (0,0) coordinate represented 

the location of the inhibitor’s centroid in the 6lu7 crystal structure, the x and z axis 

represents the inhibitor’s centroid deviation from its original location. The heatmap is 

separated into 0.5 Å × 0.5 Å evenly distributed grids. Each grid represents a histogram of 

volume on the protein surface, stretching for ±20 Å in both direction along the y axis with 

0.5 Å width in both x and z axis. Ligand conformational state sampling in each histogram 

was performed with the ligand’s centroid restricted in the histogram. Converged ensemble 

energies were then collected for all the histograms distributed from -10 Å to 10 Å along 

both x and z axis centered at the (0,0) coordinate. We hence generated the 2-D free energy 

heatmap representing the protein-ligand free energy differences by moving the ligand’s 

centroid on the protein’s surface. The free energy heatmap demonstrated that the global 

minimum state M1 was at the (0,0) histogram. The global minimal binding mode generated 

from CHMC had a conformational RMSD as 0.80 Å compared to the crystal structure 

ligand (shown in Figure 3). the M2 local minimum located at the (4,-1) histogram, with 

3.92 kcal/mol as the free energy change for the ligand transition from the M1 state to the 

M2 state, i.e. ΔGM1-M2 = 3.92 kcal/mol. The M3 and M4 local minima located further along 

the positive direction of the x axis while different on the z axis direction, at (5,2) histogram 

and (5.5,-4.5) histogram respectively, with ΔGM1-M3 = 3.91 kcal/mol, and ΔGM1-M4 = 4.86 

kcal/mol. 



 

Figure 3. The ligand transition free energy surface and the energy minimal states generated 

using the CHMC 2-D protocol. The free energy surface is generated on the xz plane 

centered at the global minimal histogram (0,0) and ranges ±10 Å along both the x and z 

axis. Global and local minimum energy histogram regions are circled in squares. The global 

minimum state (M1) and three metastable states (M2~M4) were discovered according to 

the free energy surface. The M1 to M4 histogram regions are marked in cyan, orchid, 

magentas, and brown respectively. The best ligand binding mode for the four energy 

minimal histograms are shown on the right-hand side of this figure in the corresponding 

colors. The crystal structure ligand (green) was shown together with the sampled ligand 

poses with a RMSD = 0.80 Å compared to the global minimal binding mode at the (0,0) 

histogram. 

 

The inhibitor at M1 state bound with the “tweezers residues”: Glu166, His164, Gln189, 

and Thr190 through hydrogen bonds; blocked the catalytic dyad by forming a NH ⋯ S 



hydrogen bond with residue Cys145, and inserted a hydrophobic group into the “T junction” 

cavity to restrain the flexibility of His41. 

The free energy heatmap generated from our calculation indicated that the binding site’s 

entrance/exit for the ligand located in the region on the positive x-axis half of the heatmap. 

Two possible dissociation/binding pathways were suggested following M1-M2-M3 route 

or M1-M2-M4 route. M2 is an intermediate state connecting the global minimum state and 

the other two local minima, M3 and M4 states settled along the x axis. Free energy 

landscape around the M4 state region was smoother compared to the M3 state region 

indicating that it was easier for the inhibitor to move further away from the binding site 

through the M4 state region. At the M4 state histogram, the ligand passed through the 

gateway surrounded by Thr24, Thr25, Thr26, Asn142, Gly143, and Cys145 before it 

departed the binding site of COVID-19 3CLpro. 

 

Figure 4. Inhibitor PRD_002214 bound to the COVID-19 3CLpro at the binding site. (A) 

The M1 global minimum binding mode of the inhibitor (B) The M4 local minimum binding 

mode of the inhibitor, which is at the edge of the COVID-19 3CLpro substrate binding site. 

 



(3) Virtual Screening and Drug Repurposing Screening Targeting COVID-19 

3CLpro 

After looking at the binding site structure features and possible inhibitor binding 

mechanism regarding the COVID-19 3CLpro receptor, we performed the MT-method 

based virtual screening aiming to discover possible drug candidates for this protein target. 

Initial drug discovery using massive virtual screening against large bioactive compound 

database is inefficient concerning the severe outbreak of the current COVID-2019 

epidemic. In this study, we focused on approved or experimental drug repurposing 

screening aiming to increase the drug discovery efficiency or hopefully to find ready-to-

use drugs. 

