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ABSTRACT 

Coronavirus diseases (COVID-19) outbreak has been labelled a pandemic. For the 

prioritization of treatments to cope with COVID-19, it is important to conduct rapid high-

throughput screening of chemical compounds to repurposing the approved drugs, such as 

repositioning of chloroquine (Malaria drug) for COVID-19. In this study, exploiting 

supercomputer resource, we conducted high-throughput virtual screening for potential 

repositioning candidates of the protease inhibitor of severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2). Using the three dimensional structure of main protease (Mpro) 

of SARS-CoV-2, we evaluated binding affinity between Mpro and drug candidates listed in 

SWEETLEAD library and ChEMBL database. Docking scores of 19,168 drug molecules at the 

active site of Mpro were calculated using Autodock Vina package. Among the calculated result, 

we selected 43 drug candidates and ran molecular dynamics (MD) simulation to further 



investigate protein-drug interaction. Among compounds that bind to the active site of SARS-

CoV-2, we finally selected the 8 drugs showing the highest binding affinity; asunaprevir, 

atazanavir, dasabuvir, doravirine, fosamprenavir, ritonavir, voxilaprevir and amprenavir, which 

are the antiviral drugs of hepatitis C virus or human immunodeficiency virus. We expect that 

the present study provides comprehensive insights into the development of antiviral medication, 

especially for the treatment of COVID-19. 

 

INTRODUCTION 

Coronaviruses are enveloped RNA viruses, which cause severe respiratory illness. Since the 

first outbreak of Severe Acute Respiratory Syndrome (SARS) in 20021,2, coronavirus has 

become a formidable threat to public health. The total number of global infection of Middle 

East Respiratory Syndrome (MERS)3,4 confirmed by WHO reached 2,484 cases, with 858 

deaths. A new type of novel coronavirus, named Severe Acute Respiratory Syndrome Corona 

Virus 2 (SARS-CoV-2), first identified in Wuhan, Hubei, China, in December 2019, and it has 

rapidly spread across the world. Up to now, according to situational report of WHO released 

April 8, 2020, due to coronavirus disease 2019 (COVID-19), 1,282,931 cases have been 

confirmed, and 72,774 deaths were reported. Unfortunately, no vaccine or antiviral drugs have 

been developed that clearly demonstrate effectiveness in the treatment of COVID-19, and drug 

candidates for treatment are undergoing clinical trials worldwide. In particular, for rapid 

development of therapies to COVID-19, investigations of efficacy of approved drugs, known 

as drug repositioning, is being actively conducted.  

Viral replication process essentially requires the cleavage of polyproteins, which is catalyzed 

by a protease5. Thus, it has been suggested that inhibiting the active site of protease is an 

effective treatment of viral infection6–8. Owing to recent intensive efforts to unveil the structure 



of SARS-CoV-2, the three-dimensional structure of main protease (Mpro) of SARS-CoV-2 

(PDB ID: 6LU7) was resolved9. The Mpro forms a dimer, and the residues of CYS41 and 

HIS145 were identified as an active site10. Also several studies investigated the marketed drugs 

as for protease inhibitor (PI) of SARS-CoV-210–14. However, to our knowledge, there was no 

large-scale virtual screening attempted for discovering leads for PI of SARS-CoV-2 using both 

docking calculations and massive molecular dynamics (MD) simulations. 

In this study, high-throughput virtual screening of drug molecules was conducted on Nurion, 

KISTI’s Cray CS500 flagship supercomputer. We performed docking calculation on known 

drug molecules and MD simulations on selected protein-ligand complexes to obtain accurate 

screening results. The purpose of this study was two-fold: 1) to evaluate drug molecules in 

terms of drug repositioning/repurposing for COVID-19 treatment, and 2) to provide insightful 

information in atomic details for the development of antiviral drug of SARS-CoV-2. 

 

METHOD 

Dataset 

The drug molecules were obtained from SWEETLEAD library15 and the drug library of 

ChEMBL database16. The SWEETLEAD library contains 9,127 chemical structures of which 

are approved drugs, isolates from traditional medicinal herbs, and regulated chemicals. 