We first performed ligand similarity search using the 19 aforementioned published 

SARS-CoV 3CLpro inhibitors. 70 Compounds from the Drugbank database with 70% or 

higher ligand similarity were selected for binding free energy evaluation. Using the MT 

free energy method, we generated the binding free energies for the 70 chosen ligand 

compounds complexing with COVID-19 3CLpro. The results are shown in Figure 5. On 

the other hand, ligand druggability is not necessarily correlated to the ligand-target binding 

affinity. From a structural point of view, the ligand-target binding modes with reasonable 

active site blocking and effective functional residue interference are more important to 

determine good drug candidates from the strong binders. 

12 strong binders with -9.5 kcal/mol or higher calculated binding free energy were 

selected for further binding mode analysis. As is mentioned above, in COVID-19 3CLpro, 

the S4 and S5 “tweezers” regions, and the His41 ⋯ Cys145 catalytic dyad need to be 

effectively blocked or interfered. Besides, due to the receptor’s structural similarity, those 



catalysis-related residues in the SARS-CoV 3CLpro also need to be restrained by the drug 

candidate in the 3CLpro-inhibitor complex, e.g. the Gln-P1 and Leu-P2 substrate binding 

residues according to Song J. X. et al. and Yokoyama, S. et al. We then categorized those 

catalysis-related residues and merged them to the S1-S5 active in our study and performed 

the binding mode analysis against the 12 selected strong binders. 

 

Figure 5. MT-predicted binding free energies for the 70 compounds selected from 

Drugbank using ligand similarity filtering. 12 lead compounds with high binding affinities 

(stronger than -9.5 kcal/mol) were further chosen for binding modes analysis. 

 

Knowing that binding affinity values are not the most important criterion for selecting 

good drug candidates, instead, strong binders could end up quite differently due to their 

different ADMET properties and other criteria. From a molecular level point of view, we 

looked at the significant binding modes of the 12 lead compounds and studied the receptor-

ligand critical contacts, to narrow down the 12 lead compounds to the final set of drug 

candidates. 



Binding enthalpies and configurational entropies both contributed to the protein-ligand 

binding free energy, meaning that a strong binding affinity for a protein-ligand complex 

can be generated not only by having a significant global minimum binding mode, but also 

by forming a series of strong and stable local minima. For all the 12 lead compounds, we 

looked at their top 100 binding modes and collected the critical contact numbers including 

all the protein-ligand hydrogen bonds, close-ranged π-π stackings and C-H ⋯ π interactions 

concerning the residues S1~S5 active regions. The critical contact numbers counted from 

all the 100 binding modes illustrated how frequently each ligand binding to the active 

regions in the complex state. 

 

Table 1. Predicted binding free energies, molecular weights and protein-ligand critical 

contact numbers (CCN) at the active regions for the 12 selected lead compounds. 

Accession 

Number 
Drug Name Original Target or Purpose 

Predicted 
Binding 

Free Energy 

(kcal/mol) 

Molecular 

Weight 

CCN 

for S1 

CCN 

for S2 

CCN 

for S3 

CCN 

for S4 

CCN 

for S5 

Total 

CCN 

DB03395 Enalkiren Human Renin -10.21 656.85 16 2 64 18 53 153 

DB03405 - Human Cathepsin K -10.24 594.69 20 1 21 15 29 86 

DB05102* Rupintrivir HRV-14 Genome Polyprotein -9.58 598.66 34 4 36 4 26 104 

DB05645 Larazotide Human Zonulin Receptor Antagonist -10.98 725.84 9 7 20 2 18 56 

DB06497 Aplaviroc Human C-C Chemokine Receptor Type 5 -10.78 577.72 12 3 18 5 11 49 

DB06508 GW-559090 Human Integrin -11.03 596.68 15 6 24 7 17 69 

DB06763 Saralasin Human Angiotensin II Receptors -13.32 912.06 3 9 47 11 37 107 

DB08856 DADLE Human Opioid Receptor -11.05 569.65 5 5 8 3 7 28 

DB09291 Rolapitant Human Neurokinin 1 Receptor -10.24 500.48 23 0 19 3 24 69 

DB12199 TRV-120027 Human Angiotensin II Receptor Type 1 -13.86 926.09 0 3 49 13 50 115 

DB12677 Soblidotin Human Tubulin Polymerization Inhibitor -11.06 701.99 16 2 29 11 21 79 

DB14072 Reversin 121 Human P-glycoprotein -10.90 641.76 2 7 15 2 23 49 

* compound that has been studied for COVID-19 treatment. 

 



Enalkiren (DB03395), Rupintrivir (DB05102), Saralasin (DB06763) and TRV-120027 

(DB12199) were found with significantly higher CCNs compared to the other lead 

compounds. It suggested that compared to the other strong binders, these four lead 

compounds bound more frequently with the catalysis-related active regions of COVID-19 

3CLpro. Potentially making them possible drug candidates for the COVID-19 treatment. 

Concerning their CCN for each active region, all four drug candidates preferred to bind 

with the S3 and S5 regions. Enalkiren had the highest CCN at the S4 region while 

Rupintrivir bound more frequently with the S1 region. Saralasin and TRV-120027 both 

bound to human angiotensin II receptors as their original targets and had the same binding 

preference against the S3 and S5 regions over other regions of COVID-19 3CLpro. These 

two bulky compounds blocked larger area at the binding site and having more contacts 

with the S2 region compared to enalkiren and rupintrivir. On the other hand, they were 

facing the difficulty to reach deep inside the binding pocket and interact with the His41 ⋯ 

Cys145 catalytic dyad. 

The enalkiren ligand poses fitted in the “T” shaped binding site well. Its global minimum 

state formed multiple critical contacts with different active regions of COVID-19 3CLpro. 

It formed a π-π stacking with the His41 sidechain at the S1 region by inserting its imidazole 

group to the “T junction hole”, one hydrogen bond with the Asn142 sidechain at the S3 

region, one hydrogen bond with His164 and two hydrogen bonds with Glu166 at the S4 

region, as well as one hydrogen bond with Gln189 at the S5 region. Rupintrivir was 

investigated for the treatment of SARS34 and COVID-1935. In this study, we also 

discovered its potential for treating COVID-19. Its global minimum state formed a π-π 

stacking with the His41 sidechain at the S1 region using a benzene ring, one hydrogen bond 



with the Gly143 backbone amide at the S3 region, and one hydrogen bond with the Gln189 

sidechain. The saralasin global minimum state formed a hydrogen bond with Thr25 at S2 

region, a C-H ⋯ π interactions with His41 at the S1 region, one hydrogen bond with the 

His163 sidechain at the S4 region and one hydrogen bond with Gln189 sidechain at the S5 

region. The TRV-120027 global minimum state bound to the S2 region by forming a 

hydrogen bond with the Thr25 sidechain, bound to the S3 region by forming a hydrogen 

bond with the Asn142 sidechain, and bound to the S4 region by forming a hydrogen bond 

with the His164 backbone. 

 

Figure 6. The global minimum binding modes for (A) enalkiren (B) rupintrivir (C) 

saralasin and (D) TRV-120027 at the COVID-19 3CLpro binding site. 

 



By analyzing the global minimum binding modes and the critical contacts formed in the 

top 100 binding modes, we suggested that enalkiren was the best drug candidate among 

the 4 drug candidates discovered through the virtual screening process. It had significantly 

more critical contacts number interacting with the COVID-19 3CLpro active regions 

compared from the top 100 binding modes and formed a more reasonable global minimum 

complex state compared to the other drug candidate. We further studied the binding and 

dissociation mechanism during the enalkiren – COVID-19 3CLpro complexing process. A 

2-D free energy heatmap was generated using the CHMC protocol, showing that the 

enalkiren had a local minimum state M1’ at the binding site near the M1 global minimum 

state. At the M1’ state, enalkiren leaned against the S3 and S4 active region by forming 

two hydrogen bond with Glu166 and one hydrogen bond with His172, while broke the π-

π stacking interaction and exposed the His41 residue, with ΔGM1-M1’ = 1.88 kcal/mol. The 

2-D free energy heatmap also suggested a possible dissociation path from the M1 state 

passing through the M2, M3, M4 metastable states. The M2 state was the intermediate state 

with ΔGM1-M2 = 3.57 kcal/mol, where enalkiren moved to the substrate’s Leu-P2 binding 

region, surrounded by Thr24, Thr25, Thr26, Leu27, Met49, Asn142 and Cys 145 residues. 