ChEMBL database is a manually curated open-source database and contains more than 100 

million bioactive molecules. We chose the drug compounds only, which are 10,041 entries, 

including both FDA approved drugs and investigational compounds. The SDF file of 

SWEETLEAD library was converted into MOL2 and PDB formatted files using Open Babel17. 

Since ChEMBL does not contain three-dimensional coordinates, we searched SMILES codes 



from ChEMBL IDs, and converted the SMILES codes into 3D structures using UCSF 

Chimera18.  

 

Docking calculation 

Molecular docking studies were performed using AutoDock Vina package19. The required input 

files for Autodock Vina were prepared using AutoDock Vina plugin of UCSF Chimera18 with 

default options. The three-dimensional coordinates (X, Y, Z) of center of grid box was set to (-

20.5987, 28.2394, 46.3799) with the search size of (25.0, 20.0, 25.0). The center of grid box 

locates near the center of mass (COM) of residues of HIS41 and CYS145, and the size of box 

was determined to sufficiently cover the active site.  

 

Simulation details 

The initial configurations of protein and drug molecules were extracted from the result of 

Autodock Vina. Using our in-house code, we converted the Autodock Vina results to PDB 

compatible format and added missing hydrogen atoms to the drug molecules. The systems for 

MD simulation were prepared using CHARMM-GUI20. The topology and parameters for the 

drug molecules were automatically generated using CGenFF21,22. The Mpro was modelled with 

the CHARMM 36 force field23. Each simulation box was solvated with TIP3P water molecules, 

and additional NaCl ions were placed in the box to neutralize systems. All MD simulations 

were performed using GROMACS software24. The temperature and pressure were maintained 

at 303K and 1atm, respectively. Nose-Hoover thermostat25,26 and Parinello-Rahman 

barostat27,28 were used to control temperature and pressure, respectively. The simulation box 

was modelled in octahedral shape with isotropic coupling scheme. Electrostatic interactions 



were calculated with the particle mesh Ewald method29,30. Lennard-Jones potentials were 

truncated using a force switching cutoff approach. All bonds involving hydrogen atoms were 

constrained using the LINCS algorithm31. We equilibrated the systems according to the 

protocol presented by CHARMM-GUI20. We conducted energy minimization of the systems 

using steepest descent algorithm, and another 200 ps simulation was run for the equilibration 

of the system in NVT ensemble. We performed production run of 500 ns for each system in 

NPT ensemble with 2 fs time step.  

 

Analyses 

The analyses were conducted using VMD32 and in-house code written with Python, Scipy and 

MDAnalysis33. In order to evaluate the stability of selected drug candidates at the active site, 

we measured the distance between COM of drug molecule, and COM of residues of HIS41 and 

CYS145. Binding criteria was determined by COM-COM distance. If the COM-COM distance 

is smaller than 1.5 nm, we regarded that the ligand is bound to the active site of Mpro. Then, 

we calculated bound ratio, which is defined by the ratio of residence (bound) time and unbound 

time. The binding free energy of protein-ligand complex was calculated using g_mmpbsa 

package34. For each protein-ligand complex MD simulation, 100 snapshots were extracted from 

the frames of which ligands are bound. 

 

 

 

 



RESULTS and DISCUSSION 

Computational framework 

 

Figure 1. Computational framework for high-throughput virtual screening. Numbers in red 

represents the number of molecules at each step 

 

For rapid evaluation of drug candidates, we developed a computational framework, which is 

suitable for parallel calculation on supercomputer resource. Figure 1 presents the developed 

framework. Our in-house code automatically converts SDF files from each drug compound 

library, and generates input scripts for job submission. All docking calculations were conducted 

in a parallel manner, which enables rapid virtual screening. Once docking calculation is 

finished, the result files from Autodock Vina were analyzed, and the summary report was 

generated. The drug molecules, which were selected based on the docking scores and criteria 

we assigned, are then converted into MD input files. We automated the screening process with 

bash scripts and python codes. This study was conducted on KISTI’s Nurion supercomputer 



equipped with Intel Xeon Phi 7250 and 96GB memory each node (8,305 nodes in total). The 

entire computation was finished in a week on 512 nodes (64 MPI ranks/node). Considering that 

a similar sized system takes 40-100 ns/day on a single node with GPU35, it will require at least 

200 days (i.e., performing 100ns/day, 40 jobs in serial) to finish whole calculations on PC. 