The M3 state was at the edge of the binding site, where enalkiren formed a hydrogen bond 

with the Asn142 sidechain and Thr26 backbone, and ΔGM1-M3 = 2.78 kcal/mol. At the M4 

state, enalkiren was fully out of the binding pocket, only forming a hydrogen bond with 

the Asn142 backbone, with ΔGM1-M4 = 4.86 kcal/mol. 



 

Figure 7. Enalkiren transition free energy surface and the energy minimal states generated 

using the CHMC 2-D protocol. The free energy surface is generated on the xz plane 

centered at the global minimal histogram (0,0) and ranges ±10 Å along both the x and z 

axis. Global and local minimum energy histogram regions are circled in squares. The global 

minimum state M1 (marked in cyan) and a close-by local minimum state M1’ (marked in 

lime) were discovered at the binding site. Three metastable states (M2~M4, marked in 

orchid, brown and magentas respectively) were discovered to illustrate a possible 

dissociation path for enalkiren to move outside the binding site.  

 

Conclusion 

In this work, we studied the binding site structural features of the COVID-19 3C-like 

Protease, and performed the drug repurposing screening against the Drugbank database 

looking for possible drug candidates for the COVID-19 3CLpro target. First, 70 lead 

compounds were selected using the ligand similarity search referencing 19 published 



SARS 3CLpro inhibitors. Binding affinities for these lead compounds complexing with 

COVID-19 3CLpro were then evaluated using the MT free energy method, with 12 strong 

binders further chosen for the binding mode analysis. Eenalkiren, rupintrivir, saralasin and 

TRV-120027 were finally selected due to their effective functional residue interference and 

binding site blocking in their complex states. With significantly more critical contacts 

number interacting with the COVID-19 3CLpro active regions and more reasonable global 

minimum complex state compared to the other drug candidate, enalkiren was the best drug 

candidate for COVID-19 3CLpro suggested by our study. 

Method 

“Movable Type” Free Energy Method 

Sampling the configurational energy states for a macromolecule is quite 

computationally expensive given the all-atom flexibility in computation. The coupling of 

all atom pairwise interactions results in a huge molecular configurational sampling space. 

Regarding the computational cost for the molecular energy states sampling, the Movable 

Type (MT) method introduces the assumption that a molecular conformational energy can 

be approximated as a linear combination of all the atomic energies in that molecular system, 

so that each atom possesses independent configurational degree of freedom. The idea of 

the MT method is to separate the sampling of the molecular energy states into the atomic 

local partition function calculation of all atoms in the studied molecular system. Since the 

energy-state samplings for different atoms are independent from each other, the MT 

method uses numerical procedures instead of explicit configuration sampling to calculate 

the local partition function of every atom for an input molecular conformation given a 



certain movement range for all atoms from their initial position, before grouping the atomic 

partition functions to derive the molecular local partition function for the local free energy 

calculation. 

First, using the end-state conformations of a molecule, the MT method allows the same 

space of movement for all atoms, and generates atom pairwise Boltzmann factors using an 

group of evenly distributed discrete pairwise distance values within the movement ranges. 

In the MT-based atomic energy state sampling, the energy of an atom, say atom α, is 

separated into all pairwise interactions regarding this atom α. Given the identical 

movement space for all the atoms, every pairwise contact has the same sampling range 

between the studied atom α and every other atom in the molecular system, say atom i. All 

the atom α-i pairwise energy states within such range can be expressed using an 

Boltzmann-factor vector modeled in equation 1, where 𝜏𝛼𝑖
0  represents the relative initial 

coordinate of the atom pair α-i in the input structure, and Δτ is their geometric deviation 

step unit with a sampling range (± nΔτ). 

𝑉𝛼𝑖 =

[
 
 
 
 
 
 
 
 
 𝑒−𝛽𝐸𝛼𝑖

𝑛

𝑒−𝛽𝐸𝛼𝑖
𝑛−1

⋮

𝑒−𝛽𝐸𝛼𝑖
1

𝑒−𝛽𝐸𝛼𝑖
0

𝑒−𝛽𝐸𝛼𝑖
−1

⋮

𝑒−𝛽𝐸𝛼𝑖
−(𝑛−1)

𝑒−𝛽𝐸𝛼𝑖
−𝑛 ]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 𝑒−𝛽𝐸(𝜏𝛼𝑖

0 +𝑛Δ𝜏)

𝑒−𝛽𝐸(𝜏𝛼𝑖
0 +(𝑛−1)Δ𝜏)

⋮

𝑒−𝛽𝐸(𝜏𝛼𝑖
0 +Δ𝜏)

𝑒−𝛽𝐸(𝜏𝛼𝑖
0 )

𝑒−𝛽𝐸(𝜏𝛼𝑖
0 −Δ𝜏)

⋮

𝑒−𝛽𝐸(𝜏𝛼𝑖
0 −(𝑛−1)Δ𝜏)

𝑒−𝛽𝐸(𝜏𝛼𝑖
0 −𝑛Δ𝜏) ]

 
 
 
 
 
 
 
 
 

      (1) 

𝑉𝛼𝑖 is a collection of Boltzmann factors of the atom pair α-i. For every pairwise contact 

regarding atom α, its Boltzmann-factor collection can be modeled likewise, as 𝑉𝛼𝑗, 𝑉𝛼𝑘, or 

𝑉𝛼𝑙, etc. The local partition function for atom α in such case contains a huge number of 



energy states by merging all the pairwise Boltzmann factors matching all the sampled 

atomic pairwise configurations.  

Generating all the configurations with respect to the local energy states for atom α is 

quite time consuming, not to mention the molecular free energy calculation requires the 

energy states for all the atoms in the molecule. However, due to that Boltzmann factors for 

different atom pairwise contacts are independent, using the following steps, we can 

numerically derive the local partition function for every atom without generating these 

configurations. 

Equation 2 shows the sum of the energy states of the atom pair α-i. The multiplication 

of ℰ𝛼𝑖  and ℰ𝛼𝑗  represents the sum of all energy states for atom α merging α-i and α-j 

contact potential energies according to the distributive property of multiplication. 

ℰ𝛼𝑖 = (𝑒−𝛽𝐸(𝜏𝛼𝑖
0 −𝑛Δ𝜏) + ⋯+ 𝑒−𝛽𝐸(𝜏𝛼𝑖

0 ) + ⋯+ 𝑒−𝛽𝐸(𝜏𝛼𝑖
0 +𝑛Δ𝜏))    (2) 

 

ℰ𝛼𝑖 × ℰ𝛼𝑗 = (𝑒
−𝛽(𝐸𝛼𝑖

−𝑛+𝐸𝛼𝑗
−𝑛)

+ 𝑒
−𝛽(𝐸𝛼𝑖

−𝑛+𝐸𝛼𝑗
−(𝑛−1)

)
+ ⋯+ 𝑒

−𝛽(𝐸𝛼𝑖
0 +𝐸𝛼𝑗

0 )
+ 𝑒

−𝛽(𝐸𝛼𝑖
0 +𝐸𝛼𝑗

1 )
+

⋯+ 𝑒−𝛽(𝐸𝛼𝑖
𝑛 +𝐸𝛼𝑗

𝑛−1) + 𝑒−𝛽(𝐸𝛼𝑖
𝑛 +𝐸𝛼𝑗

𝑛 ))        (3) 

The right-hand side of Equation 3 contains all conformational energy states of atom α 

for the molecular system with only α, i, j atoms, when atom pairwise contact energies are 

considered independent. Hence in a N-atom molecular system, the multiplication through 

the sums of N-1 pairwise contacts regarding the atom α gives the conformational energy 

ensemble of atom α for the N-atom molecular system including atom α (equation 4).  

ℰ𝛼 = ∏ ℰ𝛼𝑖
𝑁−1
𝑖           (4) 



ℰ𝛼 is the local partition function within the defined movement ranges for all atoms in 

the molecular system. By multiplying through the local partition functions of all atoms in 

the molecular system, we can generate the molecular energy ensemble given the 

corresponding movement range for each atom (equation 5). 