Exploiting supercomputer resource and our parallel framework enabled us to significantly 

reduce computation time. 

 

Docking calculation 

 

Figure 2. Molecular structure of the main protease (Mpro) of SARS-CoV-2 and a potential 



protease inhibitor. (a) Each monomer of Mpro is represented in different colors. (b) The main 

active site of Mpro and search box (orange line) are highlighted. (c) Chemical structure of 

ergotamine, which showed highest docking score (d) Binding conformation of ergotamine 

(Ball and stick) at active site of Mpro. 

 

We conducted docking calculations at the active site of Mpro of SARS-CoV-2. Figure 2 depicts 

the structure of Mpro and its binding site. We assigned calculation box near the residues of 

CYS41 and HIS145 (Fig 2(b)). The original lists extracted from SWEETLEAD library and 

ChEMBL database contained 19,168 molecules. Figure 2(c, d) illustrates the chemical structure 

and the conformation of ergotamine, which showed highest score. Although there are several 

hydrogen bond donors found in the ergotamine structure, the calculated ergotamine structure 

did not participate in hydrogen bonding with Mpro. 

 

 

Figure 3. Docking score distributions of drug molecules  



Figure 3 depicts the histogram of docking scores (See SI for full lists). Removing repetitive 

items and cases of calculation failure, 12,057 molecules were remained. As shown in Fig. 3, 

many drug molecules show high affinity to the active site of Mpro of SARS-CoV-2. 8,428 

molecules showed docking scores larger than -6.0. Also, it should be noted that the differences 

of docking scores between each molecule are very small. For example, 3,448 and 4,102 

molecules are included in the bins of -7 and -6, respectively. Generally, docking calculation 

enables us to compare the relative preference of drug molecules to proteins within reasonable 

calculation time. However, considering that the differences of docking scores are very small, 

and the results are sensitive to the options that user chose, it is difficult to solely rely on the 

result of docking calculation to distinguish which one is prior to the other for the purpose of 

drug repositioning. In other words, docking calculation can give a brief knowledge for drug 

repositioning, but further analyses and cross-validation are still required. Thus, we conducted 

MD simulation on the selected molecules to verify the result of docking calculation, and also 

to investigate docking mechanisms.  

Molecular dynamics simulation 

We ran MD simulations of selected molecules to verify the result of docking calculation and 

investigate binding mechanism of PIs. The fluctuation of root-mean-square deviation (RMSD) 

of Mpro indicates that Mpro did not undergo significant conformational changes in the course 

of simulation (See SI).  

In order to select molecules for MD simulation, we put highest priority on various inhibitors 

for antiviral treatment, antibiotics for pneumonia, and a couple of vitamins, which showed high 

docking scores. In addition, the drugs underwent clinical trials for the treatment of COVID-19, 

such as remdesivir and hydroxychloroquine, were also tested. Table 1 lists the selected drug 

candidates and its calculated scores.   



Table 1. List of selected molecules for MD simulation and its simulation results 

Score 

(kcal/mol) 
Name MD Simulation statusa Descriptionb 

-8.6 SIMEPREVIR UNBOUND HCVd ns3/4a protease inhibitor 

-8.3 GLECAPREVIR UNBOUND HCV ns3/4a protease inhibitor 

-8.2 FOLIC ACID UNBOUND A synthetic form of vitamin B9 

-7.9 DARUNAVIR UNBOUND HIVe protease inhibitor 

-7.9 DASABUVIR TIGHT HCV non-nucleoside ns5b inhibitor 

-7.8 ZOFENOPRIL UNBOUND Angiotensin-converting enzyme (ACE) inhibitor. 