𝒵𝑀 = ℰ𝛼 × ℰ𝛽 × …× ℰ𝑛 = ∏ ℰ𝜉
𝑁
𝜉       (5) 

Through equation 1-5, the MT protocol first assigns the atom pairwise configurational 

sampling range as (±nΔτ) for every atom pair in the molecular system and calculates the 

ensemble of every atomic energy states using equation 1-4. The molecular local partition 

function is then calculated by merging all atomic energy ensembles using equation 5.  

𝒵𝑀 in equation 5 is the molecular local partition function regarding an initial molecular 

conformation given the identical atomic pairwise contact sampling range as (± nΔτ) for 

every atom pair. Given that every pairwise contact has 2nΔτ uniformly distributed pairwise 

distance values, and an N-atom molecular produces a number of N(N-1)/2 atom pairwise 

contacts, 𝒵𝑀  contains a total number of (2nΔτ) N(N-1)/2 uniformly sampled molecular 

energy states in the aforementioned calculation.  

Using this technique, a local energy ensemble centered on one initial end-state 

configuration can be fast collected and transformed into the local partition function 

calculation. 

By feeding the MT protocol with multiple molecular configurations, local molecular 

partition functions 𝒵𝑀 can be calculated using equation 5 for estimation of the free energy. 

Regarding the protein-ligand binding affinity study, conformations for both free and bound 

states are generated using the Monte Carlo sampling protocols followed by local 

minimizations. The free state molecular system includes unbound ligand and protein in the 



solution phase. ℤ𝐿 and ℤ𝑃 are their corresponding partition functions which are necessary 

for the binding free energy calculation. On the other hand, the bound state molecular 

system includes the protein ligand molecules in the complex form in the solution. ℤ𝑃𝐿 is 

the bound state partition function containing all the protein-ligand binding mode energy 

states. In the present study we only performed the ligand conformational sampling and the 

protein-ligand binding mode sampling by considering the flexibility of the ligand structures 

and the protein binding site residues while keeping the rest of the protein geometry fixed. 

The protein conformational sampling is skipped because (1) the massive degrees of 

freedom associated with inclusion of protein flexibility will significantly increase the 

computational burden, while (2) having limited contributions to the computational 

accuracies regarding relative binding affinities studies using identical or similar protein 

target, due to that the ℤ𝑃𝐿 values are very similar among all the test cases. 

In-house programs developed in our group are introduced to perform such tasks. For the 

free-state calculation, the MT-CS conformational search program32 was introduced to 

generate significant free-state molecular conformations with reference to the molecular 

flexibility. The MT-CS conformational search program generated ligand conformers using 

a torsion library with pre-calculated torsion energies using the Amber ff14 force field, the 

solvation free energy was calculated using the KMTISM model.33 The MT protocol was 

then applied to each ligand conformer to estimate the local partition function ℤ𝐿 . The 

ligand’s total partition function was then generated using all the MT-CS sampled 

configurational ensemble energies in equation 6. 

ℤ𝐿 = ∑ 𝒵𝐿
𝛼𝑁𝐿 Conformers

𝛼 = 𝒵𝐿
1 + 𝒵𝐿

2 + ⋯ 𝒵𝐿
𝑁     (6) 



The Heatmap docking program31 was employed for the bound state configuration 

sampling in this work. The bound-state protein-ligand complex ensemble energy is 

calculated using the same protocol by summing all the local partition functions. 

ℤ𝑃𝐿 = ∑ 𝒵𝑃𝐿
𝛼𝑁𝑃𝐿 Poses

𝛼 = 𝒵𝑃𝐿
1 + 𝒵𝑃𝐿

2 + ⋯ 𝒵𝑃𝐿
𝑁      (7) 

The binding free energy change was then estimated by using the ratio of partition 

functions in bound and free states.  

Δ𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 ≈ −𝑅𝑇log (
ℤ𝑃𝐿

ℤ𝐿
)       (8) 

All related codes and data can be obtained by contacting the authors for validation and 

review purpose only. 

 

The “Consecutive Histogram Monte Carlo” Sampling Method 

The Consecutive Histogram Monte Carlo (CHMC) protocol generates evenly distributed 

receptor-ligand state ensembles that represent a reversible work pathway for the receptor-

ligand dissociation. The CHMC protocol restrains the degrees of freedom of the 

configurational sampling during the receptor-ligand dissociation by partitioning the cavity 

of the receptor’s binding site into evenly distributed Monte Carlo sampling units, which 

then have their free energies estimated. In this section, we explain in detail the CHMC 

protocol that generates the 2-dimensional free energy surface with respect to the ligand 

transition on the receptor’s surface. This is done in a series of steps including: (1) 

generation of multiple Monte Carlo sampling units with reference to the receptor-ligand 

dissociation coordinates, (2) sampling the receptor-ligand energy states within each 

“sampling unit”, and (3) calculation of the ensemble energies regarding the sampling units 



and generation of the free energy curve/surface. The following paragraphs describe each 

of these steps in detail. 

Generation of the Multiple Monte Carlo “Sampling Units” 

The CHMC protocol first sets up a series of thin volumes as individual sampling units 

distributed layer-by-layer with equal thickness from a starting sampling point inside the 

receptor binding site to the edge of the binding site. Without applying a biasing potential 

to limit the ligand’s mobility, the CHMC protocol uses a regular energy function and tracks 

the location of the ligand’s geometric center during the sampling. In each sampling window, 

only the ligands’ final poses whose geometric centers are inside the sampling unit will be 

taken into account for the NVT local partition function calculation for the corresponding 

sampling unit. Hence independent configurational samplings can be performed 

simultaneously for all sampling units to calculate evenly distributed NVT ensembles, so as 

to generate the PMF curve or surface representing a reversible work pathway for the 

receptor-ligand dissociation process. 

First, the receptor’s binding site needs to be located to start generating the sampling units. 

Two options are provided for binding site residue selection: (1) manual selection based on, 

for example,  a known crystal structure of a protein-ligand complex, or (2) ligand is docked 

into the putative binding pocket and any residues 6 Å from ligand atoms are then defined 

as the binding site, or the active “pocket”.  

The CHMC method is able to generate consecutive sampling bins with different shapes 

and volumes to satisfy different sampling needs. In this work, we apply a CHMC 2-

dimensional protocol to accomplish the free energy surface calculation regarding the 

ligand’s transition on a receptor surface. The CHMC method creates evenly distributed 0.5 



Å × 0.5 Å histograms on a user-defined plane with a 20 Å height spreading out to the open 

space. The ligand configurational sampling is then performed across the sampling range 

with the ligand’s geometric center held within each histogram. To avoid unbound state 

sampling, any grid points more than 6 Å away from the protein surface are excluded to 

ensure that the ligand configurational sampling is near the protein’s surface. 

 

Figure 8. Illustration of the sampling units in the two-dimensional CHMC protocol. Each 

sampling unit is a 0.5 Å × 0.5 Å × 20 Å histogram from a user defined plane (distributed 

on the xz plane). The histograms are distributed centered at the binding site region (the 

cavity is marked in red) to study the ligand transition pathway and metastable binding 

modes. Grid points are evenly distributed within each histogram 0.5 Å apart from each 

other (the blue dots) as anchor points for placing the ligand structure. Any grid point > 6 Å 



away from the protein surface are excluded to ensure the sampling of the surface region. 

The zoomed-in figure at the bottom left demonstrates a 2 Å × 2 Å area of the sampling 

histogram distribution centered at the geometric center of the receptor binding site. 

 

Placement and Refinement of the Ligand within the “Sampling Units” 

We employ a docking-like procedure for the receptor-ligand complex configurational 

sampling within each Monte Carlo sampling unit. The ligand placement followed by a local 

geometric optimization is performed to generate configurational state ensembles within all 

the sampling units. We have developed a heatmap-based docking protocol in this work to 

satisfy the need for the ligand’s local configurational search within each Monte Carlo 

sampling unit at the binding site in this study. 

The heatmap-based docking program performs a two-step docking procedure, including 

(1) an initial ligand-to-pocket placement using a point-to-point coordinate superimposition 

coupled with a rotational search, and (2) local optimizations for the final binding mode 

generation.  

The first step deposits the ligand onto the selected receptor binding site grid point using 

point-to-point coordinate superimposition, which places the coordinate of the geometric 

center of the ligand onto every pre-placed grid point in each sampling shell. Rotational 

search of the ligand is then performed to optimize the ligands interactions with the receptor 

referencing a set of pre-generated heatmap grid points surrounding every pocket residue. 