-7.8 TELAPREVIR UNBOUND HCV ns3/4a protease inhibitor 

-7.6 REMDESIVIR UNBOUND Experimental, a potential treatment for Ebola virus 

-7.5 ELVITEGRAVIR UNBOUND HIV-1 integrase strand transfer inhibitor 

-7.5 GEMIFLOXACIN UNBOUND 
Inhibitor of both DNA gyrase and topoisomerase IV (bacterial 

pneumonia) 

-7.4 
DARUNAVIR 

ETHANOLATE 
UNBOUND HIV protease inhibitor 

-7.4 DEXLANSOPRAZOLE UNBOUND Proton pump inhibitor 

-7.4 AMPRENAVIR LOOSE HIV protease inhibitor 

-7.4 RITONAVIR TIGHT HIV protease inhibitor 

-7.3 PARECOXIB UNBOUND Cyclooxygenase-2 (COX-2) inhibitor 

-7.3 ATAZANAVIR TIGHT HIV protease inhibitor 



-7.3 FOSAMPRENAVIR TIGHT HIV protease inhibitor 

-7.3 ROFLUMILAST UNBOUND Phosphodiesterase-4 (PDE-4) inhibitor 

-7.2 CEFTOBIPROLE UNBOUND Treatment of complicated skin infections and pneumonia. 

-7.2 ETRAVIRINE UNBOUND HIV-1 non-nucleoside reverse transcriptase inhibitor 

-7.2 SULINDAC UNBOUND COX-1 and COX-2 inhibitor 

-7.2 
CALCIPOTRIENE 

HYDRATE 
UNBOUND A synthetic derivative of calcitriol or Vitamin D. 

-7.2 DORAVIRINE TIGHT HIV-1 non-nucleoside reverse transcriptase inhibitor 

-7 TRIFLURIDINE UNBOUND 
Herpes simplex virus type 1 and 2 thymidine phosphorylase 

inhibitor 

-7 ENALAPRILAT UNBOUND ACE inhibitor 

-6.8 BOCEPREVIR UNBOUND HCV ns3/4a protease inhibitor 

-6.8 TRIMETREXATE UNBOUND Dihydrofolate reductase inhibitor (pneumonia) 

-6.7 GRAZOPREVIR UNBOUND HCV ns3/4a protease inhibitor 

-6.5 SULFACYTINE UNBOUND Antibiotics inhibitors of p-aminobenzoic acid 

-6.5 ASUNAPREVIR TIGHT HCV ns3 protease inhibitor 

-6.4 LEFAMULIN UNBOUND 

Inhibitor binds to the peptidyl transferase center of the 50S subunit 

of the bacterial ribosome(bacterial community-acquired 

pneumonia) 

-6.3 PENTAMIDINE UNBOUND Topoisomerase inhibitor (pneumonia) 

-6.2 BENZYLPENICILLIN UNBOUND 
Antibiotic used to treat a number of bacterial infections including 

pneumonia 

-6.2 HYDROXYCHLOROQUINE UNBOUND Treatment of uncomplicated malaria 



-6.1 EDOXUDINE UNBOUND Herpes simplex virus type 1 and 2 selective inhibitor 

-6.1 GANCICLOVIR UNBOUND 
Potent inhibitor of the herpesvirus family including 

cytomegalovirus. 

-6.1 OSELTAMIVIR UNBOUND 
Influenza viruses a (including pandemic H1N1) and b 

neuraminidase inhibitor 

-6.1 PERAMIVIR UNBOUND Influenza virus neuraminidase inhibitor, . 

-5.8 TAZOBACTAM UNBOUND Beta-lactamase inhibitor (bacterial pneumonia) 

-5.8 ZALCITABINE UNBOUND Inhibitor of HIV replication 

-5.5 LAMIVUDINE UNBOUND HIV-1 and hepatitis b virus reverse transcriptase inhibitor 

-4 VOXILAPREVIR TIGHT HCV ns3/4a protease inhibitor 

-3.4 VELPATASVIR UNBOUND HCV NS5A inhibitors 

 

a We assigned TIGHT state if the bound ratio was larger than 0.95, and UNBOUND state otherwise. LOOSE state indicates that the ligand 

was detached from the active site in chain A, and bound again to the active site in chain B. 

b Description is referred from the DrugBank database36. 

d Hepatitis C virus (HCV) 

e Human immunodeficiency virus (HIV) 

 

 



Firstly, docking calculation and MD simulation did not show consistent result. For example, 

docking score of simeprevir shows highest score among the selected molecules, but it was 

unbound from the Mpro. On the other hands, voxilaprevir shows relatively small docking score, 

but it was tightly bound to the active site of Mpro. We suspect that the inconsistency is mainly 

due the inaccuracy of docking calculation, and there is also a possibility that incorrect 

parameters are assigned to drug molecule due to the automated parameterization using CGenFF.  

MD simulation results show that asunaprevir, atazanavir, dasabuvir, doravirine, fosamprenavir, 

ritonavir and voxilaprevir, which are inhibitors of HCV or HIV, are tightly bound at the active 

site. It indicates that those drugs can be a potential candidate for the treatment of COVID-19. 

It is noteworthy that hydroxychloroquine, which is actively being studied as a treatment for 

COVID-19, was stabilized at the location predicted by Autodock Vina. However, since the 

binding location was at distance from the active site, which was out of our criteria, we labeled 

it as UNBOUND. Intriguingly, although amprenavir was detached from the active site in chain 

A at the beginning of simulation, after around 400 nanoseconds, amprenavir molecule was 

bound to the active site in chain B. Thus, we also considered that amprenavir also can be a 

potential inhibitor of Mpro. Nonetheless, the cases of amprenavir indicate that we need long 

simulation time to accurately predict the binding affinity.  

To further investigate the binding mechanism of the candidate inhibitors, we analyzed the 

binding free energy and hydrogen bonds. We measured binding free energy using molecular 

mechanics Poisson-Boltzmann surface area (MMPBSA) approach. Table 2 lists the energetic 

contributions to the binding free energy, including van der Waals (EvdW), electrostatic 

interaction (Eelec), polar solvation (Polar), and non-polar solvation energy (SASA) terms. The 

contribution from electrostatic interaction is relatively small, and the tight binding of drug 

molecules on Mpro is mainly due to van der Waals interactions and. Also, hydrogen bonding 



between ligands and the active sites (HIS41 and CYS145 residues) is not considered to be an 

important contributor to the stability of protein-ligand interaction (Table 3).  

 

Table 2. Binding free energy analysis of drugs (kcal/mol) 

 EvdW Eelec Polar SASA ∆Gbind 

DASABUVIR -38.2±4 -7.3±3.2 29.5±5.7 -4.5±0.5 -20.4±3.1 

ASUNAPREVIR -57.9±4.1 -12.4±3.2 50.6±3.2 -6.7±0.4 -26.5±4.8 

DORAVIRINE -39.6±2.7 -7.2±2.2 27.8±3.6 -3.7±0.2 -22.7±3.2 

 

Table 3. Hydrogen bonds analysis of candidate drugs  

 Donor Acceptor Occupancy 

AMPRENAVIR HSD41 Ligand 0.11% 

ASUNAPREVIR CYS145 Ligand 1.40% 

ATAZANAVIR - - - 

DASABUVIR HSD41 Ligand 0.28% 

DORAVIRINE HSD41 Ligand 0.14% 

FOSAMPRENAVIR CYS145 Ligand 0.55% 

RITONAVIR Ligand HSD41 4.10% 

VOXILAPREVIR HSD41 Ligand 2.23% 

 

CONCLUSION 

In this study, exploiting a supercomputer resource, we searched for potential drug candidates 

of SARS-CoV-2. For efficient and accurate virtual screening of drug molecules, we presented 

a novel computational framework, which can accelerate drug repositioning study. 

Approximately 20,000 drug molecules were evaluated to assess its binding affinity to the active 

site of the Mpro using Autodock Vina software. Docking calculation indicated that many of 



approved drugs show high affinity to Mpro. In order to validate the docking results, we selected 

43 drug molecules and performed MD simulation. Unlike docking calculation results, MD 

simulation showed that most of selected drugs have less binding affinity to Mpro. This result 

indicates that detailed scrutiny is required to correctly interpret the result of docking calculation. 

The MD simulation results presented that some FDA approved antiviral drugs can be used as 

a potential treatment for COVID-19. Despite the promising results from this study, further 

validations of the result, such as in vitro and in vivo experiment, and clinical test, are still 

necessary. In addition, longer simulation time and/or enhanced sampling techniques (i.e., 

replica exchange MD) are needed to be performed to obtain more accurate and detailed 

information of protein-ligand interaction. 
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