Next the geometric center of the ligand (labelled P1), and select a heatmap grid point 

(labelled P2) are used to define a p1->p2 vector around which a 360 degree rotational 

search is carried out, yielding initial poses for the subsequent optimization procedure. The 



top 50 poses, as defined by their interaction energy with the receptor, are kept and passed 

onto the next computational stage. The last step of the calculation employs the Newton-

Raphson method for binding mode optimization against all the initial poses. The goal here 

is to generate an appropriate ensemble of receptor-ligand complex states for each sampling 

unit. We employ the GARF energy function recently developed in our lab43 to calculate 

the interatomic energies between the probe atoms with the receptor and the geometric 

optimization. The heatmap docking protocol is illustrated in Figure 9. 

 

Figure 9. Illustration of the mechanism of the Heatmap Docking protocol using the 1bty 

trypsin-benzamidine complex structure as an example. (A) the active residues at the 

receptor’s binding site (shown as licorice) are selected using a predocked ligand. The 

purple dot inside the binding pocket is a grid point from one of the sampling units serving 



as an “anchor point” to place the ligand geometric center. The orange dots are the “heatmap” 

grid points near the carboxyl group of the Asp189 residue (marked in orange color) 

showing regions where hydrogem bond with the ligand might be possible. (B) The first 

step of the docking protocol is to deposit the ligand (structure shown as thin lines) to the 

binding site by placing the ligand’s geometric center (the red dot) on the anchor point (the 

purple dot) (C) The ligand is rotated by placing one nitrogen on the benzamidine group to 

one of the heatmap grid points near the Asp189 residue. Then the ligand energy states are 

evaluated by rotating it around the vector from P1, the geometric center of the binding site 

(the purple dot) to P2, the selected heatmap grid point (the orange dot). (D) The top 50 

initial receptor-ligand poses selected from step C are optimized to generate the final 

binding modes (6 binding modes are generated and shown in different colors). 

 

Ensemble Energy Calculation 

For every receptor’s binding site structure, the CHMC protocol sets up the sampling units 

with the same volume, creating a set of evenly spaced NVT ensembles to estimate the 

Helmholtz free energy changes along the dissociation pathway. In this work, we calculate 

the Helmholtz free energy changes between sampling units using the ratio of partition 

functions: 

𝛥𝐴𝜉→𝜉+1 = −𝑅𝑇log (
𝑄𝜉+1

𝑄𝜉
)         (9) 

where Qξ and Qξ+1 are the calculated Boltzmann factor ensembles for the sampling unit ξ 

and ξ+1.  

𝑄𝜉 = ∑ 𝑒−𝛽𝑈𝑖(𝜉)𝑛𝑖

𝑖
         (10) 



Ui(ξ) is the potential energy of each sampled complex configurational state. The docking 

protocol generates and keeps the top 50 receptor-ligand poses for each sampling unit 

according to the calculated binding energy. Each of the ensembles is calculated using the 

sum of the Boltzmann weighted energies for all the sampled configurational states. 

The sampling starts from the sampling unit at the geometric center of the binding pocket 

across the binding site until the Helmholtz free energy change converges (ΔAξ→ξ+1< 0.1 

kcal/mol for 3 consecutive sampling units). In this work the ligand is recognized as the 

unbound state.  

𝛥𝐴𝜉→𝜉+1 <  0.1 kcal/mol ⇒  𝑄𝑢 = 𝑄𝜉         (11) 

Then the binding free energy is calculated using the ratio of partition function for the 

energy minimum histogram to the partition function for the unbound state. 

𝛥𝐴𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = −𝑅𝑇log (
𝑄min

𝑄𝑢
)        (12) 

Similar to the umbrella sampling method, the CHMC method defines a reaction 

coordinate prior to the simulation. On the other hand, there are no weighting functions 

applied to the configurations along the reaction coordinate in the CHMC method, while it 

requires that the geometric centers of the sampled ligand configurations are limited to 

staying inside each of the sampling units during the placement and optimization procedures. 

Ligand configurational sampling for each sampling unit is performed and Qξ is hence 

calculated using equation 10 until its value converges. Calculations are performed within 

all the sampling units separately to generate the final energy landscape.  
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